
Testing Highly Complex System of Systems: An Industrial
Case Study

Nauman Bin Ali
School of Computing
Blekinge Institute of

Technology
37140 Karlskrona, Sweden

nauman.ali@bth.se

Kai Petersen
School of Computing
Blekinge Institute of

Technology
37140 Karlskrona, Sweden
kai.petersen@bth.se

Mika V. Mäntylä
Department of Computer

Science
Lund University

22100 Lund, Sweden
mika.mantyla@cs.lth.se

ABSTRACT
Context: Systems of systems (SoS) are highly complex and
are integrated on multiple levels (unit, component, system,
system of systems). Many of the characteristics of SoS (such
as operational and managerial independence, integration of
system into system of systems, SoS comprised of complex
systems) make their development and testing challenging.

Contribution: This paper provides an understanding of
SoS testing in large-scale industry settings with respect to
challenges and how to address them.

Method: The research method used is case study re-
search. As data collection methods we used interviews, doc-
umentation, and fault slippage data.

Results: We identified challenges related to SoS with
respect to fault slippage, test turn-around time, and test
maintainability. We also classified the testing challenges to
general testing challenges, challenges amplified by SoS, and
challenges that are SoS specific. Interestingly, the inter-
viewees agreed on the challenges, even though we sampled
them with diversity in mind, which meant that the number
of interviews conducted was sufficient to answer our research
questions. We also identified solution proposals to the chal-
lenges that were categorized under four classes of developer
quality assurance, function test, testing in all levels, and
requirements engineering and communication.

Conclusion: We conclude that although over half of the
challenges we identified can be categorized as general testing
challenges still SoS systems have their unique and amplified
challenges stemming from SoS characteristics. Furthermore,
it was found that interviews and fault slippage data indi-
cated that different areas in the software process should be
improved, which indicates that using only one of these meth-
ods would have led to an incomplete picture of the challenges
in the case company.

Categories and Subject Descriptors
D.2.5 [Testing and Debugging]: Diagnostics

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ESEM’12, September 19–20, 2012, Lund, Sweden.
Copyright 2012 ACM 978-1-4503-1056-7/12/09 ...$15.00.

General Terms
Practice

Keywords
System of Systems, Software Test, Case Study

1. INTRODUCTION
System of systems (SoS) recently received vast attention

in the software engineering research literature. A system
of systems is characterized through operational and man-
agerial independence in the development of the individual
systems that should later on act together, and is character-
ized by an integration of many different systems into a new
system. System of systems are also generally very complex,
and there exist suppliers that deliver them for integration
[16, 7]. Literature (cf. [19, 8]) distinguishes different types
of SoS, namely virtual, collaborative, acknowledged, and di-
rected SoS.

It is acknowledged that SoS development and quality as-
surance is very challenging, e.g. due to involvement of many
parties, it is not easy to integrate systems continuously, and
so forth [19, 16, 17, 7]. However, so far there is a lack of
empirical studies that explore the challenges and possible
solutions of how to test such complex system of systems.
In response to this research gap this case study makes the
contribution to investigate the challenges and potential so-
lutions of SoS development in an industrial case study of a
large-scale system of systems from the telecommunication
domain with over 5,000,000 Lines of code. The following
contributions are made by this study:

• Understand how SoS testing is done by describing and
characterizing how system of systems are currently
tested based on a case having the typical character-
istics of directed SoS development.

• Identify the challenges of SoS testing observed in the
case and categorize them to three classes: a) challenges
that are not different in SoS context and other con-
texts, b) challenges that are amplified in SoS context
but that can also be found in other contexts, and c)
new challenges specific only to SoS context.

• Identify possible solutions of SoS testing based on the
challenges.

The remainder of the paper is structured as follows: Sec-
tion 2 presents the related work. Section 3 describes the

research method, followed by the results in Section 4. Sec-
tion 5 concludes the papers by presenting the observations
and implications given by the results.

2. RELATED WORK
The Systems Engineering Guide [11] defines SoS “set or

arrangement of systems that results when independent and
useful systems are integrated into a larger system that de-
livers unique capabilities”. Maier [19] and Dahman et al.
[8] classify SoS into Virtual, Collaborative, Acknowledged,
and Directed. Virtual means that there is no central man-
agement or agreed purpose of the SoS, purposes emerge
as systems are combined. This reflects the philosophy of
service-oriented architecture, which is a way of implement-
ing SoS [17]. Collaborative SoS have an agreed purpose and
interact voluntarily. How systems should interact is collec-
tively decided between system owners. Acknowledged SoS
are characterized by common objectives, and there exists
a designated manager that assures resources for SoS devel-
opment. The System Engineering Guide stresses that the
individual systems still have independent ownership, objec-
tives, funding, and development. Directed SoS are built to
fulfil specific purposes and they are managed around those
purposes. There exist a central management for the SoS.
However, the system development organizations contribut-
ing individual systems are still independent, but subordinate
to the purpose. The SoS in this study is characterized as di-
rected.

The System Engineering Guide [11] also highlights some
engineering challenges that are particular to SoS, namely
(1) Management issues with respect to governance of sys-
tem development across organizational boundaries, (2) the
increased complexity, scope, and cost of processes for plan-
ning and engineering, (3) achieving and maintaining inter-
operability, and (4) likelihood of unpredicted behaviour, and
hence the lack of predictability of behaviour.

Lewis et al. [16] point out that SoS challenges are related
to collaboration, in particular who collaborates and what ev-
eryone has to provide so that the collaboration would work.
Furthermore, there are particular challenges if systems do
not evolve in a similar pace or manner, which makes their
integration challenging. Hence, if there are some dependen-
cies (one system cannot fulfil its service without another)
then there is a need for synchronization, which makes col-
laboration essential. How the SoS is built in an enterprise
affects the severity of the challenge of collaboration. They
distinguish SoS in an enterprise where a single or multiple
organizations develop, and where multiple enterprises de-
velop.

Columbi et al. [7] characterizes SoS as systems that op-
erate synergistically, however, SoS can operate and be man-
aged independently. They acknowledge and highlight that
these characteristics make testing and evolution of SoS very
challenging. In other words, they have amplifying character,
or even lead to completely novel challenges. In their expe-
rience report from a SoS development at the Department
of Defense (DoD), they suggest a number of challenges: (1)
organizational structures do not support testing in a SoS
framework; (2) No steps in testing that evaluate the overall
SoS capabilities, rather the focus is very much on individ-
ual systems (no obligation for the project manager to scope
testing on the SoS level), (3) Rate of incoming requirements
has drastically increased on the SoS, leading to an exponen-

tial increase of test events, complexity, and expense with
respect to testing; (4) No overarching test scenarios across
different systems due to coordination and communication
breakdowns. In response to the challenges, they provided
a number of solutions: (1) only test interoperability with
respect to changes made, and do not test everything, but
rather “built a little, test a little”, (2) use risk assessment to
prioritize the ever growing number of tests, (3) focus tests
on interfaces as there the greatest risk of mistakes lie, but
do not neglect internal behaviour of systems, (4) provide
designated environments and people for integration.

Furthermore, we identified other studies that have a focus
on SoS quality assurance (see e.g. [13, 5]), but those are
solution proposals without an industrial partner involved.

Overall, we found that there is a lack of systematic em-
pirical evidence that investigates how to conduct testing in
a SoS context, and relates that to challenges and solutions.

3. RESEARCH METHOD
As a research method we used case study research, follow-

ing the guidelines provided in Yin [24] as well as Runeson
and Höst [22].

3.1 Purpose and Research Questions
The purpose of the study is to gain an in-depth under-

standing of testing practices, challenges, and potential solu-
tions when testing very large SoS.

RQ1: How is SoS testing done in industry? We first need
to gain a deep understanding and rich description of the
current situation, as SoS testing is not well described in
literature. The case being studied in that sense provides
an interesting case as it fulfils the characteristics of directed
SoS development very well.

RQ2: What are perceived and measured challenges when
testing SoS and how are they different from testing chal-
lenges of other contexts? Given testing in SoS is not well
explored in industry the first step should be to understand
the challenges in order to find useful solutions.

RQ3: What potential solutions do practitioners see in or-
der to address the challenges identified? The identification
of the solutions is based on experiences made in the SoS
context. They provide useful input for future evaluations to
test their actual impact in the studied context.

3.2 Case and Context
The case being studied is a development site of a large

Telecom vendor, engaging in SoS development. The case
and context are described, as this allows for generalizing the
results to a specific context. Other companies in a similar
context are likely to find the results transferable to their
context [20].

The process used at the company follows a SoS approach.
There is no common definition of system of systems, as the
term has been defined in different domains, such as military,
enterprise information systems, or education [15]. The term
has been recently established in the software engineering
field, where a system of systems should fulfil several of the
characteristics. These characteristics and their presence in
the case company are shown in Table 1.

The overall architecture of the system of systems studies
consists of 12 systems, which are operationally independent
and can also provide services independently of each other.
The process used at the company is shown in Figure 2. In

Table 1: System of Systems Approach Characteris-
tics (cf. [15])

ID. Characteristic Case
Company

C1 Operational independence (
√

)
C2 Managerial independence (

√
)

C3 Integration of system into system of systems (
√

)
C4 SoS comprised of complex systems (

√
)

C5 System suppliers deliver systems for integration (
√

)
C6 Complete technical overview of SoS and system

supply
(
√

)

the first step the high-level requirements for the overall SoS
are specified. Before the requirements are handed over to
compound system development a so-called “Go”-decision is
taken, meaning that development resources are allocated to
the high-level requirement. When the decision is positive,
teams specify a detailed requirements specification, which
then is handed over to the concerned system(s). The re-
quirements are then implemented for a specific development
system, and they are integrated (also called system level
test).The development is done in sprints run by agile devel-
opment teams (AT Sprints in Figure 2). Each system can be
integrated independently of another system, which provides
them some degree of operational and managerial indepen-
dence (see Table 1). However, the versions of two systems
have to be compatible when the system of systems is inte-
grated (Compound System Test). Each of the systems is
highly complex, the largest system having more than 15 de-
velopment teams. The size of the overall system of systems
measured in lines of code (LOC) is 5,000,000 LOC. This ful-
fils the characteristics of SoS development related to system
complexity and integration. In order to make sure that the
system of systems is working together in the end an overall
system structure and design is developed, referred to as the
anatomy. This allows having an overview of the overall SoS,
also making explicit how each system in the SoS contributes
to the overall system goals.

Looking at other context elements [20] the following should
be added as information:

• All systems and the SoS are older than 5 years.

• On principle level the development process is incre-
mental with projects adding increments (e.g. new func-
tionality) to the code base-line on system and com-
pound system level.

• Within the teams and in the testing activities agile
practices are used, such as: continuous integration,
time-boxing with sprints, face-to-face interaction (stand-
up meetings, co-located teams), requirements prioriti-
zation with product backlogs, re-factoring and system
improvements

3.3 Data Collection
We used multiple data sources for triangulation to increase

the validity of the results. In order to answer RQ1 and RQ2
we used documentation, interviews as well as quantitative
data as input. For RQ3 we used interviews to gather opin-
ions of how to best improve SoS testing.

Process documentation of the test process is obtained in
order to capture the specified test strategies and test lev-
els conducted at the company. This information is used
for triangulation purposes as an additional source to the

interviews. Furthermore, the documentation aided the re-
searchers to gain better domain knowledge and familiarity
with the test specific terminology used at the company be-
fore conducting the interviews. In addition we consulted
official templates for reporting (e.g. forms for documenting
defect data).

Interviews It is important to point out that the sampling
procedure here is not to get a representative sample of a
population, but rather having a diversity of perspectives to
be able to contrast alternatives in the evaluation step. We
notice that with each additional interview there was a high
overlap in the views and we decided to stop after five in-
terviews. Even though the practitioners had diverse roles
the number of challenges and improvement suggestions sta-
bilised after the third interview, which indicates a good cov-
erage of the interviews (refer to Figure 1).

0

2

4

6

8

10

12

14

16

1 2 3 4 5

N
um

be
r o

f c
ha

lle
ng

es
\Im

pr
ov

em
en

ts

Interviews

Challenges reported in an interview New challenges not known earlier

Improvement proposals made in each interview New improvement suggestions

Figure 1: Stability in challenges/improvement sug-
gestions identified in interviews

Test Managers who have the knowledge about their team
members supported us in interviewee selection ensuring di-
versity and coverage of various test levels in the company.
In the following a short profile of the testers is provided in
Table 2.

Table 2: Practitioners’ profile
ID Description
1 The interviewee is currently working with test improvement with

a particular focus on FT and ST, and has experience from work-
ing in testing teams before. Furthermore, the interviewee has
more than five years of experience focused on testing.

2 The interviewee is working in software development since 1995
and is currently a technical coordinator. In the past the inter-
viewee also worked as a tester, and had a leading role in design
teams with responsibility for product and test code.

3 The interviewee is a technical expert assisting software develop-
ers in solving technical problems, in particular the problems that
occurred in testing. Hence, the interviewee is directly exposed
to review and BT in the daily work.

4 The interviewee is working with the company since 1994, and
has been involved in software testing, development, support, and
system management. She has worked as a developer for several
systems in the company, currently leading a development team
investigating new enhancements to the main system. The inter-
viewee has experience of conducting reviews, BT, and FT.

5 The interviewee is currently working in ST and CST. Before that
the interviewee had various technical roles, including support
and software design. Overall, she has over 10 years of experience
in designing software.

Interview structure: The interview is structured in four

themes, namely: (1) interviewee knowledge and experience,
(2) when and where to detect what type of defects, (3)
how the tester conducts tests, and (4) strengths and lia-
bilities of the current testing approach. The interview is
semi-structured and consists of mainly open-ended ques-
tions, hence allowing to follow and discuss interesting issues,
or change the order of questions. The interviews approxi-
mately took 90 minutes to complete. The contents of the
interview were as follows:

• Part I: Interviewee knowledge and experience:
This theme focuses on obtaining information about
the testers knowledge and practical experience (profes-
sional background and education, explaining current
role at the company, roles before current role).

• Part II: Understanding test levels and their re-
sponsibilities: This theme focuses on determining
which types of defects are detected at which test level,
using a defect classification scheme for telecommuni-
cation systems from Damm and Lundberg [9].

• Part III: Understanding how testing is done
and its related challenges: This theme focuses on
how testing is done and what challenges occurred, in-
cluding characterization of test objects at different lev-
els, input used to derive test cases and the quality of
the input used (e.g. requirements), tool support, and
general strengths and challenges observed.

• Part IV: Closing: The interviewees were asked whether
they want to add something important that was not
covered in the interview questions yet.

Before starting the actual interview, the purpose of the study
and the reasons for the selection of the interviewee were pro-
vided. Furthermore, the interviewee was asked whether we
were allowed to record the interview for transcription. The
interviewee was also informed that all information collected
was treated anonymously and will be aggregated with the
information provided by the other interviewees.

Quantitative Data: With respect to defects we look at
distribution of types of defects and defect criticality per test
level, and fault slippage. The types of defects discovered at
the test levels reveal which types of defects the test level
is actually able to capture given the current test practices
employed. Fault slippage measures indicate whether each
testing phase is able to detect the defects it is supposed to
detect (see [10]). The data is available through a company
internal and proprietary defect reporting system. For this
study we focus on recent defects (in the past 12 months) that
reflect the current test strategy employed at the company.

3.4 Data Analysis
Interviews Audio recordings of all five interviews were

transcribed. We used colour coding for initial data extrac-
tion from transcribed interviews where one unique colour
was assigned to each one of the following:

• Challenge, problem, malpractice, limitation and miss-
ing information for testing

• Benefit or strength of current practices, tools or pro-
cesses

• Current practice, way of doing work or tools used

• Improvement suggestions

• Definitions of terms, test levels and artefact descrip-
tions

While colour coding, brief notes were made about the state-
ments making use of the context of the statements and re-
ducing misinterpretation later on. These colour coded state-
ments and their brief descriptors were extracted and were
put in a spread-sheet verbatim while maintaining traceabil-
ity to the source. At this point these were assigned codes
(according to Table 3) to capture their relation to the re-
spective test level. A separate spread-sheet was created for
each of the five items above. Next step was to aggregate
the repeating statements which was done by repeating the
following this process for all five sheets:
Step-1: For the first statement create and log a code.
Step-2: For each subsequent statement identify if a similar
statement already exists. If it does log the statement with
the same code, otherwise create a new code.
Step-3: Repeat Step-2 until the last statement has been
catalogued.
A short description was given to each of the resulting clusters
with same code. As traceability was ensured between the
clusters, their summary/description, individual statements
and audio recordings, second author was able to review the
results of the process whether the statements were correctly
clustered together. The disagreements were resolved by dis-
cussion.

Documentation was analysed through the same coding
scheme as the interviews (as explained above).

3.5 Threats to Validity
While designing and conducting this case study various

conscious decisions were taken to strengthen the validity of
results. Using the checklist proposed by [22] we evaluated
the case study protocol. This ensured that we had addressed
all the critical requirements of case study design including
aims of the study, defining the case, unit of analysis and data
collection methods among others. Another researcher who
has extensive knowledge and experience in case study re-
search also reviewed the protocol. Furthermore, this detailed
protocol was kept up-to-date, reflecting the actual course of
the case study.

Construct validity: Both methodological (interviews and
archival data analysis) and data source (practitioners and
defect database) triangulation were used to strengthen the
evidence generated in this case study. Using appropriate
amount of raw data and through clear chain of evidence
(maintaining traceability between the results, qualitative
data and sources), this validity threat was minimized.

Internal validity: In this case study, the challenges were
examined in the context of SoS, and the relation of SoS
context to challenges was discussed. However, given the
complexity of a real world organization and the fact that
confounding factors are always a challenge when studying
real world systems, the isolated effect of SoS characteristics
can not be established, and requires further investigation.

External validity: There are too few empirical studies yet
to make general claims, but the case in this study represents
a typical complex SoS based software product development
situation and is likely to apply to similar contexts w.r.t.
system complexity, domain, etc.

Reliability: By involving more than one researcher, each
actively engaged in the design, review and execution of the
study, where case study protocol was the means of commu-
nication and documenting the agreement. Thus we believe
that the resulting detailed protocol serves as a good means

to replicate this study. The detailed documented steps of
data collection, processing and analysis also increase the re-
liability of this study.

4. RESULTS
The results present the current practices of testing SoS,

the challenges and their relation to SoS characteristics, as
well as SoS solution proposals.

4.1 SoS Testing Process and Practices (RQ1)
Test Process: We found that overall there are six Test lev-

els at the case company. These were visible in both the test
process documentation in the company and the interview
results. Furthermore, the organization of testing teams and
responsibilities is roughly organized around these levels as
well. We found additional test levels in the defect database,
however, based on the defect reports from the last two years
these levels were not used at all in reporting. This hints
redundancy of some of these levels. One explanation for no
faults reported to “Regression test” is that regression testing
is performed within other phases of testing and therefore is
not considered a separate phase. Based on the congruence
between the latest documents, interview results and defect
reports we found six levels as shown in Table 3. These test
levels are depicted in the overall development process in the
Figure 2.

Table 3: Test levels in the case company
Code Description of test levels
Rev Reviews using static analysis and Visual “Diff” tools

are performed by the development teams.
BT Basic test is done in the Agile Team (AT) sprint by

the development teams and uses implementation as
the test reference. It includes unit testing with JU-
nit [1] and TestNG [4]. Input for tests are user sto-
ries, protocol specifications, component descriptions,
dimensioning requirements, and traffic models.

FT Function test focuses on testing isolated functions and
is done in AT sprint by the development teams using
Testing and Test Control Notation (TTCN) [3].

ST System test tests the integration of the AT sprints
(teams) in pre-defined cycles. Test cases created in
FT and previous releases are used. No new test cases
are written. The testing is done on a different branch
along with regression testing using self-contained test
cases (each test case sets up configuration, executes
test scenario, and removes configuration once it is
done). In addition, the company uses traffic models
and simulates the system behaviour under load.

CST Compound system test, tests the integration of sys-
tems into the overall system. Here, the emphasis is on
making sure that the system functionality when inte-
grated, still fulfils non-functional requirements (e.g.
load), and is installable.

FOA After system test is completed, the product is tested
by installing it on a trial customer network. After
this the product is launched to the general market.

Test Levels and their responsibilities: We used interviews
to explore the practitioners’ perception as to which defects
are found at each of these test levels. The results are pre-
sented in Table 4. The first column depicts the fault classi-
fication used in the case company and the numbers in each
row show how many of the five practitioners interviewed con-
sider that this defect type is often found at this level. From
the opinions expressed in the interviews most of the defects
are found at ST. For certain defect types this is an expected

HLR

High level
Specification Cross-functional

work teams

DRS

DRS

DRS

System Development

AT Sprint
Reviews
Basic test

Function test

System test (4 week cycle)
HLR

HLR
System Development

System test (4 week cycle)

Compound system test (4 week cycles)

AT Sprint
Reviews
Basic test

Function test

AT Sprint
Reviews
Basic test

Function test

AT Sprint
Reviews
Basic test

Function test

System of Systems
Development

Field
test

Market

Figure 2: System of Systems development process
with test levels at the case company

behaviour e.g. quality assessment at system level is not pos-
sible before this level. Perhaps that is why there is a con-
sensus that Quality related issues (performance, robustness
and concurrency) are found in ST. One practitioner said,
“the single biggest place where we find faults is in ST”. Prac-
titioners perceive that programming faults are discovered in
basic testing which is an expected behaviour. Although re-
views are recognised as a good practice and are used in the
company but in practitioners’ opinion it is not effective in
discovering defects. Only one practitioner was satisfied with
the effectiveness of current reviews.

Table 4: Fault Classes [9] and where Practitioners
find them based on Interviews

Rev BT FT ST CST FOA
Internal Interface 2 2 2 2
External Interface 2 2 1
Human Interface 2 3 1 2
Coding Errors / Coverage 1 4 1 2
Performance 1 5 3
Robustness 5 2
Redundancy 4 4
Concurrency 5 3
Configuration 3 2 2
Missing Functionality 2 1 1
Wrong Behaviour 1 1 1 1

Test Efficiency in the current situation: As a measure
of test efficiency the company uses fault slippage, indicat-
ing whether a fault is found in a later test level than the
one where it ought to be found. From Table 4 we observed
that there is some fault slippage in the testing process. For
example, consider the defects triggered from “internal in-
terfaces” and “Coding errors” that should ideally be found
in the early test levels like reviews or basic test. However,
in practitioner’s opinion these defects often slip through to
later stages.

To assess the validity of these observations and look at the

effectiveness of testing quantitatively we used the FST data.
We analysed the defect reports for the last calendar year
since 01.01.2011- 01.02.2012 (see Table 5 for the results).

Table 5: Fault slip through data
‘Should’ to
‘Did’ detect

Rev BT FT ST CST FOA Total
slip-
page

Rev 30.76 7.69 30.76 19.23 0.00 11.53 25.71
BT 6.15 26.15 32.30 18.46 4.61 12.30 62.85
FT 7.14 50.00 28.57 14.28 8.57
ST 88.88 11.11 1.42
CST 100.00 0.00
FOA 0.00

In Table 5 the values on the diagonal (in bold face) repre-
sent the percentage of defects that were found exactly where
they are ought to be found. The percentage points in the
last column “Total slippage” accounts for the percentage of
slippage from each level compared to the total slippage from
all test levels. In terms of overall slippage from one test level
Basic test (with 62.85%) and Reviews (with 25.71%) have a
lot of potential for improvement. From these results ST and
CST are the top performers in terms of catching the right
faults. As pointed out by one of the practitioners, “The sin-
gle biggest place where we find faults is in function test” we
can see that most of the slippage from Reviews and BT are
caught in Function test (30.76 % and 32.30% respectively).

In Table 5 there are some unexpected values below the di-
agonal (in italics). There could be a number of explanations
for it, the simplest one that it was a mistake in reporting
the data or that although the test strategy states that the
defect should have been found later but it was found in an
earlier phase, thus requiring an update to the strategy or
it was just a coincidence that this defect was found earlier
and doesn’t warrant a strategy update. However, we did
not confirm or reject any of the explanations for this small
percentage of defect reports.

We can see some congruence between results from Table
4 and Table 5. The majority of the defects are found in the
later test levels especially in FT and ST. Top two levels with
maximum slippage are BT and reviews respectively.

Table 6: Fault slip through to customer
‘Should’ to ‘Did’ detect Percentage found by

Customer
Rev 15.27
BT 63.88
FT 6.94
ST 11.11
CST 1.85
FOA 0.00
Customer 0.92

Looking at the problems found by the customer (as shown
in Table 6) we can see that a high percentage of slip through
is from Basic testing and Reviews. Having triangulated the
practitioners’ observations with quantitative data, we delved
deeper to understand the practical challenges and their in-
fluence on these symptoms.

4.2 Challenges (RQ2)
From the interviews and defect databases we found three

main undesired results with respect to outcome variables

in testing, namely fault slippage, long turnaround time and
maintenance of test suite. These outcomes are influenced
by various issues and challenges, which were also identified
from the interviews. In total we identified 30 different chal-
lenges that were mapped to three levels: 1) challenges that
are not different in SoS context and other contexts, 2) chal-
lenges that are amplified in SoS context but that can also
be found in other contexts, and 3) to new challenges spe-
cific only to SoS context (see Figures 3 , 4 and 5). We do
not claim cause-effect relations, as those would have to be
established in controlled environments. Hence, the relation
between challenges and outcome variables should be seen as
indicators in this exploratory study. The challenges in lev-
els “2” and “3” as described above are also mapped to the
characteristics of SOS (presented in Table 1) that aggravate
or cause these challenges.

Figure 3, shows the challenges that influence the unde-
sired result of fault slippage. In the related work (Section 2)
it was highlighted that the independence of system develop-
ment leads to challenges in collaboration. As there are many
organizations integrating their interacting system and there
are many levels of testing (see C1, C2, and C3 in Table 1),
the challenge of unclear responsibilities of test levels is ap-
parent. Collaboration challenges and independence (C1 and
C2) also affect knowledge sharing, and hence lack of com-
pliance to processes, lack of shared guidelines for testing at
various levels and tools. It also leads to a lack of responsibil-
ity for test suits that are shared by different systems when
they are integrated. SoS affects testability of requirements
due to its complexity (C4), and that a requirement concerns
multiple systems and in order to interpret them reasonably
well a wide domain expertise across system boundaries is
needed. There is also a lack of thorough analysis and selec-
tion of test cases, which is influenced by the SoS complex-
ity (C4). Other influencing factors (e.g. early evaluation of
quality attributes [14], time to market pressure and influence
on test [6], difficulties in basic test, and lack of independent
verification (people who code also write the test cases) [18]
are rather generic challenges.

Slippage	

1	

No	 early	 evalua,ons	 of	 so0ware	 quality	
a5ributes	 (non-‐func,onal	 requirements)	

Unclear	 responsibili,es	 of	 test	 levels	
(what	 defects	 should	 it	 find)	

Less	 tests	 are	 wri5en	 for	 new	 features	
Time	 Pressure	

Testability	 of	 requirements	 (too	 abstract,	
require	 considerable	 domain	 exper,se)	

Difficulty	 to	 do	 basic	 test	 as	 methods	 can	 not	 be	 easily	
executed	 (inheritance-‐depth/sta,c	 methods)	

No	 compliance	 to	 process	 (e.g.	 not	 doing	
reviews,	 not	 enforcing	 coverage	 targets)	

No	 responsibility	 for	 test	 suite	 (person	
deciding	 which	 test	 cases	 to	 include,	
exclude,	 etc.)	

Lack	 of	 thorough	 analysis	 to	 create	 and	
select	 test	 cases	

Knowledge	 sharing	

Same	 developers	 write	 Basic	 Test,	
Func,on	 Test	 and	 Code	

Quality	 of	 test	 cases	

Lack	 of	 guidelines	 for	 tes,ng	 at	 various	
levels/tools	

1	

1	

2	

1	

1	

2	
2	

3	

2	

3	

3	

2	

C4	

C6	

C1,	 C2	

C1,	 C2,	 C3	

C1,	 C2	

slippage	

Figure 3: Challenges influencing fault slippage in
the case company

In Figure 4 the challenges to the maintenance of regression
suite are visualized. Because of the growing number, size
and complexity of systems (C4) put together in the SoS (C3
and C5) it is imperative that the system test will get more
and more test cases related to FT in regression suite. Fur-
thermore, there is no formal responsibility for maintenance

of the test suite given characteristics C1 and C2, which also
leads to no detection of redundant and obsolete test cases.
The sheer amount of test cases added makes it a difficult
problem to address. Any centralized solution is likely to
be overwhelmed and with no shared standards (difficult to
achieve in a SoS with managerial and operation indepen-
dence) the current decentralized approach is not working, as
the quality of test cases in terms of design, implementation
and readability is a major issue for maintenance. Challenges
such as test case readability (e.g. addressed to behaviour
driven development [23]), company proprietary code due to
lack of tool awareness, and lack of separation between test
code and test data [12] are rather generic. However, non-
compliance is aggravated in SoS due to difficulties in spread-
ing news about good tools.

Maintainability	

2	
Growing	 number	 of	 FT	 test	 cases	

Non-‐compliance	 (company	 proprietary	 code	 is	
wri<en	 for	 tes=ng	 due	 to	 lack	 of	 awareness	 of	 tools)	

Knowledge	 Sharing	

Lack	 of	 readability	 of	 test	 cases	 and	 unclear	
test	 case	 descrip=ons	

Lack	 of	 separa=on	 between	 test	 code	 and	 test	 data	

No	 detec=on	 of	 redundant	 and	 obsolete	 test	 cases	
No	 responsibility	 for	 test	 suite	 (person	
deciding	 which	 test	 cases	 to	 include,	
exclude,	 etc.)	 Quality	 of	 test	 cases	

Lack	 of	 guidelines	 for	 tes=ng	 at	 various	
levels/tools	

1	

1	

1	

3	

2	

3	

2	

C1,	 C2,	 C3,	 C4,	 C5	

C1,	 C2	

C1,	 C2	

Figure 4: Challenges influencing maintenance of FT
regression suite

The challenges contributing to a long turnaround time for
regression test are shown in Figure 5. The number of grow-
ing number of FT test cases affects the maintainability of
the test suite, and is significant due to the SoS context, as
was discussed for Maintenance. The difficulty of doing basic
testing leads to the misuse of the FT framework, which is
amplified by the SoS complexity (C4) and lack of communi-
cation and interaction (C1 and C2) as the framework now
includes many BT tests, that take more time to be executed
due to the limitations of the FT framework. It should also be
emphasized that many of these challenges influence multiple
problems and have some interactions between them as well.
The platforms inefficiency is one dimension of the problem
because it is not easy to switch to a different framework
because of the cost of migration of existing test cases and
retraining the resources. Therefore the solutions to improve
the turnaround time may take a multi pronged approach e.g.
reducing the number of test cases to run by prioritization,
selection or using the framework for its strengths. Another
option is to think about smarter ways to design to specif-
ically improve the turnaround time. Prioritization of test
cases [25, 21] and TTCN as a test framework [26] have been
addressed generically in research contributions.

4.3 Improvements (RQ3)
We identified 14 improvement actions in order to reduce/

mitigate the negative impact of the issues on fault slippage,
maintainability of test cases, and turn-around time. The
improvement suggestions have been organized to five groups
based on which area they affect. The groups are developer
quality assurance, function test, testing at all levels, require-
ments engineering and communication.

4.3.1 Developer quality assurance

Turnaround-‐
Time	

Misuse	 of	 FT	 framework	 (BT	
test	 covered	 here,	 too)	

Limita:ons	 of	 FT	 Framework	

Tool-‐lock-‐in	 as	 all	 test	 cases	 are	 in	
the	 tool	 specific	 language	

No	 selec:on	 or	 priori:za:on	
criteria	 for	 test	 cases	 to	 be	 run	

2	

1	

1	

1	 Difficulty	 to	 do	 basic	 test	 as	 methods	
can	 not	 be	 easily	 executed	
(inheritance-‐depth/sta:c	 methods)	

Inefficient	 in	 terms	 of	 :me	 it	
takes	 to	 run	 test	 cases	

Inability	 to	 do	 load	 tes:ng	

Requires	 a	 lot	 of	 shared	 resources	
(tech.	 infrastructure)	

1	

1	

1	

Test	 cases	 are	 designed	 in	 a	 way	
that	 the	 configura:on	 to	 test	 cycle	
takes	 :me	

Growing	 number	 of	 FT	 test	
cases	

1	

1	

2	

C1,	 C2,	 C4	

C1,	 C2,	 C3,	 C4,	 C5	

Figure 5: Challenges influencing the turnaround
time of FT regression suite

Table 7: Improvement Ideas and Effected Testing
Processes

Improvement ideas Rev BT FT ST CST FOA
Reviews

√

Basic Testing
√

Maintenance of FT reg suite
√

Controlling size of FT reg suite
√

Feedback time for FT reg suite
√

Guidelines for FT tool usage
√

Tech improvements to FT tool
√

Improving test case quality
√ √ √ √ √

Definitions of test levels
√ √ √ √ √ √

Increase tool usage:
√ √ √ √ √ √

Early quality evaluations
√ √ √ √ √ √

Requirement testability
√ √ √ √

Feature status tracking
√ √ √ √ √ √

Improved interaction
√ √ √ √ √ √

The improvement suggestions in this group affect the work
practices of individual developers and the results produced
are not used outside of individual AT.

Reviews: Code reviews have helped in early detection of
coding fault, however, there is a need for organization wide
adoption of the practice. Reviews should be supplemented
with tools that support visualization of code changes in the
artefact under review. To utilize the human resources ef-
fectively, automated static code analysis should precede re-
views. This will enable the reviewers to focus on the defects
that the tools cannot find. These tools are generally easy
to use and if configured properly can reduce the number of
false positives. Thus, reviews can help avoid certain fault
slippage and provide means for early evaluation.

Basic testing: Practitioners from development teams be-
lieve that increased basic testing has reduced the number
of faults that slip through to the function test. They ac-
knowledge that these improvements in basic test have been
possible because of inclusive discussions with various devel-
opment teams. This is a clear indication of why it is neces-
sary to have stakeholder involvement and buy-in/consensus
on decisions. Furthermore, some teams set and enforce cov-
erage goals. They use code coverage tools, as these tools
help to see the extent of testing. However, there is a need
for wider adoption of these tools through out the company.
Some practitioners also suggested that test-driven develop-
ment and use of mock object techniques could offer avenues
for improvement.

4.3.2 Function Test
The improvement suggestions in this group focus on the

function test level.
Maintenance of FT regression test suite: There was a

consensus on having persons with formal responsibility for
maintenance of the test suite. This seems plausible, but

considering the size of the organization and amount of test
cases it will require a lot of skills, effort and coordination
between teams. However, the current practice of having a
distributed mechanism has not really worked either. Per-
haps in the SoS context the only viable solution is that of
shared responsibility with some central governance. Thus,
having multiple levels of control on what is contributed to
the regression suite. For example, first the individual teams
assess the quality of FT and suggests an inclusion to the
suite, and then the tests are only included if the person(s)
with formal responsibility approves them. Furthermore, im-
proving the readability of test cases and enforcing design
principles when developing test code will reduce the main-
tenance cost as well.

Controlling the size of FT regression suite: By improv-
ing the effectiveness of reviews and BT (see suggestions in
Section 4.3.1) the unnecessary load on FT will be reduced.
Similarly having responsible person(s) for test suite mainte-
nance will give an opportunity to have a filter on new test
cases being added. Similarly such person(s) may also re-
view existing test cases and remove redundant or obsolete
test cases from the suite, thus reducing the number of test
cases.

Reducing the feedback time for FT regression suite: Prac-
titioners believe that having prioritization or selection crite-
ria will bring significant improvement to feedback time for
the regression suite. So rather than running all the test cases
all the time, two suggestions for prioritization criteria were:
to run the most relevant tests first or to run the tests that
fail frequently before others in the suite. Another step in
the right direction is that the test cases have been tagged at
a high-level based on the protocols and features they test.
This is useful to select relevant test cases and to identify
which parts of the system are being neglected in testing and
which other parts have a high overlap in test cases. Removal
of redundant and obsolete test cases and using the frame-
work for FT (instead of BT) will also alleviate the problems
aggravated by having a large regression suite in ST where
all the FTs are added, as well as the problems related to an
inefficient testing framework.

Guidelines for FT tool usage: We found that TTCN, i.e.
the tool used in FT, is sometimes misused for unit testing
which is not the strength of the framework. In large orga-
nizations dealing with SoS there is a Lock-in with respect
to tools and it is very costly to switch to a different tool,
especially when it is as embedded as TTCN. Therefore, the
practitioners suggested to use TTCN for FT only as it has
following strengths:

• Ability to test multiple protocols: is a major strength
of TTCN over other testing frameworks.

• Automation helps save time: with use of TTCN for
testing the time taken for test has reduced consider-
ably. As one practitioner said, “For us, for instance if
we want to test a Product Customization, with say 30
test cases. Just executing them may be takes about 15
minutes. But doing it manually will take may be 3-4
hours”.

• Useful for protocol verification: the ability to manip-
ulate at bit level gives better control of protocol mes-
sages and parameter verification. This makes it very
useful for external interface testing.

Thus, by taking steps in Section 4.3.2 to manage the suite

size we can use the resource intensive TTCN for the testing
that cannot be tested without it.

Technical improvements to FT tool: Many of the mainte-
nance problems of the FT suite stemmed from the technical
shortcomings of the TTCN tool used in the company, thus
various improvement ideas for it were suggested in the inter-
views. Practitioners had complaints about the inability of
TTCN to support load and GUI testing. There is also a need
to improve the TTCN editor to identify multiple test head-
ers in the same file and improve the readability of test cases.
It should be easy to write TTCN test cases without having
to repeat a lot of things, and to write configurations in the
test cases so that verification is facilitated. One suggestion
was to develop wrappers or high-level language constructs
for setting up complex configurations, which will reduce the
requirements on knowledge about subsystems and intricate
details of how the protocols work. This will not only make
writing test cases easier, which means even under time con-
straints it is still possible to develop test cases without the
threat of mistakes in configuration.

4.3.3 Testing in all levels
The improvement suggestions in this section affect testing

at all levels of testing from basic testing (BT) to field tests
(FOA).

Improving the test-case quality: Having templates and
guidelines for writing test cases particular to various test
levels and tools used will help improve the quality of test-
cases. This will enforce a consistent structure in test-cases
and help teams following best practices to enabling readabil-
ity, good design and high coverage. Furthermore, improving
the quality of test cases will significantly improve the confi-
dence in the testing suite’s ability to find faults. The current
mechanism of writing configurations at the bit level results
in test cases that are error-prone. In the complex SoS con-
text it is almost impossible to have such detailed knowledge
about all the systems. Thus, having a wrapper (which also
addresses the technical issues of the FT tool) to provide ab-
straction for the low level configurations will facilitate writ-
ing test cases and reduce the necessity of in-depth domain
knowledge about various systems in SoS. Having test-case
templates, documented best practices, and high-level con-
structs to specify test cases will also alleviate the effects of
employee turnover as the knowledge will be embedded in
the artefacts. Furthermore, reducing fault slippage by writ-
ing tests in pairs and/or review test cases by another team
member will reduce chances of misinterpretation of require-
ments.

Definitions and responsibilities of test levels: Practitioners
identified the need for better organization wide definitions
of test levels with clear strategies of what should be verified
at each test level. They also think that a better analysis
of what we want to verify in each test level can reduce the
overlap in testing. It is important to make a trade-off be-
tween early detection and cost of set-up. One may identify
certain faults in basic test but the cost of setting up the
environment to test may be too high. It is an encouraging
sign that the testers understand this e.g. while commenting
on the role of basic testing one practitioner said, “We are
aware that we can’t test everything and may be we shouldn’t
in basic test”.

Increase tool usage: Practitioners were aware of many
improvements that could be gained by wider usage of test

tools. For example, generating tests instead of manual cod-
ing, while talking about the benefits of a tool used to create
trees and simulation test cases the practitioner said, “then
you can run a lot of logic in the tree without writing in
TTCN”. Similarly, use Mock tools as suggested in Section
4.3.1 instead of statically programming the interfaces. Also,
it was suggested to use tools to generate test data that helps
in e.g. boundary value analysis, thus maintaining a differ-
entiation between test code and data.

One practitioner highlighted the importance of tools that
can provide a management view by summarizing and pre-
senting data to support decision-making. This aligns well
with the need of technical overview in a SoS. SONAR [2] is
one such tool that can help providing:

• a management view of measurements and status.

• feedback on test cases, where there are less test cases
or too many.

• and highlight, which test cases are not designed prop-
erly.

Early quality evaluations: The practitioners expressed the
need to run non-functional tests sooner than currently pos-
sible. One solution is to look for performance issues that
can be identified earlier without running the non-functional
tests. This could be done by reviews or static code analysis
to e.g. design and complexity of algorithms, memory man-
agement that is likely to result in performance degradation.
Yet another complementing solution is to have early archi-
tectural evaluations for quality requirements e.g. by using
prototyping.

4.3.4 Requirements engineering and communication
The large size of the SoS context can easily lead to com-

munication gaps. Furthermore, requirements form the bases
against which tests are developed. Thus, it is natural that
practitioners suggested how improvements in requirements
engineering and communication would help the case com-
pany.

Improving the testability of requirements: In a typical
case in SoS context, requirements are written to describe
a system service that involves multiple systems. It therefore
helps when the feature lead (person owning a feature) does
a pre-analysis of requirements to understand which systems
will be affected and helps testing teams to anticipate work-
load. Similarly, having concrete user-stories that describe
one standard scenario and not the whole service is useful for
testing. It should describe a standard scenario with inter-
networking description (the interactions with other systems)
without delving into everything that can go wrong. Another
suggestion is that the requirement owner should write func-
tion test on at least external interfaces so that the require-
ment will be documented in a testable manner.

Feature status tracking: There should be a mechanism in
the development process to document and communicate the
decisions regarding consciously delayed features as it oth-
erwise will create false positives in testing. Currently, the
test team creates a defect report for missing functionality
and it goes through an expensive process to handle them.
Furthermore, there is no distinction between unintentionally
and intentionally missing features.

Improved interaction between teams and cross-functional
teams: System management is in between the customer and
design/test teams and they have a good understanding of the

customer needs. So they can be helpful to ask for missing
information or explanation to avoid misinterpretation.

Similarly, a new initiative to involve ST teams early on
in the process was welcomed by the practitioners. Now the
testing team has a better understanding of features and can
estimate the expected workload better. This early involve-
ment has led to improved planning and reduced the time it
takes the test team to understand the deliverables. If we
have a cross-functional team then there will be opportuni-
ties to have early deliveries to test and have feedback sooner
about problems and avoid expensive opinion/question defect
reports.

5. CONCLUSIONS AND DISCUSSION
We made four contributions in this paper. First, we pre-

sented a study that focuses on testing challenges in SoS
context. We mapped the challenges we found to three cat-
egories, 1) challenges that are not different in SoS context
and other contexts, 2) challenges that are amplified in the
SoS context but that can also be found in other contexts,
and 3) to new challenges specific only to SoS context. To our
knowledge, only Columbi et al. [7] has addressed this topic
previously. In comparison to their SoS challenges we can say
that their challenges (2) and (4) in Section 2 are not true in
our case as the case company has tests to evaluate overall
SoS capabilities and overarching test scenarios in compound
system tests and field tests (see Figure 2). Their challenge
(1) is partially true in our case as the current organizational
structure does not support testing in SoS context, for ex-
ample the lack of regression test suite maintenance can be
traced back to the organization of our case company. Fi-
nally, their challenge (3) indicating that SoS systems have
a high number of requirements leading to a high number of
tests is completely true in our case. Reflecting their solu-
tions proposals with the light of our case we can state that
their proposal (2) using risk assessment to prioritize testing
would be useful in our case as well. Their solution proposal
(3) suggest focusing tests on interfaces might be applicable
in our case but we think that other test focusing criteria
should be used as well. Their solution proposal (1) ”build
little, test little”has already been applied and even exceeded
in our case as the testing is following agile software devel-
opment pace and testing with high coverage is performed
continuously on different levels (see Figure 2). Their final
proposal (4) to provide designated environments and peo-
ple for integration does not seem that useful in our case as
testing integrations did not seem to be a big problem and
on the other hand designated people craved more support
to regressions test maintenance rather than integration test.

Second, we found a contradiction between the software
process improvement focus areas stemming from the fault
slippage measure and interviews with practitioners. The
fault slippage of internal processes and from customers clearly
pointed to improving the areas of review and basic test that
resulted in the highest fault slippage numbers (see Tables
5 and 6). However, the challenges and improvement ideas
from practitioners pointed mostly to improving the func-
tional tests and the system test suite that had poor main-
tainability and turnaround time, but high fault detection
capability (see Figures 4 and 5 , and Table 7). On the other
hand the reasons for problems in FT were caused at least
partly by the fact that people did not do basic testing, but
implemented the same test as functional tests because BT

offered a poor technical support for testing. In the end,
we cannot be certain if the company is better off improving
functional or basic tests. We believe this can be generalized
to the questions whether companies are better off in improv-
ing the practices that are already strong, but still have good
improvement potential, or the practices that are weak.

Third, we found an interesting circular relationship be-
tween the maintenance and turnaround time of functional
test. It is difficult to improve turnaround time if the test
code has low maintainability. However, the low maintain-
ability also increases the turnaround time when developers
add new test cases rather than modify the existing test cases
to complement for new features. We believe that circular
relationship can be attributed to the SoS context and the
managerial independence that each development team has.

Fourth, we found that test case maintainability and main-
tenance are a big problem in SoS context. Future work
should see how could the techniques and practices for regu-
lar software maintenance help test code maintenance in SoS
context.

6. ACKNOWLEDGMENTS
This work has been supported by ELLIIT, the Strategic

Area for ICT research, funded by the Swedish Government.

7. REFERENCES
[1] JUnit: A programmer-oriented testing framework for

Java. http://www.junit.org/. [Acc. Mar. 2012].

[2] Sonar - an open platform to manage code quality.
www.sonarsource.org. [Accessed Mar. 10, 2012].

[3] Testing and Test Control Notation Version 3
(TTCN-3). http://www.ttcn-3.org/. [Acc. Mar.
2012].

[4] TestNG - a testing framework.
http://testng.org/doc/index.html. [Acc. Mar.
2012].

[5] M. C. B. Alves, D. Drusinsky, J. B. Michael, and
M. T. Shing. Formal validation and verification of
space flight software using statechart-assertions and
runtime execution monitoring. In Proceedings of the
6th International Conference on System of Systems
Engineering, pages 155–160. IEEE, 2011.

[6] J. Christie. The seductive and Dangerous V-model.
Testing Experience, pages 73–77, 2008.

[7] J. Colombi, B. C. Cohee, and C. W. Turner.
Interoperability test and evaluation: A system of
systems field study. The Journal of Defense Software
Engineering, 21(11):10–14, 2008.

[8] J. Dahmann and K. Baldwin. Understanding the
current state of us defense systems of systems and the
implications for systems engineering. In Proceedings of
the 2nd Annual IEEE Systems Conference, pages 1–7.
IEEE, 2008.

[9] L. O. Damm and L. Lundberg. Identification of test
process improvements by combining fault trigger
classification and faults-slip-through measurement. In
2005 International Symposium on Empirical Software
Engineering, 2005. IEEE, Nov. 2005.

[10] L.-O. Damm, L. Lundberg, and C. Wohlin.
Faults-slip-through - a concept for measuring the
efficiency of the test process. Software Process:
Improvement and Practice, 11(1):47–59, 2006.

[11] DoD. Systems and software engineering. systems
engineering guide for systems of systems, version 1.0.
Technical Report ODUSD(A&T)SSE, Office of the
Deputy Under Secretary of Defense for Acquisition
and Technology, Washington, DC, USA, 2008.

[12] M. Fewster and D. Graham. Software Test
Automation. Addison-Wesley Professional, Sept. 1999.

[13] R. A. Gougal and A. Monti. The virtual test bed as a
tool for rapid system engineering. In Proceedings of
the 1st Annual IEEE Systems Conference, pages 1–6.
IEEE, 2007.

[14] J. E. Hannay and H. C. Benestad. Perceived
productivity threats in large agile development
projects. In Proceedings of the International
Symposium on Empirical Software Engineering and
Measurement (ESEM 2010), 2010.

[15] J. A. Lane and R. Valerdi. Synthesizing sos concepts
for use in cost estimation. Systems Engineering,
10(4):297–307, 2007.

[16] G. Lewis, E. Morris, P. Place, S. Simanta, D. Smith,
and L. Wrage. Engineering systems of systems. In
Proceedings of the IEEE International Systems
Conference (SysCon 2008), 2008.

[17] G. A. Lewis, E. J. Morris, S. Simanta, and D. B.
Smith. Service orientation and systems of systems.
IEEE Software, 28(1):58–63, 2011.

[18] R. O. Lewis. Independent verification and validation
[Elektronisk resurs] : a life cycle engineering process
for quality software. Wiley, New York, 1992.

[19] M. W. Maier. Architecting principles for
systems-of-systems. Systems Engineering,
1(4):267–284, 1998.

[20] K. Petersen and C. Wohlin. Context in industrial
software engineering research. In Proceedings of the
Third International Symposium on Empirical Software
Engineering and Measurement (ESEM 2009), pages
401–404, 2009.

[21] G. Rothermel, R. H. Untch, C. Chu, and M. J.
Harrold. Test case prioritization: An empirical study.
In Proceedings of the International Conference on
Software Maintenance (ICSM 99), pages 179–188,
1999.

[22] P. Runeson and M. Höst. Guidelines for conducting
and reporting case study research in software
engineering. Empirical Software Engineering,
14(2):131–164, 2009.

[23] C. Soĺıs and X. Wang. A study of the characteristics
of behaviour driven development. In Proceedings of the
37th EUROMICRO Conference on Software
Engineering and Advanced Applications (SEAA 2011),
pages 383–387, 2011.

[24] R. K. Yin. Case study research: design and methods.
Sage Publications, Thousand Oaks, 3 ed. edition, 2003.

[25] S. Yoo and M. Harman. Regression testing
minimization, selection and prioritization: a survey.
Software Testing, Verification and Reliability, 2010.

[26] B. Zeiss, H. Neukirchen, J. Grabowski, D. Evans, and
P. Baker. Refactoring and metrics for ttcn-3 test
suites. In Proceedings of the 5th International
Workshop on System Analysis and Modeling:
Language Profiles (SAM 2006), pages 148–165, 2006.

http://www.junit.org/
www.sonarsource.org
http://www.ttcn-3.org/
http://testng.org/doc/index.html

	Introduction
	Related work
	Research Method
	Purpose and Research Questions
	Case and Context
	Data Collection
	Data Analysis
	Threats to Validity

	Results
	SoS Testing Process and Practices (RQ1)
	Challenges (RQ2)
	Improvements (RQ3)
	Developer quality assurance
	Function Test
	Testing in all levels
	Requirements engineering and communication

	Conclusions and Discussion
	Acknowledgments
	References

