
Survey Reproduction of Defect Reporting in Industrial Software Development

Eero I. Laukkanen
Aalto University, SoberIT

P.O. Box 19210,
FI-00076 Aalto, Finland
eero.laukkanen@aalto.fi

Mika V. Mäntylä
Aalto University, SoberIT

P.O. Box 19210,
FI-00076 Aalto, Finland
mika.mantyla@aalto.fi

Abstract—Context: Defect reporting is an important part of
software development in-vivo, but previous work from open
source context suggests that defect reports often have insufficient
information for defect fixing. Objective: Our goal was to repro-
duce and partially replicate one of those open source studies in
industrial context to see how well the results could be generalized.
Method: We surveyed developers from six industrial software
development organizations about the defect report information,
from three viewpoints: concerning quality, usefulness and au-
tomation possibilities of the information. Seventy-four developers
out of 142 completed our survey. Results: Our reproduction
confirms the results of the prior study in that “steps to repro-
duce” and “observed behaviour” are highly important defect
information. Our results extend the results of the prior study
as we found that “part of the application”, “configuration of the
application”, and “operating data” are also highly important, but
they were not surveyed in the prior study. Finally, we classified
defect information as “critical problems”, “solutions”, “boosters”,
and “essentials” based on the survey answers. Conclusion: The
quality of defect reports is a problem in the software industry
as well as in the open source community. Thus, we suggest that
a part of the defect reporting should be automated since many
of the defect reporters lack technical knowledge or interest to
produce high-quality defect reports.

Keywords-software debugging; software maintenance; software
quality;

I. INTRODUCTION

Defect reporting is a vital part of software engineering, but
its current state of the practice is far from ideal. This can be
seen in prior work by Zimmerman et al. [1] who state, based
on studies of open source projects, that defect reports often
have insufficient or incorrect information, which increases the
effort needed for defect fixing. Our industrial collaboration
and research have revealed that the same problems exist in the
software industry [2]. We see the problem of inadequate defect
information rising from two sources: insufficient skills of
defect reporters and the manual workload of defect reporting.

First, not every defect reporter knows what information
developers consider helpful or need for fixing defects. The
role and background of a defect reporter can vary between two
extremes [2]; the reporters can be programmers with highly
technical background and in-depth knowledge of the software.
However, they can also be sales representatives, who may
possess expertise in using the system, but have very little
knowledge of or even interest in the technical details of the
software. Sales representatives and other domain experts can
find defects with high business value when preparing for a

customer demonstration using an internal alpha version of the
upcoming release [2]. Overlooking their bug reports could be
disastrous for a software company.

Second, if too much information is required in manual
defect reporting there is a risk that the reporter will not submit
the defect report at all. This reaction is similar to survey
fatigue where a respondent will fail to complete a lengthy
survey. Making all fields in bug reporting system mandatory
will decrease the number of defect reports. Furthermore, one
should also understand that time spent on defect reporting is
separate from the defect reporters real job: programming or
selling the software.

Replication and reproduction has been recognized through-
out the natural, social and the engineering sciences as ways
of creating and deepening scientific knowledge. In software
engineering research the initial focus on replications was given
for replicating experiments [3]–[5]. However, in recent years
there has been a growing interest in case studies, surveys,
and other field studies in the software engineering research
community [6]–[9]. This has sparked interest in broader view
of replications [10], [11] that acknowledges the need to
replicate such studies.

We surveyed defect reporting in six industrial software
organizations. Our study was a reproduction of prior work
by Zimmerman et al. [1]. We studied the defect information
from three viewpoints. First, we wanted to know what defect
information is useful for fixing defects. Second, we wanted to
find out what defect information is missing or incorrect in the
studied organizations. Third, we wanted to know which items
should be collected in the defect reports.

Next, we present related work to our study (Section II)
and describe our research methodology and the survey design
(Section III). We present the results from the survey (Section
IV) and compare them to the original study [1] we reproduced
(Section V). Finally, we present our conclusions and propose
future work (Section VI).

II. RELATED WORK

Zimmermann et al. [1] defined the characteristics of a good
defect report. They conducted a survey of software developers
and defect reporters of three open source software projects, to
find out what information developers had used for defect fixing
and what information developers consider the most helpful
for fixing defects. Steps to reproduce, stack traces, test cases,
screenshots, observed behavior, and expected behavior were



rated as the most important, but also the hardest for reporters
to provide. Some of the items that developers consider helpful
were not reported as frequently as might be assumed. In
addition to the study by Zimmermann et al., many defect
reporting guidelines in the Internet offer useful information for
defect reporting, such as “How to Report Bugs Effectively” by
Tatham [12].

Our previous work [2] examined testing activities in differ-
ent industrial case companies. In all companies testing was
conducted by multiple stakeholders, not by the specialized
testers alone. Companies valued domain knowledge and the
viewpoint of end-users, which led to collaboration in testing.
We also noted that the state of defect databases in companies
was a concern, since the database entries were not comprehen-
sive. A similar observation was made by Aranda and Venolia
[13]. They suggest that inspecting the electronic imprints of
defects in defect databases is not enough to understand the
history of a defect. Instead, it is required to communicate
with the people related to the fixing process. Breu et al.
[14] searched defect reports, extracted and categorized the
questions asked in the reports. They found that 15.1% of all
the questions were about missing information, which shows
problems with defect reporting.

Merkel and Kanij [15] conducted a global online survey
of what testers believed the characteristics of a good tester.
They found that testing performance varies among testers. The
quality of a bug report was the most important factor in a tester
with high performance. Expertise in the problem domain was
agreed as a factor that influences the performance of software
testers, in addition to knowledge of specific testing techniques.

To make defect reporting easier for end-users, multiple auto-
matic reporting tools have been implemented for desktop envi-
ronments, such as Windows Error Reporting [16] for Microsoft
Windows. Some important information can be collected with
sophisticated methods that are not used by current automatic
reporting tools. Artzi et al. [17] propose a method of collecting
test cases automatically although with 13%–64% performance
overhead. Castro et al. [18] show how the input that causes the
defect can be collected without collecting private information.
Zamfir et al. [19] introduce defect fingerprints that would assist
with the fixing of concurrency defects.

III. METHOD

This section describes how our study was conducted. We
begin by listing the research questions. Next, we explain
the selection of the participants for our survey. Then, we
present the survey instrument we used. We explain our data
analysis methods and conclude by describing how our study
was replicated that of Zimmermann et al. [1].

A. Research Questions

To understand the problems of defect reporting, we defined
our research questions as follows:

1) What defect information do developers consider useful
for fixing defects?

2) Has the useful information been incorrect or missing in
defect reports?

3) Which information should automatically be collected into
defect reports?

Answers to the first question tell us about the kind of defect
data that should be included in the defect reports. Answers to
the second question tell us how problematic the reporting of a
particular piece of defect information is, thus giving us a hint
of the possible impact of automatic collection. Finally, answers
to the third question classify the items based on whether they
can be collected automatically or they must be collected by
other means.

B. Selection of Participants

Our five participant companies (Table I) were selected
based on research cooperation within our research project. Our
participant companies did software development in multiple
contexts and every company had several software projects.
Thus, multiple areas of software development have been
included in the survey population. This was an important factor
because our first research question could depend on the context
of software development.

Developers were contacted by email with LimeSurvey sur-
vey application [20]. One hundred and forty two developers
were invited to the survey and 74 completed the survey
(Table I). The response rate was 52.1% which is comparable to
that of other online surveys [21]. We believe that response rate
increased thanks to research cooperation with case companies
and personal reminders during the administration of the survey.

Based on the first section on the questionnaire we got
additional information on the population of participants. All
participants were experienced developers. Half of them had
worked in their company for more than three years and as a
developer for more than six years. Everyone had worked at
least one year as a developer. Seventy-three percent had fixed
100 or more defects in the company. Sixteen participants had
subordinates in their work and 58 did not.

Defect reporters in our participant companies were defined
in our prior work [2] in which we categorized defect reporters
based on how closely they worked with the customers. Defect
reporters are not a homogeneous group; they range from exter-
nal customers who use the software for their own intentions,
to software developers.

C. Questionnaire Design

We asked software developers working in five selected
case companies to complete a half-open survey. A half-open
survey contains both closed and open questions, to obtain
quantitative and qualitative data from the respondents. The
questionnaire was based on the survey by Zimmermann et al.
[1] and other survey literature [21]–[23]. It was also piloted
by two researchers inside authors’ research group to enhance
the reliability of the questionnaire. The questionnaire was split
into six pages:

Page 1. Background information. Participants were
asked how experienced they were as developers and



TABLE I
SUMMARY OF THE CASE COMPANIES. TWO BRANCHES WERE SEPARATED IN THE ANSWERS FROM COMPANY B. THE ACCURACY OF PERSONNEL IS 50

PERSONS AND THE ACCURACY OF AGE IS 10 YEARS.

Organization Personnel Age (years) Domain Invited Responses Completed

A 50 30 Automation systems & Software system for operation 17 8 (47.1%) 6 (35.3%)
B1 500 40 COTS for engineering design 31 18 (58.1%) 12 (38.7%)
B2 500 40 Software systems for operation and engineering design 18 10 (55.6%) 9 (50.0%)
C 100 10 Internet applications for administration 23 20 (87.0%) 18 (78.3%)
D 100 20 Business software system of specific industry 31 21 (67.7%) 19 (61.3%)
E 100 20 COTS for engineering design & Software system for operation 22 11 (50.0%) 10 (45.5%)

Total 142 88 (62.7%) 74 (52.1%)

how many defects they had fixed. They were also asked
whether or not they had subordinates.

Page 2. Defect information. Participants were asked to
select useful pieces of information (later called items) for
fixing defects. The items were on a preselected list, but
respondents could also write their own items in separate
text boxes. The respondents were asked to select items
even if those items would be only slightly useful.

Page 3. Defect information usefulness. The items par-
ticipants selected on the previous page were rated on
their usefulness along a 5-point scale: “Not useful at
all,” “Slightly useful,” “Fairly useful,” “Quite useful,”
“Very useful.” The items which were not selected in the
previous section were not rated, to make the questionnaire
consistent to the participant. Respondents could select an
item to be useful on Page 2, but then rate it “Not useful
at all.” Therefore all answers where option “Not useful
at all” was selected were discarded as inconsistent.

Page 4. Missing or incorrect information in defect
reports. The items participants selected on Page 2 were
rated to be missing or incorrect with a 5-point scale:
“Never or very seldom,” “Quite seldom,” “Sometimes,”
“Quite often,” “Very often or always.”

Page 5. Collecting information automatically. The items
participants selected on Page 2 were rated how easily
they could be automatically collectible with a 5-point
scale: “Very hard,” “Quite hard,” “I don’t know,” “Quite
easy,” “Very easy.” Participants could also elaborate on
how these items could be collected.

Page 6. Comments. Finally, participants could leave extra
comments.

On page 2, participants could select useful items from a
preselected list of 18 items (Table III). The list was based
on the list used by Zimmermann et al. [1], but modified
under our consideration and survey piloting. We also allowed
respondents to optionally add a maximum of three useful items
to the survey.

D. Analyzing the Results

We analyzed our results by examining the distribution of
all answers instead of only calculating medians. To analyze
the results, we calculated combinations of different factors,
for example, how many respondents selected an item to be

both useful and missing or incorrect. By merging two factors
of an item we could determine if an item causes a problem
in defect reporting that can be solved. When calculating the
combinations, developers were handled one at a time to avoid
false conclusions. For example, one person could rate an item
to be useful and another could rate that item as missing
or incorrect. That case would not have been counted as a
combination.

After analyzing the quantitative results, we read the com-
ments given by participants on page 5 and on page 6 of
the questionnaire. Comments could support quantitative results
and give us a better understanding of defect reporting in the
companies.

E. Replication of a Previous Study
Gómez et al. [11] show that replications are not classified

in any standardized manner in the sciences. In the field
of experimental software engineering our work should be
viewed as reproduction [24] to differentiate it from replications
that are mostly understood in software engineering as exact
replications (Table II). For this reason and because replications
in software engineering focus mostly on experiments, we use
the terminology of Tsang and Kwan [25] to describe our
survey replication. They classified replications into six types
along two dimensions (Table II). The first dimension describes
whether or not the same measurement and analysis methods
are used. The second dimension depends on the source of
the data. In this study, measurement and analysis methods
and the target population were different from those in the
original study [1]. Therefore we classified our replication as a
generalization and extension.

TABLE II
TYPES OF REPLICATION BY TSANG AND KWAN [25]

Same Measurement
and Analysis

Different Measure-
ment and Analysis

Same Data Set Checking of analysis Reanalysis of data

Same Population Exact replication Conceptual extension

Different Population Empirical generaliza-
tion

Generalization and
extension

Zimmermann et al. [1] also surveyed the useful information
for defect fixing and problems of defect reporting. Our study



should be seen as a reproduction [24] of that. Our study differs
from theirs in the following respects:

• Our survey population consisted of industrial software
developers and their survey population was open source
software developers. The difference is the context of soft-
ware development. In open source, software development
is open, meaning that everyone can contribute to the
project by developing or testing the software. Industrial
software development, at least in our participant compa-
nies, is closed, meaning that only a certain population
has access to the development process. Of course, it is
possible that open source software can be developed in
the industry.

• We added part of the application, configuration of the
application, operating data, reporter’s contact informa-
tion, and user input to the list of defect information.
Configuration of the application and operating data were
added to our survey as we knew our companies had prod-
ucts with several thousand configuration points and where
operating data was crucial. Thus, we had prior insight that
bugs could often result from different configuration and
operating data [26]. Adding part of the application and
user input was done, mostly based on our experiences.

• We combined build information and version information
as part of product information. We renamed summary to
bug title as it was called in our case companies. We also
considered that code examples will be covered in either
steps to reproduce, test scripts or user input fields.

• In the survey by Zimmermann et al. developers did not
rate items. Instead, they selected the three most useful
items. We introduced rating, based on that there could be
more than three useful items for fixing defects.

• We studied the problems related to defect reporting by
rating individual items. Zimmermann et al. considered
other possible problems such as bad grammar. Our
approach was better suited to our focus of automatic
defect reporting.

• Zimmermann et al. asked the opinions of defect reporters.
We instead used a section (page 5 in the questionnaire)
about automatic collection of items because it was the
focus of our study.

Our survey reproduction differs from the original study
on two dimensions. First, our survey population consisted
of industrial software developers; in the previous study the
population was open source software developers. Second, our
survey design had a different software development context.
By comparing the results of both studies we can ascertain
which qualities of open source software development apply to
industrial software development. A possible threat to validity is
introduced, because we had multiple differences from previous
study. If our results differ, we will not always know why. Thus,
the main contribution of our study is to strengthen previous
results, and conflicts between the results should be discussed
with caution.

IV. RESULTS

Next we introduce the quantitative results from the sur-
vey. From each quantitative section on the questionnaire, we
present the three highest-rated items and the three lowest- or
least-rated items. We also discuss our other observations from
the results. Finally, we combine different results to see which
items should be collected automatically.

A. Useful Information

Developers were to select items they considered useful
pieces of information for fixing defects. Out of 18 items,
the mean count of selected items was 12.65 with the standard
deviation of 3.69. Every developer selected at least six items.

Three items were selected by over 90% of the respondents:
steps to reproduce (97%), screenshots (95%), and part of
the application (92%) (Table III). The selection of these
items is not surprising, because these items can be useful
for the majority of defects. Steps to reproduce is a vital
piece of information for understanding a defect. If a developer
cannot reproduce the defect, he or she can seldom resolve it.
Three least selected items were: hardware context (34%), test
cases and test scripts (47%), and severity of the bug (54%).
Hardware context was not selected probably because the target
companies of the survey were not developing software close to
the hardware. The situation could be different if device drivers
were developed, for example. Most developers did not select
test cases and test scripts, which is somewhat surprising. One
explanation can be that detailed test cases are not always used
in our target companies. Severity of the bug can be used for
bug triaging, but it is not useful after the defect to be fixed
has been identified.

TABLE III
SELECTION% AND USEFULNESS OF ITEMS

Item Se
le

ct
ed

Sl
ig

ht
ly

U
se

fu
l

Fa
irl

y
U

se
fu

l
Q

ui
te

U
se

fu
l

Ve
ry

U
se

fu
l

Bug title 64% 23% 34% 26% 17%
Component / module 77% 12% 16% 40% 32%
Configuration 82% 7% 31% 36% 26%
Error reports 70% 13% 17% 38% 31%
Expected behavior 69% 2% 18% 35% 45%
Hardware context 34% 40% 44% 8% 8%
Observed behavior 77% 5% 7% 28% 60%
Operating data 89% 6% 20% 26% 48%
Part of the application 92% 3% 6% 25% 66%
Product information 64% 13% 30% 26% 32%
Contact information 58% 33% 30% 19% 19%
Screenshots 95% 4% 19% 27% 50%
Severity of the bug 54% 30% 45% 22% 2%
Software context 57% 31% 40% 21% 7%
Stack trace 70% 8% 17% 35% 40%
Steps to reproduce 97% 0% 0% 3% 97%
Test cases, test scripts 47% 9% 40% 26% 26%
User input 69% 4% 22% 51% 24%

Selection counts show that developers were not unani-
mous in their selections (Table III). For example, test cases,
test scripts were selected by 47% of the developers and not



selected by 53%. The same observation was made inside
the companies, for example inside Company C 33% of the
developers selected test cases, test scripts. This could mean
that either the developers are not used to using all of the items
for fixing defects, or some items are more useful than others
for fixing certain defects. The latter is clearly the case with
hardware context, since it could be a fundamental piece of
information for fixing certain defects.

Items which were most frequently rated to be very useful
for fixing defects were: steps to reproduce (97%), part of the
application (66%), and observed behavior (60%) (Table III).
Steps to reproduce is clearly the most selected item and the
most useful. The only difference here to the selection count
of the items was that screenshots were not considered “Very
useful” as much as observed behavior by those who selected
the items in the first place. While screenshots are generally
useful information for fixing defects, they are not useful for all
kinds of defects and observed behavior can describe all defects
much more diversely. Three items not considered very useful
for fixing defects were severity of the bug (2%), software
context (7%), and hardware context (8%). The result is to be
expected in light of the previous result. Here test cases and
test scripts stand up compared with the previous result. We
propose that those who consider test cases and test scripts
useful are accustomed to using them for fixing defects. Our
last observation is that expected behavior is rated quite low.
This is surprising because it has been a problem when the
reporter and the developer have different understandings of
the defect.

Differences among companies were explored by comparing
answers from the Companies C and D, because they both had a
high response rate and their domains were distinct. Company C
does Internet applications and Company D does data systems
and simulators. However, no clear differences were found
between companies concerning useful pieces of information
for defect fixing. When comparing selection counts between
companies, the largest difference was with user input (30%
difference between selection counts). We think there are no
significant differences because our preselected list contained
pieces of information which can be used for fixing defects in
various software development contexts. In addition, in both
companies there were multiple software projects and thus,
diverse software development activities.

Respondent could also type in additional items which
they consider useful for fixing defects. Fourteen partici-
pants (19%) submitted total of 22 additional items. Out of
those, three items were in the list we already provided in
the survey, but they were more detailed, video capture of
how to reproduce, for example. Four submitted items were
information that could be acquired from the reporter and
other 13 items were mainly related to developers’ software
context (e.g. web application). This result indicates that some
useful information for fixing defects is connected tightly to
the operating environment of the application. It highlights the
importance of software context in defect reporting. Thus, it
can not be determined universally what information should be

included into defect reports. Two given additional items were
discarded, because they could be understood in multiple ways.
Since only 19% of the participants provided us with additional
items and since those additional items were heavily diversified,
we did not analyze quantitative answers regarding additional
pieces of information. We believe that our preselected list of
useful items was comprehensive enough for typical defects.

B. Missing or Incorrect Information

Developers rated how often an item had been missing
or incorrect in the defect reports. Items which were most
frequently rated to be very often missing or incorrect in
defect reports were: hardware context (40%), stack trace
(35%), and software context (24%) (Table IV). Both hardware
context and software context were rated rather low in the
previous section (Table III). A reporter can have the mistaken
assumption that the problem exists in the used software when
the defect can be caused by hardware or concurrent software.
Either way, developers who need these items find the items
to be missing or incorrect quite often. Remember that only
developers who considered these items useful in the first
place answered in this section. Stack trace was missing quite
often according to 54% of respondents. In the viewpoint of
a non-technical computer user, stack traces might be only
loosely related to the defect itself. Other items which were
notably rated as missing or incorrect quite often were steps
to reproduce (64%) and screenshots (50%). Both were rated
high in the previous section, which means that they are useful
but are not reported correctly.

TABLE IV
LACK OF ITEMS

Item N
ev

er
or

Ve
ry

Se
ld

om
Q

ui
te

Se
ld

om

So
m

et
im

es
Q

ui
te

O
fte

n
Ve

ry
O

fte
n

or
A

lw
ay

s

Bug title 32% 32% 28% 6% 2%
Component / module 5% 33% 33% 26% 2%
Configuration 3% 16% 21% 38% 21%
Error reports 13% 17% 40% 17% 12%
Expected behavior 2% 12% 29% 51% 6%
Hardware context 8% 20% 12% 20% 40%
Observed behavior 4% 33% 44% 16% 4%
Operating data 5% 18% 44% 23% 11%
Part of the application 12% 31% 43% 12% 3%
Product information 15% 26% 40% 15% 4%
Contact information 47% 23% 19% 9% 2%
Screenshots 10% 11% 29% 47% 3%
Severity of the bug 12% 32% 38% 12% 5%
Software context 7% 19% 14% 36% 24%
Stack trace 15% 17% 13% 19% 35%
Steps to reproduce 3% 10% 33% 40% 14%
Test cases, test scripts 3% 9% 40% 26% 23%
User input 2% 10% 31% 45% 12%

Least missing or incorrect pieces of information, based
on the “Never or very seldom” rating, were reporter’s contact
information (47%), bug title (32%), and product information
(15%). Out of these three, product information was missing



more than others, as its median answer option was “Some-
times” and with others, the median answer option was “Quite
seldom.” Reporter’s contact information and bug title are both
easily identified by the reporter and can be seen as a de facto
standard of any kind of communication. For example, when
sending email both title and sender’s contact information are
generally included in the message.

It seems that defect reporting is not flawless, as many useful
items such as steps to reproduce, stack trace, and configuration
of the application, were not included in the report or were
incorrect quite often according to over 50% of the participants.
Test cases and test scripts, steps to reproduce, user input,
expected behavior, and configuration of the application were
rated to be missing or incorrect “Sometimes” or more often
by over 80%. It is possible that a reporter does not include the
information, because he knows exactly which items are related
to the defect. In any case it seems that there are problems with
the information content of defect reports. If some items would
be collected automatically to the reports, then they would not
be missing and quite certainly not be incorrect.

C. Automatic Information Collection

Developers rated items based on how easily items could be
collected automatically. The items most rated to be very easily
collectible were: product information (45%), reporter’s con-
tact information (35%), and hardware context (32%). Collect-
ing them can be seen as a rather straightforward process as all
of them are usually available from desktop applications. Items
that were the most difficult to collect were: expected behavior
(45%), bug title (28%), and severity of the bug (25%). These
items are usually all defined by the reporter, even in automatic
defect reporting applications. Some developers thought that
these could be collected automatically too, but we propose
that the quality of information would suffer from automatic
collection. Participants could also answer with neutral “I don’t
know” option. This option was used by 12–42% of respondents
depending on the item in question (Table V).

No common understanding was found among the partici-
pants regarding the automatic collection of several items. This
could mean that while some items are generally easy to collect,
other items can be more difficult to collect in a specific context.
Participants were more inclined to rate information as easy to
collect, perhaps because it is easier to determine if it is easy
to collect the information than to determine if it is difficult.
The answers could also have been biased by social desirability
bias [27]. Either way, items such as expected behavior can be
said to be difficult to collect even though 16% of developers
answered the other way.

D. Combinations

Defect reporting could be improved by only inspecting
which items are the most useful for fixing defects. However,
the most useful item for defect fixing was steps to reproduce
which is difficult to collect automatically (Figure 1). Therefore
we also inspected the combinations of different factors to

TABLE V
AUTOMATIC COLLECTION OF ITEMS

Item Ve
ry

H
ar

d

Q
ui

te
H

ar
d

I
D

on
’t

K
no

w
Q

ui
te

Ea
sy Ve

ry
Ea

sy

Bug title 28% 17% 23% 15% 17%
Component / module 2% 23% 12% 44% 19%
Configuration 0% 28% 18% 49% 5%
Error reports 0% 21% 31% 33% 15%
Expected behavior 45% 12% 27% 10% 6%
Hardware context 0% 4% 16% 48% 32%
Observed behavior 11% 30% 35% 23% 2%
Operating data 3% 23% 26% 39% 9%
Part of the application 1% 25% 24% 31% 19%
Product information 2% 0% 17% 36% 45%
Contact information 2% 2% 28% 33% 35%
Screenshots 11% 13% 36% 31% 9%
Severity of the bug 25% 15% 42% 12% 5%
Software context 0% 7% 19% 45% 29%
Stack trace 0% 17% 29% 29% 25%
Steps to reproduce 14% 39% 25% 19% 3%
Test cases, test scripts 20% 29% 34% 14% 3%
User input 10% 33% 31% 24% 2%

analyze which items should be collected automatically into
defect reports.

Fig. 1. Summary of The Results. Size of circles is determined by difficulty
of automatic collection (larger circles are easier).

We calculated four combinations: critical, solution, booster,
and essential. For example, we calculated which items were
most often rated useful and missing or incorrect to see which
items were the most critical (Table VI). The scores were
calculated by first examining if the ratings by an individual
developer were at least “Quite useful,” “Quite often,” or
“Quite easy,” depending on which combination was calculated
(Table VI). Then the number of satisfying answers was com-



pared to the total number of selections on the Page 2 of the
questionnaire. The most critical items were steps to repro-
duce, expected behavior, and user input. Collection of these
items should be made with manually, since they are generally
difficult to collect automatically. Hardware context, software
context, and configuration of the application could be collected
automatically and should be, because they cause problems.
Collecting part of the application, product information, and
stack trace automatically would reduce the manual effort to
report defects, thus they would boost defect reporting. Stack
trace, configuration of the application, and component / mod-
ule could be collected automatically to decrease problems with
defect reporting in general, although the percentages were
lower compared to other combinations (14–21%).

TABLE VI
COMBINATIONS

Useful
Missing
or
Incorrect

Automatic
Collection

High Scores

Critical ✓ ✓ steps to reproduce (54%)
expected behavior (53%)
user input (43%)

Solution ✓ ✓ hardware context (44%)
software context (43%)
configuration (31%)

Booster ✓ ✓ part of the application (47%)
product information (47%)
stack trace (46%)

Essential ✓ ✓ ✓ stack trace (21%)
configuration (18%)
component / module (14%)

V. DISCUSSION

In this section, we answer our research questions, compare
our results with previous research and discuss threats to
validity.

A. What Defect Information Do Developers Consider Useful
for Fixing Defects?

The participants of the survey selected pieces of information
they considered useful for fixing defects. After that, they rated
these items according to how useful they are. Most developers
considered steps to reproduce, screenshots, and part of the
application being useful for fixing software defects. Observed
behavior was not selected to be useful by as many as the top
three, but it was rated to be highly useful by those who selected
it. Several other items were selected multiple times and can
be considered quite useful for fixing defects (Table III).

Zimmermann et al. [1] conducted a survey similar to ours.
Our results and their results relate to each other in three
different ways. First, our results confirm some of their results.
Second, some of our results differ from their results. Third, we
extend their results with knowledge about additional pieces of
defect information.

Some of their results were similar to ours, since steps to
reproduce, observed behavior, and expected behavior stood

up being important for fixing defects in both surveys. Steps
to reproduce was clearly the most important item in both our
study and their study. However, in our study, screenshots was
selected by 70 out of 74 developers, it being the second most
selected item, but in the study by Zimmermann et al. only 26%
selected screenshots as one of the three most important pieces
of information. In contrast, test cases and stack traces were
rated to the top three by open source developers but quite low
in our research context.

With screenshots, it must be considered if the application in
question has graphical elements that could be reported with a
screenshot. Since in our study almost all developers selected
screenshots to be useful for fixing defects, it shows that all of
them had something to do with graphical elements. However,
in the study by Zimmermann et al., the survey was conducted
for a population of developers for Apache web server, Mozilla
web browser, and Eclipse IDE (Integrated Development En-
vironment). The Apache developers had not used screenshots
for defect fixing as often as the Mozilla developers and the
Eclipse developers. Further inspection of the results shows,
that when rated by Eclipse developers, screenshots were also
in the top three most important items. Mozilla developers
had used screenshots for defect fixing as often as Eclipse
developers, but did not select screenshots as one of the top
three important items as frequently. However, we think that
screenshots are important also for Mozilla developers. Because
the developers were only allowed to select three items as the
most important, the results can be misinterpreted to mean that
Mozilla developers did not consider screenshots as important.

With test cases and stack traces, we think that difference in
the results comes from the differences between open source
and industrial defect reporting cultures. In the open source
community, defect reporters can be developers themselves and
they can have advanced knowledge about defect fixing. In the
other hand in the industry defects are reported by different
stakeholders [2] and their technical knowledge can be limited.

Zimmermann et al. used a preselected list of useful pieces of
information for fixing defects. Compared to the list used in our
survey, they did not list part of the application, configuration
of the application, operating data, and user input. Out of these
items, part of the application, configuration of the application,
and operating data were selected by 82–92% of developers
(Table III) and thus can be seen as useful for fixing defects.
Hence, our research extends the knowledge from the previous
research.

As it was mentioned in the results, the developers were
not unanimous in their responses. Developers working with
different parts of an application or in different operation
environments consider different items useful, which is also
summarized in a comment: “Different kind of bugs require
different input for fixing.” Thus, there is defect information
that is useful with every defect, such as steps to reproduce,
observed behavior, and expected behavior. Some useful in-
formation depends on the context, such as operating data,
user input, and Internet page address. The results from the
survey tell us what information is useful for fixing defects,



but items rated lower can still be useful in some cases. Similar
caution was made by Zimmermann et al. [1]: “Items with low
importance in our survey are not totally irrelevant because
they still might be needed to understand, reproduce, or triage
bugs.”

B. Has the Useful Information Been Incorrect or Missing in
Defect Reports?

Developers rated pieces of defect information based on how
often they had been missing or incorrect in defect reports. Only
items they considered useful were rated. Hardware context,
software context, and stack trace had been incorrect or missing
in defect reports most often. When looking the items selected
to be very useful in the previous section on the survey, we see
that steps to reproduce and screenshots are rated to be missing
or incorrect quite often. All items, except reporter’s contact
information and bug title, were rated to be missing or incorrect
at least sometimes by the majority of the participants. Based
on these observations we argue that quality of defect reports
varies across the reports in the case companies, and useful
items are not reported systematically enough.

Regarding the defect report quality, our survey results rest
on developers’ experience, not on examination of defect repos-
itories. Multiple studies of the quality of defect reports have
been made by classifying reports in open bug repositories,
such as BugZilla. Anvik et al. [28] proposed that 39% of the
defect reports in Eclipse-project and 56% in Firefox-project
do not contribute to improving the project, as those reports
were not marked as open or fixed in the bug tracking system.
Schugerl et al. [29] studied the defect reports of ArgoUML-
project and calculated with a similar procedure as of Anvik et
al., that only 67% of the reports contribute the project. Based
on prior work and our results, it seems that defect reporting
is far from ideal.

Zimmermann et al. [1] also surveyed defect reporters, in
addition to software developers. Their sample of software
developers thought that most problems in defect reports were
caused by incomplete information. Errors in steps to reproduce
and observed behavior caused some of the most severe prob-
lems, which matches our results in which these items were
considered very useful for fixing defects. Another similarity
between our study and that of Zimmermann et al. is that their
sample of defect reporters did not frequently report hardware
context and stack traces. In our results, these items were the
most often missing or incorrect. Other results by Zimmermann
et al. provide us two causes why there are problems with
defect reporting. First, reporters in the study by Zimmermann
et al. did not consider hardware context relevant to fixing
defects and thus reporting them would be only waste of time.
Second, steps to reproduce and stack traces were considered
relevant, but they were considered difficult to report. These
discoveries could be the causes why certain items are not
reported appropriately.

C. Which Information Should Automatically Be Collected into
Defect Reports?

Developers rated pieces of defect information based on how
easily they could automatically be collected into defect reports.
The items rated to be most easily collectible were product
information, reporter’s contact information, and hardware
context. Developers also thought that the most difficult to col-
lect are expected behavior, severity of the bug, and test cases,
test scripts. The quantitative results here do not show how to
collect the information; instead, the results reflect developers’
personal thoughts about automatic defect reporting.

To analyze which items should be collected automatically,
we calculated four combinations of the answers. First, we
calculated the most critical pieces of information. These items
were the most useful and the most missing or incorrect. The
most critical items were steps to reproduce, expected behavior,
and user input. However, these items are considered difficult
to collect automatically. Thus, we see that collecting these
items can be most easily enhanced by training defect reporters.
Second, items that generally are missing or incorrect, but could
be collected automatically were called solutions. Hardware
context, software context, and configuration of the application
caused most problems that could be solved. These items should
be the first ones to collect automatically, since they cause
most problems according to our survey. Third, items that were
the most useful and the easiest to collect automatically were
called boosters. Top three booster items were part of the
application, product information, and stack trace. Collecting
these items should be the second priority because at least
they reduce the defect reporting workload. Finally, items that
were useful, problematic, and automatically collectible were
seen as essential. Stack trace, configuration of the application,
and component/module were seen as the most essential items.
However, only 14–21% of the developers saw these items as
we defined essential. Thus, it seems that there is no single item
that would solve the problems related to defect reporting.

D. Threats to Validity

Our research was conducted as a survey research to have a
general understanding about the state of defect reporting in our
target companies. Survey research does not directly measure
different qualities. Survey participants had to have a common
understanding on the questions and the answering options in
the survey. Particularly the list of defect information had to
apply to all domains of software development as much as
possible. To implement automatic defect reporting, one must
define more strictly how to collect part of the application,
for example. The comments from the survey reveal that some
participants were confused about the ambiguous items: ”Bugs
can be so different (from crashes to wrong UI texts, from wrong
software behaviour to usability issues, etc.) that I felt difficult
to answer to these generic questions. Different kind of bugs
require different input for fixing.”

To make conclusions about a certain population, we must
study the whole population, or more feasibly a random sample
of the population. Our sample was based on earlier research



cooperation. While there were developers from many software
projects in the population, it was not systematically random,
thus the results might be different if the study is replicated with
different companies. Since the results were handled as one
population, we assumed that the population was homogeneous
and the measured qualities could be applied to a larger
population. This might not be the case with all items in
our preselected list. Our results do not show the differences
between distinct software projects, but present a general view
which could be deepened in the future.

We think that our results can be generalized to some
extent. The results did not vary remarkably among our target
companies. Thus, the results should be at least somewhat
similar with other areas of software development. Steps to
reproduce was unanimously the most important item for fixing
defects and this verifies the result of an earlier study in the
context of open source software development [1].

VI. CONCLUSION AND FUTURE WORK

To understand the problems related to defect reporting,
we conducted a survey in the context of industrial software
development about defect reporting. We reproduced the survey
of the previous study [1] by Zimmermann et al. which was
conducted in the context of open source software development.
Our results strengthen, present differences and extend the
previous results. Our results verify that steps to reproduce and
observed behavior are highly important defect information.
We found differences in comparison to original study as stack
trace and test cases were seen less useful in our study. On
the other hand, screenshots were seen more important in our
study. Finally, we extend the original study as we found that
part of the application, configuration of the application, and
operating data are important, but they were not surveyed in
the original work.

In this paper, we also studied defect information from
three viewpoints: usefulness, correctness and feasibility for
automatic collection. When combining these three dimensions,
we found that there are no defect data items that would score
high in all three dimensions. If such items existed, they would
be visible in the top right corner with a big circle in (Figure 1).
However, there are items that are often missing and easy to
automate, but not very useful for defect fixing. Furthermore
there are items that are very useful and easy to automate,
but not often missing or incorrect. Nevertheless, the automatic
collection of such items could be beneficial as the needed
defect information for fixing varies between different types of
defects, and as defect data can be used for other purposes than
defect fixing such as resource allocation, e.g. targeting testing
resources to a particular software context where many defects
are found.

In the future, people implementing automatic defect re-
porting or defect reporting systems in general should utilize
these results. Different processes should be determined, such
as determining the useful information for a distinct software
project and practical implementation of the reporting system.

ACKNOWLEDGMENT

We thank Ville Heikkilä and Rahul Premraj for improving
this paper. We appreciate the help of Timo Lehtinen and
Jari Vanhanen gave us in constructing the questionnaire. The
survey conducted in this paper would have not been possible
without the help of contact people at the participating compa-
nies and of course the developers who completed the survey.
We acknowledge their effort.

REFERENCES

[1] T. Zimmermann, R. Premraj, N. Bettenburg, J. Sascha,
A. Schröter, and C. Weiss, “What makes a good bug report?”
IEEE Trans. Software Eng., vol. 36, no. 5, pp. 618–643, 2010.

[2] M. Mäntylä, J. Iivonen, and J. Itkonen, “Who tested my
software? testing as an organizationally cross-cutting activity,”
minor revision submitted for Software Quality Journal.

[3] A. Brooks, J. Daly, J. Miller, M. Roper, and M. Wood,
“Replication of experimental results in software engineering,”
International Software Engineering Research Network (ISERN)
Technical Report ISERN- 96-10, University of Strathclyde,
Tech. Rep., 1996.

[4] N. Juristo and S. Vegas, “Using differences among replications
of software engineering experiments to gain knowledge,” in
Proceedings of the 2009 3rd International Symposium on Empir-
ical Software Engineering and Measurement. IEEE Computer
Society, 2009, pp. 356–366.

[5] F. Shull, J. Carver, S. Vegas, and N. Juristo, “The role of repli-
cations in Empirical Software Engineering,” Empirical Software
Engineering, vol. 13, no. 2, pp. 211–218, 2008.

[6] B. Kitchenham and S. Pfleeger, “Principles of survey research
part 4: questionnaire evaluation,” ACM SIGSOFT Software En-
gineering Notes, vol. 27, no. 3, pp. 20–23, 2002.

[7] K. Petersen and C. Wohlin, “Context in industrial software
engineering research,” in Proceedings of the 2009 3rd Inter-
national Symposium on Empirical Software Engineering and
Measurement. IEEE Computer Society, 2009, pp. 401–404.

[8] P. Runeson and M. Höst, “Guidelines for conducting and re-
porting case study research in software engineering,” Empirical
Software Engineering, vol. 14, no. 2, pp. 131–164, 2009.

[9] D. Sjoberg, T. Dyba, and M. Jorgensen, “The future of empirical
methods in software engineering research,” Future of Software
Engineering, pp. 358–378, 2007.

[10] M. Mäntylä, C. Lassenius, and J. Vanhanen, “Rethinking repli-
cation in software engineering: Can we see the forest for the
trees?” in ICSE workshop RESER.

[11] O. S. Gómez, N. Juristo, and S. Vegas, “Replications types
in experimental disciplines,” in Proceedings of the 2010
ACM-IEEE International Symposium on Empirical Software
Engineering and Measurement, ser. ESEM ’10. New York,
NY, USA: ACM, 2010, pp. 3:1–3:10. [Online]. Available:
http://doi.acm.org/10.1145/1852786.1852790

[12] S. Tatham, “How to report bugs effectively,” September
2008. [Online]. Available: http://www.chiark.greenend.org.uk/
∼sgtatham/bugs.html

[13] J. Aranda and G. Venolia, “The secret life of bugs: Going past
the errors and omissions in software repositories,” in ICSE ’09:
Proceedings of the 31st International Conference on Software
Engineering. Washington, DC, USA: IEEE Computer Society,
2009, pp. 298–308.



[14] S. Breu, R. Premraj, J. Sillito, and T. Zimmermann, “Informa-
tion needs in bug reports: improving cooperation between devel-
opers and users,” in Proceedings of the 2010 ACM conference
on Computer supported cooperative work. ACM, 2010, pp.
301–310.

[15] R. Merkel and T. Kanij, “Does the Individual Matter in Software
Testing?” Tech. Rep., 2010.

[16] K. Glerum, K. Kinshumann, S. Greenberg, G. Aul, V. Orgovan,
G. Nichols, D. Grant, G. Loihle, and G. Hunt, “Debugging in
the (very) large: ten years of implementation and experience,”
in Proceedings of the ACM SIGOPS 22nd symposium on
Operating systems principles, ser. SOSP ’09. New York,
NY, USA: ACM, 2009, pp. 103–116. [Online]. Available:
http://doi.acm.org/10.1145/1629575.1629586

[17] S. Artzi, S. Kim, and M. Ernst, “Recrashj: A tool for capturing
and reproducing program crashes in deployed applications,”
2009, pp. 295–296.

[18] M. Castro, M. Costa, and J.-P. Martin, “Better bug reporting
with better privacy,” SIGPLAN Not., vol. 43, pp. 319–328,
March 2008. [Online]. Available: http://doi.acm.org/10.1145/
1353536.1346322

[19] C. Zamfir and G. Candea, “Low-Overhead Bug Fingerprinting
for Fast Debugging,” in Runtime Verification, ser. Lecture Notes
in Computer Science, H. Barringer, Y. Falcone, B. Finkbeiner,
K. Havelund, I. Lee, G. Pace, G. Rosu, O. Sokolsky, and
N. Tillmann, Eds., vol. 6418. Springer Berlin / Heidelberg,
2010, pp. 460–468.

[20] Limesurvey. http://www.limesurvey.org/. Last accessed:
28.1.2011.

[21] T. Punter, M. Ciolkowski, B. Freimut, and I. John, “Conducting
On-line Surveys in Software Engineering,” in International
Symposium on Empirical Software Engineering, 2003, pp. 80–
88.

[22] H. Coolican, Research methods and statistics in psychology.
Hodder & Stoughton London, 1999.

[23] W. Foddy, Constructing questions for interviews and question-
naires: theory and practice in social research. Cambridge Univ
Pr, 1994.

[24] O. S. Gómez, N. Juristo, and S. Vegas, “Replication, repro-
duction and re-analysis: Three ways for verifying experimental
findings,” in ICSE workshop RESER, 2010.

[25] E. Tsang and K. Kwan, “Replication and theory development in
organizational science: A critical realist perspective,” Academy
of Management Review, vol. 24, no. 4, pp. 759–780, 1999.

[26] M. Mäntylä and J. Vanhanen, “Software deployment activities
and challenges an industrial case study of four software product
companies,” in Proceedings of the 16th European Conference on
Software Maintenance and Reengineering, CSMR, 2011.

[27] R. Fisher, “Social desirability bias and the validity of indirect
questioning,” Journal of Consumer Research, vol. 20, no. 2, pp.
303–315, 1993.

[28] J. Anvik, L. Hiew, and G. C. Murphy, “Coping with an
open bug repository,” in Proceedings of the 2005 OOPSLA
workshop on Eclipse technology eXchange, ser. eclipse ’05.
New York, NY, USA: ACM, 2005, pp. 35–39. [Online].
Available: http://doi.acm.org/10.1145/1117696.1117704

[29] P. Schugerl, J. Rilling, and P. Charland, “Mining bug
repositories–a quality assessment,” in Computational Intelli-
gence for Modelling Control Automation, 2008 International
Conference on, 2008, pp. 1105 –1110.


