
Analyzing an Automotive Testing Process with Evidence-Based Software
Engineering

Abhinaya Kasojua, Kai Petersen∗,b, Mika V. Mäntyläc,d

aSystemite AB, Gothenberg, Sweden
bSchool of Computing, Blekinge Institute of Technology, Box 520, SE-372 25, Sweden

cDepartment of Computer Science and Engineering, Aalto University, Finland
dDepartment of Computer Science, Lund University, Sweden

Abstract

Context: Evidence-based software engineering (EBSE) provides a process for solving practical problems based on a
rigorous research approach. The primary focus so far was on mapping and aggregating evidence through systematic
reviews.
Objectives: We extend existing work on evidence-based software engineering by using the EBSE process in an indus-
trial case to help an organization to improve its automotive testing process. With this we contribute in (1) providing
experiences on using evidence based processes to analyze a real world automotive test process; and (2) provide evi-
dence of challenges and related solutions for automotive software testing processes.
Methods: In this study we perform an in-depth investigation of an automotive test process using an extended EBSE
process including case study research (gain an understanding of practical questions to define a research scope), sys-
tematic literature review (identify solutions through systematic literature), and value stream mapping (map out an
improved automotive test process based on the current situation and improvement suggestions identified). These are
followed by reflections on the EBSE process used.
Results: In the first step of the EBSE process we identified 10 challenge areas with a total of 26 individual challenges.
For 15 out of those 26 challenges our domain specific systematic literature review identified solutions. Based on the
input from the challenges and the solutions, we created a value stream map of the current and future process.
Conclusions: Overall, we found that the evidence-based process as presented in this study helps in technology trans-
fer of research results to industry, but at the same time some challenges lie ahead (e.g. scoping systematic reviews
to focus more on concrete industry problems, and understanding strategies of conducting EBSE with respect to effort
and quality of the evidence).

Key words:
Evidence-based software engineering, Process Assessment, Automotive Software Testing

1. Introduction

Evidence-based software engineering consists of the
steps 1) Identify the need for information (evidence)
and formulate a question, 2) track down the best evi-
dence to answer the question and critically appraise the
evidence, 3) critically reflect on the evidence provided
with respect to the problem and context that the evi-
dence should help to solve [1]. Overall, the aim is that

∗Corresponding author
Email addresses: abhinaya.kasoju@systemite.se

(Abhinaya Kasoju), kai.petersen@bth.se,
kai.petersen@ericsson.com (Kai Petersen),
mika.mantyla@aalto.fi (Mika V. Mäntylä)

practitioners who face an issue in their work shall be
supported to make good decisions of how to solve the
problems by relying on evidence.

In software engineering two approaches for identify-
ing and aggregating evidence (systematic map [2] and
systematic review [3]) have received much attention,
which is visible in a high number of systematic reviews
and maps published that cover a variety of areas. This
ranges from very specific and scoped questions (e.g.
within-company vs. cross-company cost estimation [4])
to very generic questions (e.g. what we know about
software productivity measurement [5] or pair program-
ming [6]). So far no studies exist that used the evidence

Preprint submitted to Information and Software Technology December 18, 2012

based process coming from a concrete problem raised in
an industrial case and then attempting to provide a solu-
tion for that concrete problem/case through the evidence
based process. We extend existing work on evidence
based software engineering by using the evidence based
process for analyzing an industrial automotive software
testing process.

In particular, the first contribution of this paper is to
demonstrate the use of the evidence-based process in an
industrial case providing reflections of researchers using
the process to help the company in their improvement
efforts. The process is a staged process where subse-
quent stages use the input of the previous ones, allow-
ing to provide a traceable and holistic picture from prac-
tical challenges to recommendations for improvements.
The steps are: identify need for information/problems
to be solved (through case study); identify solutions and
critical appraisal of those (through systematic literature
review); critically reflect on the solutions with respect
to the problem and mapping them to solve the problem
(through value stream mapping); reflection on the EBSE
process.

The second contribution is an in-depth understanding
of the automotive software testing process with respect
to the current situation (strengths and weaknesses) as
well as defining a target process based on evidence pre-
sented in literature. In other words, it is shown how
an improved automotive software testing process based
on evidence from literature would look like. There is a
need to better understand and address the challenges re-
lated to software testing in the automotive domain (see
e.g. [7, 8]), and to identify what solutions are available
to automotive companies to deal with these challenges,
which is of particular importance due to the specific do-
main profile of automotive software engineering (as pre-
sented in Pretchner et al. [9]).

The remainder of the paper is structured as follows:
Section 2 presents the related work, elaborating on
the characteristics of automotive software engineering.
Section 3 presents the staged evidence-based process
using a mixed method design, as well as the research
questions asked in each step. Sections 4 to 7 present the
different stages of the EBSE process proposed in this
study, and their outcomes. Section 8 presents the valid-
ity threats. Thereafter, Section 9 discusses the results,
followed by the conclusions in Section 10.

2. Related Work

The related work focuses on characterizing the au-
tomotive software engineering domain and provides a

motivation for the study. Details on solutions for au-
tomotive software testing in response to the challenges
identified are provided through the systematic literature
review (see Section 5).

2.1. Automotive Software Engineering - Characterizing
the Domain

Pretchner et al. [9] provided a characterization of
the automotive domain based on literature and suggest a
roadmap for automotive software engineering research.
In the following paragraphs, we highlight the combi-
nation of characteristics that make automotive software
engineering stand out.

Characteristic 1 - Heterogenous subsystems: Many
different types of systems (e.g. multimedia, telematics,
human interface, body/comfort software, software for
safety electronics, power train and chassis control soft-
ware, and infrastructure software) are part of cars built
today. They are highly heterogenous and as a conse-
quence there are no standards, but instead very different
methods, processes, and tools for developing automo-
tive systems.

Characteristic 2 - Clearly divided organizational
units: Historically, the automotive industry is charac-
terized by vertically organized units being responsible
for different parts of the car. The parts then were assem-
bled. Given that software is more complex and need to
enable communication between the systems integration
becomes a challenge. A general (but in automotive sys-
tems amplified) challenge is that suppliers have freedom
in how they realize their solutions, given the lack of well
established standards. Therefore, there is a strong need
for communication between many different stakehold-
ers. Given the high number of stakeholders involved,
there are many sources for new requirements as well,
which leads to requirements volatility.

Characteristic 3 - Distribution of software: Previ-
ously unrelated mechanical functions are now related
due to the introduction of software (e.g. driving tasks in-
teract with comfort and infotainment). The distribution
requires that different functional units interact through
middleware/buses. Furthermore, multiple real-time and
operating systems are embedded in a car. This increases
the complexity and may lead to unintentional or inten-
tional feature interactions and hence makes quality as-
surance harder.

Characteristic 4 - Highly configurable systems: Au-
tomotive software is highly configurable. Pretchner et
al. [9] state examples of a car having more than 80
electronic fittings, which has to be reflected in the soft-
ware, and they also report of components having 3,488

2

different component realizations. In addition, configu-
rations over time change and have different life-cycles.
Hardware configurations might have longer life-cycles
than electronic units and their respective software im-
plementations. This leads to many different versions of
software in a car that result in compatibility problems.

Characteristic 5 - Cost pressure and focus on unit-
based cost models: The automotive domain is charac-
terized by cost pressure and has a strong focus on unit-
based cost models. Optimizing the cost per unit (e.g.
by tailoring a software to a specific processor or mem-
ory that is restricted by its capacity) leads to problems
later, e.g. when porting or extending/maintaining that
software.

2.2. Automotive Software Testing

It has been found that little evidence collected from
industry exists on how testing processes are performed
in the automotive domain and challenges in this con-
text are not evaluated [8, 10]. Furthermore, interaction
between test procedures, methods, tools and techniques
with test management and version management is left
untold [10]. The need to test as early as possible on mul-
tiple integration levels under real time constraints put
high demands on the test process and procedures being
used [10]. The need to quantify the quality assurance
value of testing activities in automotive context was
identified by Sundmark et al. [8]. They conducted a de-
tailed study on how system testing is performed in con-
nection to a release process in the automotive context
and identified several challenges in this regard. More-
over, they observed a need for detailed identification
and prioritization of areas with improvement potential.
However, there have been no studies with an in-depth
focus on strengths and challenges within the whole test
process from a process improvement perspective in the
automotive software context.

Hence, the related work underlines the need for gain-
ing a rich understanding of challenges in the domain,
and explore which solutions are available for these chal-
lenges and mapping those to the software testing pro-
cess.

3. Evidence-Based Software Engineering Process
Used in the Case Study

In evidence based software engineering (EBSE) the
“best” solution for a practical problem should be se-
lected based on evidence. EBSE consists of the fol-
lowing steps: 1) Identify the need for information (ev-
idence) and formulate a question, 2) track down the

“best” evidence to answer the question and critically ap-
praise the evidence, 3) critically reflect on the evidence
provided with respect to the problem and context that
the evidence should help to solve. In the end (Step 4),
the evidence based process (steps 1-3) should be criti-
cally evaluated.

In previous studies the steps of EBSE were conducted
in isolation, e.g. case studies investigating challenges
and issues (e.g. [11, 12]), systematic reviews are con-
ducted to answer a research question (e.g. [5, 6]), and
solutions were evaluated (e.g. [13, 14]).

In this research we use a multi-staged EBSE research
process where a subsequent stage builds upon the pre-
vious ones (see Figure 1). Furthermore, in order to sys-
tematically close the gap between the results from step
1 (Identify the need for information (evidence) and for-
mulate a question) and step 2 (track down the “best” ev-
idence to answer the question and critically appraise the
evidence) of the evidence based process we used value
stream analysis in step 3 (critically reflect on the evi-
dence provided with respect to the problem and context
that the evidence should help to solve).

Value	 Stream	 Analysis	
(EBSE	 Step	 3)	

Process	
Descrip:on	

Ac:vi:es	

RQ1:	 Strengths	 Value	 Added	

RQ2:	 Challenges/
Issues	

Waste	

Future	 State	 Map	 RQ3:	 Solu:ons	

Case	 Study	 (EBSE	 Step	 1)	

Systema:c	 Literature	
Review	 (EBSE	 Step	 2)	

RQ4:	 	

RQ5:	 	

Cri:cal	 Appraisal	 of	
EBSE	 Process	 (EBSE	

Step	 4)	

EBSE	 Process	
Lessons	 Learned	

RQ6:	 	

Figure 1: Staged EBSE Process

The overall goal of the research is to improve the soft-
ware testing process in the context of automotive soft-
ware engineering. The stages of the research lead up to
the goal as follows:

EBSE Step 1: First, we need to gain an in-depth un-
derstanding of challenges and strengths of the testing
process to solve the right problems. Case studies are
suitable to gain an in-depth understanding of real-world
situations and processes [15]. The research questions
asked in the case study are:

• RQ1: What are the practices in testing that can
3

be considered as strengths within automotive do-
main? An inventory of activities that act as
strengths in the testing process is provided through
this research question. This is extracted from the
qualitative data obtained through interviews.

• RQ2: What are the challenges/ bottlenecks identi-
fied in testing automotive systems? Lists of chal-
lenges or poorly performed practices that act as
barriers to incept quality in the testing process are
collected to answer this research question.

EBSE Step 2: In the next step we identified the solu-
tions that would help to address the challenges (EBSE
Step 1) related to automotive software testing through
a domain specific systematic review. We conducted a
domain specific systematic review for multiple reasons.
First, the automotive domain has specific characteris-
tics, which distinguishes it from other domains. Hence,
findings for solutions in the domain context are more
likely to be transferable. Second, given that the over-
all testing process was studied the scope of the review
would not be manageable and we would not be able to
provide timely input for the solutions. The results of
EBSE Step 2 can be seen as an inventory of solutions
based on which improvements can be proposed. Results
from EBSE Step 1 related to strengths are added to this
inventory. The research question asked in the literature
review is:

• RQ3: What improvements for the automotive test-
ing process based on practical experiences were
suggested in the literature?

EBSE Step 3: Based on the detailed definition of
strengths and challenges, as well as solutions we used
value stream analysis. Value stream analysis was se-
lected as an analytical approach for the following rea-
sons. First, value stream mapping distinguishes be-
tween a current state map where the current situation
is analyzed with respect to value (what is working well
and adds value to the customer) and waste (everything
not contribution directly or indirectly to the customer
value) and the future state map (desired mapping of the
process based on improvements) [14, 16, 17]. The cur-
rent state map therefore uses the case study as input,
while the future state map uses the case study as well as
the systematic review in order to map out the desired
process representing an evidence-based recommenda-
tion to practitioners of how to conduct the testing pro-
cess. Secondly, value stream mapping has its origin in
the automotive domain, which makes its usage in the
studied context easy. The following research questions
are answered:

• RQ4: What is value and waste in the process con-
sidering process activities, strengths and weak-
nesses identified in EBSE Step 1?

• RQ5: Based on the solutions identified in EBSE
Step 2, how should the process represented by the
current value stream map be improved?

EBSE Step 4: In the last step, we reflect on the usage
of the evidence-based process in improving software en-
gineering current practices.

• RQ6: What was working well in using the EBSE
process with mixed research methods and how can
the process be improved?

4. EBSE Step 1: Case Study on Strengths and Chal-
lenges

We conducted an industrial case study [15] to investi-
gate problems and challenges in test process in automo-
tive software domain and identify improvement poten-
tials, answering RQ1 and RQ2.

4.1. Case Study Design Type

The case being studied is one of the development sites
of a large Swedish automotive organization. The case
organization is ISO certified. However, the organization
was struggling with achieving the SPICE levels their
customers desired. In particular, different departments
achieved different results in assessments. This is also
visible from this study, as we found that there are no
unified test processes, and not all projects have proper
test planning. They focus on both soft and hard products
involving areas such as telematics, logistics, electronics,
mechanics, simulation modeling and systems engineer-
ing.

We report on a single-case with multiple units of anal-
ysis [18], in which we studied the phenomenon of test-
ing in several projects in one company. This type of case
study helps comparing between the testing methodolo-
gies, methods and tools being used for different projects
at the case organization.

The units of analysis here are different projects at the
studied company. They were selected in such a way that
they have maximum variation in factors such as method-
ology being used, team size, and techniques used for
testing. The motivation for focusing on projects with
variation was to be able to elicit a wide array of chal-
lenges and strengths. Furthermore, this aids in general-
izability as the challenges are not biased toward a spe-
cific type of project.

4

4.2. Units of Analysis
All the projects studied for this research are bespoke

as the case organization is the supplier to a specific
customer. All the projects here are externally initi-
ated and the organization do not sell any proprietary
products/services. Projects within the organization are
mostly either maintenance projects or evolution of ex-
isting products. It is common within this organization
for a role to have multiple responsibilities in more than
one project. An overview of the studied projects is given
in Table 1.

Systems: The majority of systems are embedded ap-
plications (P1, P2, P3, P4, P7, and P8), i.e. they involve
software and hardware parts, such as control units, hy-
draulic parts, and so forth. Windows applications devel-
oped in P2, P5, and P6 do not control hardware.

Team size: We distinguish small projects (less than
four persons in a team) and large projects (four or more
persons in a team). The majority of the teams are large
as shown in Table 1. Small teams do not necessar-
ily focus on having a structured development and test
process, roles & responsibilities, test methods or tools.
Three projects (P3, P6, and P8) did not report any test
planning activities. Projects with a higher number of
modules are developed by large teams and these projects
are old compared to the projects dealt with by small
teams. That is, the systems have grown considerably
over time.

Development methods: Different software develop-
ment methodologies are employed within the organiza-
tion. However model-based development is the promi-
nent one (P4, P5, P7 and P8) and is used with water-
fall model concepts. Waterfall means a sequential pro-
cess involving requirements, design, component devel-
opment, integration and testing. Agile development us-
ing Scrum has been adopted in one project (P2). Small
teams involved in maintenance adopted ad-hoc method-
ologies (P6). Two projects recently introduced some
agile practices to incorporate iterative development (P1
and P5).

Tools: Varieties of tools are employed in the projects
for testing, such as test case and data generators, test ex-
ecution tools, defect detection & management tools, de-
bugging tools, requirements traceability and configura-
tion management tools and also tools for modeling and
analyzing Electronic Control Units (ECUs). Apart from
these tools customized tools are used in some projects
when any other tool cannot serve the specific purpose of
the project. These tools are usually meant for test exe-
cution, which make test environments close to the target
environment. Small teams (e.g. P3) do not rely on test-
ing tools, they use spreadsheets instead. Large teams

being responsible for several modules use a diversity of
tools for organizing and managing test artifacts.

Test levels: As can be seen in Table 1 almost all
projects (seven out of eight) had unit testing in place and
in five projects Integration testing was used. Unit/basic
tests in the projects were similar to smoke tests. How-
ever, the unit tests in this context do not have a well
defined scope. Half of the projects studied used test au-
tomation. However, the evolving test cases were not
always updated into automation builds. From the inter-
view data, it was evident that system integration test is
not performed by many teams. However, most of the
teams assumed integration test can replace system test.
As shown in Table 1, other forms of testing, like re-
gression and exploratory testing, were found to be less
common and are gaining importance recently within the
company.

4.3. Data Collection

The data was collected through interviews and pro-
cess documentation. However, data from other sources
was not collected due to lack of availability and inad-
equacy with respect to data quality (e.g. quantitative
data). The motivation behind using several sources of
data (triangulation) is to limit the effects of only one in-
terpretation and by that making the conclusions stronger
[19] .

4.3.1. Interviewee Selection
The selection process for interviewees was done us-

ing the following steps:

• A complete list of people involved in the testing
process irrespective of their role was created.

• We aimed at selecting at least two persons per
project, which was not possible from an availabil-
ity point of view. In particular, for small projects
only one person was selected. For larger projects
more persons were selected. Furthermore, differ-
ent roles associated with the testing process should
be covered (including developers, managers, and
designated testers). However, the final list of em-
ployees who participated in the interviews was
based on availability in the time period in which
the interviews were conducted (March 08.-April
04., 2011).

• We explained to the interviewees why they have
been considered for the study through e-mail. The
mail also contained the purpose of the study and
the invitation for the interview.

5

Table 1: Overview of Projects (Units of Analysis)
Department Project Testing done in project Methodology Size Application Type
Alpha P1 Basic/unit test (smoke test), system test, in-

tegration test, session-based test manage-
ment, script-based testing, code reviews

Waterfall development with
some agile team practices

Large Embedded System

P2 Basic/unit test, system test, integration test,
regression test, exploratory test

Agile software development
using Scrum

Large Windows application and
embedded system

P3 Basic/unit test, integration test, exploratory
test

Waterfall development
methodology

Small Embedded system

Beta P4 Basic/unit test, script-based testing, auto-
mated testing

Waterfall development
methodology

Large Embedded system

P5 Basic test/unit test, script-based testing,
automated testing

Waterfall development with
some agile team practices

Small Windows application

P6 Integration test, exploratory test Ad-hoc development Small Windows Application
P7 Basic test/unit test, system test, integration

test, regression test, script-based testing,
automated test

Waterfall development
methodology with model-
based development

Large Embedded system

Gamma P8 Basic/unit tests, integration tests, ex-
ploratory test

Waterfall development
methodology with model-
based development

Large Embedded System

The roles selected represented positions that were di-
rectly involved with testing related activities or affected
by the results of the entire testing process (see Table 2).

Table 2: Description of Roles
Role Description
Group
manager

Responsible for all test resources such as testing
tools. Also responsible to see that the test team has
the correct competence level.

Test
leader

Traditional role responsible for leading all the test
activities such as test case design, implementation
and reporting defects. Test leader is also responsible
for test activities in project and their documentation.

Developer The developer uses the requirements specifications
to design and implement the system. This role is
also responsible for all the testing (for some projects
only).

Advanced
test engi-
neer

Technical Expert that often works with research
projects. In order to avoid confusion this role is also
termed as developer in the later sections.

Domain
expert

As a technical expert this person is responsible for
research engineering project who strives to continu-
ously improve testing in their team. In order to avoid
confusion this role is also termed as developer in the
later sections.

Test/quality
coordina-
tor

Responsible to coordinate the all the test activities
in the projects and also is responsible for managing
the products.

Project
manager

Responsible for planning, resource allocation, and
development and follow-up related to the project.
The requirements inflow is also controlled by this
role.

Roles from both the projects and line organization
from three departments alpha, beta and gamma (due to
confidentiality reasons, the department names are re-
named) were included in our study. It is also visible
that some roles are related to project work and some

are related to line responsibilities within a department,
i.e. they support different projects within a department.
The number of interviews in relation to departments,
projects, and roles is shown in Table 3.

Table 3: Interviewees
Department ID Number inter-

viewed
Roles

Alpha Line 1 Group manager
P1 1 Test leader
P2 2 Test leader, developer
P3 1 Developer

Beta Line 1 Advanced test engineer
Line 1 Test coordinator
P4 3 2 Developers, project

manager
P5 1 Developer
P6 1 Developer
P7 1 Domain expert
P8 1 Developer

In departments Alpha and Beta a sufficient number of
employees was available, but in Gamma only one per-
son was interviewed due to lack of availability of per-
sons in that department. The person was selected as she
was considered an expert with a vast amount of experi-
ence with respect to testing automotive systems.

4.3.2. Interview Design
The interview consisted of four themes; the duration

of the interviews was set to approximately one hour
each. All interviews were recorded in audio format
and also notes were taken. A semi-structured interview
strategy [19] has been used in all the interviews. The
themes of the interviews were:

6

1. Warm up and experience: Questions regarding the
interviewees background, experience and current
activities.

2. Overview of software testing process: Questions
related to test objects, test activities, and informa-
tion required and produced in order to conduct the
tests.

3. Challenges and strengths in testing process: This
theme captured good practices/strengths as well as
challenges/poorly performed practices. The inter-
viewees are supposed to state what kind of practice
they used, what its value contribution is and where
is it located in the testing process.

4. Improvement potentials in testing process: This
theme includes questions to collect information
about why the challenge must be eliminated and
how the test process can be improved.

4.3.3. Process Documentation
Process documentation, such as software develop-

ment process documents, software test description doc-
uments, software test plan documents and test reports
have been studied to gain an in-depth understanding of
the test activities. Furthermore, documents related to
organization and process descriptions for the overall de-
velopment process have been studied to gain familiarity
with respect to the terminology used at the company.
This in turn helped in understanding and analyzing the
interview data.

4.4. Data Analysis

In order to understand the challenges and strengths in
the automotive test process an in-depth analysis of dif-
ferent units of analysis was done using coding. Manual
coding was done for 5 interview transcriptions to create
an initial set of codes. The codes were clustered into
different main categories, predefined by our research
question (Level 1), by literature (Level 2) and through
open coding (Level 3 and 4), see Table 4. With this a
coding guide was developed. For the open coding we
coded the transcribed text from the interviews, which
evolved. If we, for example, found a new statement that
did not fit to an already identified code we created a new
code, such as Interaction and communication. When we
found another statement that falls into an existing code,
we linked the statement to that code. After having coded
the text, we looked at each cluster identifying very sim-
ilar statements, and then reformulated them to represent
a single challenge/benefit. After having done that we re-
viewed the clusters and provide a high level description
for each cluster. The open coding strategy followed in

this research is hence very similar to the one presented
in [20]. In order to validate the coding guide, an inter-
view transcription was manually coded by an employee
at the case organization and the results of the coding
were compared with the researchers’ interpretation and
required modifications were made. However, the cod-
ing guide was continuously refined throughout the data
extraction phase.

4.5. Results

The results include a description of the test process,
as well as strengths and challenges associated with the
process.

4.5.1. Testing Process
The majority of the interviewees (9 interviewees)

stated that there is lack of a clear testing process which
can be applied to any project lifecycle. Among 8
projects studied only 3 projects have an explicitly de-
fined testing process. It is observed that each project
follows a process very similar to what is shown in Fig-
ure 2, even though not all projects follow all activities
outlined in this process.

A test strategy of an organization describes which
type of tests need to be conducted and how they should
be used with development projects with minimum risks
[24]. The test strategy used at the company was to
mainly focus on black-box testing with only a minor
part of testing being performed as white-box testing.
There is a testers handbook available within the orga-
nization which describes test processes, methods and
tools. However, this study shows that it is not imple-
mented/used by most of the teams. The main activities
conducted are: Test Planning, Test analysis and Design,
Test build, Test Execution and Reporting. Among these,
test planning is done in advance by five projects (three
large teams represented by P1, P2, and P4 and two small
teams represented by P5 and P7). Most of the small
teams did not have any software test plan even though
they had a very flexible test strategy/approach to carry
on with tests.

In the following the steps are described in further de-
tail:

Test planning: This activity aims to address what will
be tested and why. The entry criteria for this activity is
to have prioritized requirements ready for the release as
input for test planning. The delivery of this phase is the
software test plan, containing estimations and schedul-
ing of resources needed, test artifacts to be created, as
well as techniques, tools, and test environments needed.
The roles involved in this phase of testing are customer,

7

Table 4: Analysis through Coding
Coding Level Descriptions Purpose
Level 1 Codes directly related to case study research

questions i.e., testing practices, strengths and
improvement potentials, and problems or chal-
lenges are identified here.

Structure statements from interviews according to research questions.
Results concerning “testing practices” can be found in Section 4.5.1,
results related to “strength and improvement potential” in Section 4.5.2,
and results related to “problems or challenges” in Section 4.5.3.

Level 2 Value (five categories) [21], Waste (Seven Cat-
egories) (see [22, 23]).

Structure findings according to value (see Table 10) and waste (see Ta-
ble 12) to be used in the current stream map (see Figure 4). This is then
used to map strengths to value (Table 11) and problems/challenges to
waste (Table 13).

Level 3 This level defines where in the process prac-
tices are implemented.

Identification of process areas (see e.g. Table 5) to clarify the scope
of the challenges and being able to map waste to test process activities
(Figure 4)

Level 4 Codes derived from interviews (e.g. all aspects
related to communication, availability of pro-
cess documentation, etc.)

Identify groups of related challenges (see C01 to C10 in Section 4.5.3).

project manager and test leader. If there is no test leader
available for the project, the developers themselves par-
ticipate in the test planning activities. The exit criterion
for test planning is the approval of the test plan by the
customer and project management.

Test analysis and design: This activity of testing aims
to determine how the tests (by defining test data, test
cases and schedule progress for the process or system
under test) will be carried out, which is documented in
the software test description. Software test description
also defines what tests (i.e., test techniques) will be per-
formed during test execution. The other deliveries dur-
ing this phase are requirements traceability matrix, test
cases and test scripts design to fulfill the test cases. Test
cases are written and managed using test case manage-
ment tools, which are used in all projects. The criterion
to enter this phase is to have the software test plan ap-
proved by the customer and project management. The
test plan scheduled in the previous phase is updated with
all detailed schedules for every test activity. The roles
involved at this stage are test leader or a test coordinator
who is responsible for designing, selecting, prioritizing
and reviewing the test cases. Since testers share respon-
sibilities between projects and are not always available
for testing tasks, in most of the projects the developers
are responsible to write test cases for their own code.
The project manager is responsible for the supervision
of test activities.

Test build: In automotive software testing, test build
is the most vital part of the test process since it in-
volves building a test environment, which depicts the
target environment. The outcome of this level is hav-
ing hardware, which can be visualized as real time en-
vironment, including test scripts and all other test data.
Since the case organization works with control engines
and Electronic Control Units (ECUs) [8] for most of the

projects, modeling tools such as Simulink along with
MATLAB are used to visualize the target environment.
Mostly testers or developers are involved in this activity.
The project manager is responsible to provide resources,
such as hardware equipment. The test leader supervises
the activity.

Test execution and reporting: The final stage of the
test process is to execute tests and report the results to
the customer. In order to execute tests, the test leader or
project manager will chose an appropriate person to run
the test scripts. After the tests are completed the results
are recorded in the defect management system. The out-
come of this phase is a software test report which de-
scribes the entire tests carried out as well as their test
verdicts. The results are also later analyzed and evalu-
ated to find if there are any differences in comparison
to test reports of previous releases. In case of serious
errors these errors are corrected and tests are repeated.
The project manger is responsible to decide the stopping
criteria for test execution.

4.5.2. Strengths and Good Practices
The strengths of the test process are found to be de-

pendent on team size. Most of the practices consid-
ered as strengths in small teams were not perceived as
strengths in large teams and vice versa. That is, it is
evident from the interviews that the strengths vary with
team size.

Work in small, agile teams: In small teams test ac-
tivities are flexible, and there is no need to generate
extensive test reports. Large teams do this for small
releases only. Large teams have a very structured and
plan-driven approach for testing. Small teams focus on
continuous integration and iterative development (e.g.
P2 using Scrum with continuous integration and sprint
planning). Agile test practices make it easier for them to

8

Test	 Planning	
Es#mate	 the	 requirements,	
test	 techniques,	 tools,	 and	
other	 test	 ar#facts	

Test	 scheduling	

Test	 Analysis	 and	
Design	
Update	 test	 plans	

Iden#fy	 and	 design	 test	
scripts	 and	 test	 data	 	

Test	 Build	
Collect	 and	 build	 all	 the	
required	 test	 environment,	
test	 scripts,	 and	 other	 test	
data	 designed	 during	 the	
previous	 stage	

Test	 Execu5on	 and	
Repor5ng	
Run	 tests	 and	 record	
defects,	
evaluate	 test	 results	 and	
generate	 a	 report	

Deliverables	

SoAware	 test	 plan	

SoAware	 test	
descrip#on,	
requirements	

traceability	 matrix,	
test	 cases	

Test	 scripts,	 	
test	 data,	

test	 environment	

SoAware	 test	 report	

Ac#vi#es	 Roles	

Test	 leader,	 	
project	 manager,	

customer	

Test	 leader,	
project	 manager,	
developer/tester	

Test	 leader,	
project	 manager,	
developer/tester	

Test	 leader,	
project	 manager,	

customer	

Figure 2: Testing Process

plan tests for every iteration that are compatible with the
requirement specification. This in turn enables align-
ment of testing with other activities (such as require-
ments, design, etc) properly. In comparison to small
teams, large teams have a stronger focus on reusing test
cases most of the time, which makes them more effi-
cient.

Communication: Strengths regarding communica-
tion are found in a project having agile practices such
as stand-up meetings, regular stakeholder collaboration
and working together in open office space. Every ac-
tivity involves a test person, which indicates parallel
testing effort throughout the whole development life-
cycle. In addition to this the agile approach enhanced
the team spirit, leading to efficient interactions between

team members, and resulting in a cross- functional team.
Other projects use weekly meetings and other electronic
services, such as email and messaging within a project.

Shared roles and responsibilities: Small teams con-
sider having one person to perform the tester & de-
veloper role as strength since this would not delay the
process for having to wait for someone to test the soft-
ware, one developer was stating that: “While we are
working, since the tester is the same person as the de-
veloper, there is no delay in reporting it. So if the
Developer/Tester finds out the fault he knows where it
is introduced, and instead of blaming someone else,
the developer becomes more careful while writing the
code”. However, large teams do not consider this as
strength; most of these teams do not have any dedicated

9

testers (except one large team which has dedicated test-
ing team).

Test techniques, tools, and environments: Here we
made different observations with respect to size of the
projects. In small teams fewer testing tools and meth-
ods are used to avoid more documentation. These teams
generally have less project modules when compared to
large teams. In this case the system is well known to
the tester/developer (Developing and testing done by
one person in small teams) which makes it easy to test
using minimum number of tools and methods. Small
teams (for example, projects P3 and P6) generally per-
form smoke or unit test which tests the basic function-
ality of the system and then have an integration test. An
employee conveys the use of unit/basic test in the fol-
lowing way: “I think unit testing is a strength. With this
one goes into details and make sure that each and every
subsystem works as it is supposed to”. Tools for testing
used here are developed by the teams to suit the project
requirements. However, these customized tools devel-
oped for their specific team are not shared among the
teams. The main focus in small teams is to have a test
environment that has the same hardware and interface
as the target environment. This makes maintenance of
tests efficient within a project.

Contrary to the small teams, large teams use a vari-
ety of methods and tools for testing to perform multiple
activities. One of the most perceived strength found in
large teams is experience-based testing (e.g. projects
such as P1, P2, P4, and P8). As the same team members
have been working on the same project over the years,
they find it easy to use their experience based knowl-
edge in product development and testing. An employee
responsible for quality coordination in a large team says
“The metrics used for testing are not very helpful to
us as a team as testing is more based on our experi-
ence with which we decide what types of test cases we
need to run and all”. The other perceived strength is
exploratory testing/session-based test management ap-
plied in projects P1 and P2. An employee pointed out
“Executing charters for session based tests (i.e., ex-
ploratory tests) we find critical bugs at a more detailed
level”. Hardware in the loop (HIL) is also considered
as strengths for one of the large teams since it detects
most of the defects during integration testing. HIL used
for integration and system level testing is perceived as
a strength as it detects the most critical defects such as
timing issues and other real time issues for large and
complex systems. Informal code reviews are considered
as strength in large teams even though they are also used
in small teams. Informal code reviews avoid testing get-
ting biased since it is performed by the person other than

the one who is responsible for coding.
Coming to the tools, test case management tools are

considered as an advantage in large teams (e.g., P4) as
one employee pointed out “I think test case manage-
ment tool is a great way to store the test cases and to
select the tests that should be performed and also for
the tester to provide feedback”. Other tools considered
useful are defect management tools (for e.g., projects).
Test environment in large teams is quite good for testing
as it depicts real time environment

4.5.3. Challenges
Challenges are grouped into challenge areas. For

each challenge area, we also state the number of projects
for which the challenges within the challenge area were
brought up, as well as the process areas that were con-
cerned by the challenge area (see Table 5), and in each
area a set of related issues is reported.

Table 5: Overview of Challenge Areas

ID Challenge area
No. of
projects Process area

C01 Issues related to
organization and its
processes

6 Requirements, test pro-
cess, test management,
project management

C02 Time and cost con-
straint related hin-
ders

5 Requirements, project
management, test level
(basic/unit test)

C03 Requirements related
issues

3 Requirements, test
process (test planning),
project management

C04 Resource constraints
related issues

3 Test process, project
management

C05 Knowledge manage-
ment related issues

5 Test management,
project management

C06 Resource constraints
related issues

3 Test process, project
management

C07 Test tech-
niques/tools/environment
issues

2 Test process, test man-
agement, test levels

C08 Quality aspect
related issues

3 Test process

C09 Defect detection re-
lated issues

2 Test process, test man-
agement

C10 Documentation
related issues

2 Test process

C01: Organization of test and its process related
issues: Organizational issues relate to poorly performed
practices related to organization and its test processes,
such as change management, lack of structured test pro-
cess, etc. Organizational issues also include stakehold-
ers attitude towards testing (If testing is given low pri-
ority).

C01 1: No unified test process: Projects vary in their
use of testing methods and tools, and it was consid-

10

ered challenging to find a unified process that suits all
projects because of scattered functionality and evolv-
ing complexity in hard- and software. Even though a
testers handbook is available that might help in achiev-
ing a more unified process, it is not used as teams are
not aware about it, or people do not feel that it suits their
project characteristics. Unstructured and less organized
processes work well for the small projects, but not for
the larger ones, as it compromises quality. As intervie-
wees pointed out “It feels there is lack of a structured
testing process and it is also un-organized always. It
works fine for small projects, but not for large projects”.

C01 2: Testing is done in haste which is not well
planned: The delivery date is not extended when more
time would be needed, which results in testing being
compromised and done in haste. Furthermore, the cus-
tomer does not deliver the hardware for testing in time
and good quality, hence tests can not be done early; a
consequence is a generally low respect for deadlines
with respect to testing.

C01 3: Stakeholders attitude towards testing: Im-
provement work in the past has been focused on imple-
mentation, not testing. Hence, new approaches for test-
ing do not get much support from management, which
sometimes makes teams develop their own methods and
tools, which requires high effort.

C01 4: Asynchronous testing activities: Testing is
not synchronized with other activities related to con-
tractors; test artifacts have to be re-structured in order
to synchronize with the artifact supplied by the contrac-
tor. This leads to rework with respect to testing.

C02: Time and cost constraints for testing: Chal-
lenges regarding time and cost constraints can be due
to insufficient time spent on requirements, testing activ-
ities or test process.

C02 1: Lack of time and budget for specifying valida-
tion requirements: Validation requirements are require-
ments, which are validated during testing (e.g. speci-
fying environmental conditions under which the system
has to be tested). Time and money saved on not writing
the validation requirements lead to a lot of rework and
time in other parts of the process, specifically testing.
As one interviewee was pointing out: “Re-write cus-
tomer specifications into our own requirements? That is
not possible today due to the reason that customer will
not pay for it and we do not have internal budget for
that’. Overall, the lack of validation requirements leads
to a lack of objectives and a defined scope for testing.

C02 2: Availability of test equipment on time: Test
equipment not being available on time and in good qual-
ity resulted in unit testing not being conducted.

C03: Requirements related issues: Insufficient re-

quirements for testing, high-level requirements which
are hard to understand, and requirements volatility are
the challenges that hinder performing proper testing to
achieve high quality. These issues generally occur when
customer does not specify requirements properly due to
lack of time or lack of knowledge which implies poor
requirements management.

C03 1: Lack of requirements clarity: Too little effort
is dedicated to understanding and documenting clear re-
quirements, resulting in much effort in re-interpreting
them in later stages, such as testing. As one of the em-
ployees specifies: “I think it would be better for us in
beginning to put greater effort with requirements man-
agement to avoid customer complaining about misun-
derstanding/misinterpreting the requirements specified
by them, in order to have fewer issues at the end and
save time involved in changing and testing everything
repeatedly”.

C03 2: Criteria for finalizing test design and
start/stop testing are unclear: According to the inter-
views, defining the test process would be completed
once the requirements are stable. The interviewees con-
nected requirements volatility to start and stoppage cri-
teria for testing. Requirements volatility required re-
defining the entire test planning. This acted as a barrier
in starting with the actual tests. In cases where the or-
ganization used test scripts to perform tests, they had a
hard time defining when to stop scripting and start/stop
tests as requirements were pouring in. The criteria of
when to stop testing were mostly related to budged and
time, and not test coverage.

C03 3: Requirements traceability management is-
sues: The traceability between requirements and tests
could be better in order to easily determine which test
cases need to be updated when the requirements change.
Furthermore, a lack of traceability makes it harder to de-
fine test coverage. The reason for lacking traceability is
that requirements are sometimes too abstract to connect
them to concrete functions and their test cases.

C04: Resource constraints for testing: These chal-
lenges are related to the availability of skilled testers and
their knowledge.

C04 1: Lack of dedicated testers: Not all projects
have dedicated testers, instead the developers interpret
the requirements, implement the software, and write the
tests. The lack of independent verification and valida-
tion (different persons write the software and test the
software) leads to a bias in testing.

C04 2: Unavailability of personnel for testing:
Given the complexity of the systems, building knowl-
edge to be a good tester takes time. In case the ex-
perienced testers are shifted between the projects it is

11

hard to find someone who can complete the task at hand.
An interviewee who manages testing says “It is difficult
to find people with same experience and also they take
quite long period to learn and get to know about the
product due to its complexity. For this one need to have
same knowledge before being able to do testing”.

C05: Knowledge management related testing is-
sues: The issues related to knowledge management
found in this case studies are:

C05 1: Domain and system knowledge transfer and
knowledge sharing issues regarding testing: New test-
ing techniques (exploratory testing) used at the com-
pany require vast amount of knowledge, which is not
available due to that testers always change and new
testers employed by the studied company come into
projects. No sufficient information and training mate-
rial is available on how to test, even though there is a
need to achieve a status where a project is not depen-
dent on a single person. From the interviews we also
found that the challenge of knowledge transfer is ampli-
fied as beyond software it has an emphasis on control
engineering, mechatronics, and electrical engineering.

C05 2: Lack of basic testing knowledge: Testing is
given low priority due to that testers lack basic testing
knowledge. With regard to this context an interviewee
involved in life cycle management activity stated that “I
think there is lack of information on testing fundamen-
tals. Some of us do not know when to start a test level
and when to end it and it feels like grey areas which is
not clearly defined anywhere”.

C06: Interactions, communications related issues
in testing: Problems in practices related to communica-
tion between different stakeholders in involved in test-
ing. Also includes improper form of communication
such as lack of regular face-to face meeting, lack com-
munication between customer and test personnel.

C06 1: Lack of regular interactions with customer re-
garding requirements: In the beginning of projects cus-
tomer interaction is more frequent, with respect to vali-
dation requirements in testing there is too little customer
interaction. The right person to communicate with re-
garding requirements on testing is unavailable on the
customer side.

C06 2: Lack of interactions with other roles within
project during testing: There is a lack of communica-
tion with previous team members that have shifted to
another project, even though they are needed (e.g. in
order to verify and fix identified bugs). One interviewee
narrated it in the following way; “I have allocated a per-
son for our team and then he have to communicate with
us but it has been sometimes quite tough for the person
to find the person since he is working for another team

now”.
C06 3: Informal communication with customer:

Overall, there is a lack of face-to-face and informal
communication with the customer and the customer
communicates by providing vague descriptions, which
are then not clarified. A manager adds “I think it is most
critical to maintain the relationship (informal relation-
ship with customer) and demand the customer that we
cannot start working before you tell us what you want”.

C07: Testing techniques, tools and environment
related issues: Problems related to usage of current test
techniques, environment and tools.

C07 1: Lack of automation leading to rework: The
automation of unit tests and regression testing is not
done efficiently. One interviewee pointed out that “Test-
ing is rework as long as it is not properly automated”.
Generating and efficiently automating tests is observed
as a challenge due to a perceived lack of unavailabil-
ity of tool support, leading to rework when wanting to
rerun tests.

C07 2: No unified tool for entire testing activity: One
test lead pointed out the need for unified tool which can
be used for testing “we have lot of tools for testing but
there are some difficulties in deciding which tool to use
since there are drawbacks and strengths for every tool
being used. Sometime we are forced to develop cus-
tomized tool because we cannot get any tool from the
market that does everything for us”. A tool which does
all activities in testing for automotive domain can be
easy to use instead of managing and organizing large
number of tools used right now.

C07 3: Improper maintenance of test equipment:
Several test environments are to be maintained, lack of
maintenance leads to rework and long lead-time before
actual testing can start. One interviewee nicely summa-
rized this as “We have several test environments and test
steps to be maintained. They are not always maintained
and it takes long time before one can get started with
actual testing”.

C08: Quality aspects related issues: Problems re-
lated to incorporating quality attributes of testing such
as reliability, maintainability, correctness, efficiency, ef-
fectiveness, testability, flexibility, reusability, etc. In-
volves tradeoffs between quality and other activities.

C08 1: Reliability issues: Reliability of the system
is not achieved to the degree desired. Quality is hard
to incorporate due to lack of test processes, and due to
faulty hardware components. As one interviewee spec-
ifies “Its hard to achieve several requirement criteria
for a system such as working for longer period of time,
less resource intensive, ability to work on different plat-
forms, etc.”.

12

C08 2: Quality attributes are not specified well right
from the inception of project: Quality requirements are
not well specified, leading to a situation where complex
systems had quality issues on the market for existing
products.

C08 3: No quality measurement/assessment: Quality
measures are not present, but their need is recognized to
increase the ability to evaluate the results of testing, one
employee saying that: “the quality curve must be better
although our customer is satisfied. I think the quality
measures should be documented in order to facilitate
better analysis of test results”.

C09: Defect detection issues: Problems related to
practices which disable the tester to trace the defect or
the root cause of defect creation, also includes problems
related defect prevention.

C09 1: Testing late in the process makes it costly to
fix defects: Due to the system complexity and late test-
ing the number of defects in the system increases while
it evolves and increases in size. Missing many defects
in previous releases led to a high number of customer
reported defects in the following releases that needed to
be corrected, which made defect fixing costly.

C09 2: Hard to track defects which are not fixed in
the previous releases: For development with complex
parts (i.e., which involves working with timing issues
and other critical issues) the difference in the behavior
of the system between two different releases need to be
same. But this is not always happening due to the errors
which were not fixed during the previous releases being
triggered in the current release. This is because these
errors may become serious in the next releases when
they become untraceable in such a huge system.

C10: Documentation related issues: Poorly per-
formed practices related to test documentation such as
insufficient documentation, no documentation or too
much documentation that does not give proper support
for maintaining quality in test process are subject of this
challenge area.

C10 1: Documentation regarding test artifacts is not
updated continuously: The interviewees emphasized
that the documentation (such as test cases and other
test artifacts) provided was not enough for testing and
cannot be trusted; one interviewee added that “The test
documents are not updated continuously, so we find
them unreliable”. One of the reasons mentioned was
there were small changes being done to the test artifacts,
which are not which are not updated accordingly the test
document. Not updating documentation led to rework.

C10 2: No detailed manuals available for some spe-
cific test methods and tools: Another observation in
this regard was a lack of documentation on how tools

and methods work which can be used. One intervie-
wee nicely summarized this as “There is support for
tools, but we always cant find someone who can fix the
problems with them. It could be better documented I
guess”. However, it is observed that there are man-
uals within the organization which serve this purpose.
But for some specific tools (such as customized tools)
or methods, this does not work. This issue seems to
arise when people performing testing could not under-
stand the terminology in manuals or they are not aware
of these manuals.

5. EBSE Step 2: Identifying Improvements through
Systematic Literature Review

This section describes the purpose and design of our
method in systematic literature review and value stream
mapping to improve the testing process. The research
question for this part is RQ3: What improvements for
the automotive testing process based on practical expe-
riences were suggested in the literature?

In Section 4 we identified the challenges related to
software testing in the industry. In this section, we
present EBSE Step 2. We perform a domain specific
systematic literature review to study the state of the art.
Second, we create solutions proposals based on the re-
sults of the review to address the challenges identified.
Doing this is with the spirit of evidence-based software
engineering where one needs to consult the evidence
base when creating diagnosis and solution proposals [1].

5.1. Systematic Literature Review

The purpose of our SLR is to identify testing related
problems in the context of the automotive software do-
main and solutions that have been proposed and applied
in an industrial context. Our SLR design consists of sev-
eral steps that are presented below. Our SLR is based on
guidelines provided by Kitchenhamn [25] with the ex-
ception that we did not exclude studies based on quality,
as the goal was to identify all potential solutions that are
based on industry experience, and not discarding them
due to e.g. lack of reported procedures.

The steps for our literature are:

• Define research question for the review.

• Identification of papers

• Study selection

• Results of mapping of solutions to identified chal-
lenges

13

5.1.1. Identification of papers
In this step we formulated search terms so that they

enable the identification of research papers. Search
terms were elaborated over several test searches in dig-
ital libraries. To this end we used five different search
strings (see Table 6). The first two strings identify ar-
ticles on testing in the automotive domain, and model-
based tools to support automotive software development
in order to cover solutions for challenge areas related to
testing. Requirements issues identified were very gen-
eral requirements problems, but had an impact on test-
ing. Hence, these are also covered in a separate search
string. Given that some projects were working in an ag-
ile way of working, which was deemed a strength, we
also looked for studies related to agile in automotive.

Table 6: Search Strings
Search Search string
SLR 1 automotive AND software AND (test OR verification

OR validation)
SLR 2 automotive AND software AND model-based AND

tool
SLR 3 automotive AND software AND requirements
SLR 4 automotive AND software AND (agile OR scrum OR

extreme programming OR lean)
SLR 5 embedded AND software AND (agile OR scrum OR ex-

treme programming OR lean)

Search string were applied on Titles and Abstracts
in the databases IEEEXplore, ACM Digital Library,
Springerlink, ScienceDirect and Wiley Interscience. We
did not apply search string on full text as it is found that
such approach generally yields too many irrelevant re-
sults.

5.1.2. Study Selection
To select papers relevant to our goal we formulated

inclusion/exclusion criteria. First of all, we excluded
papers that are not in English, published before 2000
(given that in recent years cars contain a vast amount of
software and challenges are more related to recent re-
search) and were not available in full-text. As our goal
was to look for problems and solutions offered in peer-
reviewed literature, we excluded editorial notes, com-
ments, and reviews and so on. As we intended to look
for solutions that were applied in industry, we included
papers with solutions that have empirical evaluations
in industry and in particular automotive software do-
main. A major criterion to include a study was that
they present solutions to problems in relation to soft-
ware testing. By software testing, we mean any of the
V&V activities spanning across the whole software de-
velopment lifecycle (requirements validation, test case

generation, unit or regression testing and so on). To
ensure these criteria are satisfied, papers were scanned
against the checklist.

• Is the paper in English?

• Is the paper available in full text?

• Is the paper published in or after 2000?

• Is the context of research automotive software do-
main?

• Does the paper talk about any problems and solu-
tions or tools related to any software V&V?

• Does the paper contain an empirical evaluation in
industrial context?

The search for SLR 1 and SLR 2 resulted in 221 pa-
pers for SLR 1 and 66 papers for SLR 2. An overview
of the distribution of primary studies across databases
is shown in Table 7, also showing the number of finally
selected studies.

The search for SLR 3, SLR 3, and SLR 4 resulted in
301, 12, and 107 papers, respectively. An overview is
given in Table 8.

5.1.3. Solutions Based on Systematic Literature Review
We mapped the identified challenges and solutions

offered in our SLRs to the challenges found in our in-
terviews. Furthermore, we state other references where
the challenges observed in this study have been found.
These are shown in Table 9. Based on our SLRs, we
present seven solution proposals. It is important to point
out that there often cannot be a single solution pro-
posal for each issue. It entirely depends on the type
of projects and appropriate strategies (such a resource
management, budget management) adopted by teams to
implement these solutions.

The number of references in relation to the solution
proposals was determined by the availability of infor-
mation. When we created the categories we aimed at not
having a category that requires a small/easy solution and
another category that covers a large area of solutions.
Even though test management (SP7) has only one refer-
ence, we believe that research focus on test management
is as large in scope as, for example, test automation and
tools, looking at its complexity and how hard it would
be to solve it. Overall, scope of the problems was the
base to decide on the granularity of categories.

SP1: Requirements management (RM): Over-
all, we identified that good requirements are a pre-
requisite for good testing in automotive software devel-
opment. Requirements related issues such as Lack of

14

Table 7: Number of selected studies (SLR 1, SLR 2)

	
	
	

Database Initial search result Nr. Primary studies Full text not available
Searches SLR_1 SLR_2 SLR_1 SLR_2 SLR_1 SLR_2
ScienceDirect 35 4 5 - - -
ACM Digital

Library
12 190 4 - - -

WileyIntercience 5 4 - - - -
Springerlink 46 16 8 4 13 -
IEEE Xplore 123 23 12 1 - -

Total 221 66 29 5
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Table 8: Number of selected studies (SLR 3, SLR 4, SLR 5)
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Database SLR_3 SLR_4 SLR_5
 Total Selected Total Selected Total Selected
IEEEXplore 163 10 5 - 37 3
ACM Digital
Library 102 - 1 - 36 -

SpringerLink 3 - 3 -
ScienceDirect 31 - 3 - 17 -
Wiley
Interscience 5 - 0 - 14 1

Total 301 10 12 0 107 4

requirements clarity (C03 1) , Requirements volatility
C03 2), Requirements traceability (C03 3) can be tack-
led through better requirements management. Further-
more, we can understand that Quality attribute specifi-
cation problems (C08 2) as well as customer communi-
cation problems (C06 1, and C06 3) can be improved
with ideas from the requirements engineering domain.
Our domain specific SLR was able to find many so-
lutions to these problems (see Table 9). For exam-
ple, Grimm from DaimlerChrysler1 recommends early
simulations of requirements and derivation of test cases
from specification and suggests tracing and administer-
ing requirements across the entire software development
lifecycle [7]; Islam and Omasreiter [29] presented and
evaluated an approach, where text-based use cases are
elicited in interviews from various stakeholders to elicit
and specify user requirements for automotive software;
and Bühne et al. [30] proposed abstraction levels of
Software, Function, System, and Vehicle. Each require-
ment on each abstraction level is in turn linked to system
goals and scenarios.

SP2: Competence management (CM): Compe-
tence management was identified to address a number
of challenges. We identified a need for Competence
Management based on the issues of Lack of dedicated
testers (C04 1), Unavailability of personnel for testing
(C04 2), Knowledge transfer (C05 1) and Lack of fun-

1Now Daimler AG after selling the Chrysler Group in 2007

damental testing knowledge (C05 2). Our domain spe-
cific SLR was able to find only one source by Puschnig
and Kolgari [32] who propose means for the involve-
ment of experts in sharing knowledge and expertise with
less experienced testers in projects, e.g. workshops are
recommended where test team communicate with ex-
perts to communicate information on testing, tools as a
means for informal training.

SP3: Quality assurance and standards: Quality
Assurance and Standards can also help with several
problems. Cha and Lim [55] propose a Waterfall type
process for the automotive software engineering where
quality assurance is performed with peer reviews on
artefacts produced in design, implementation and test-
ing phases. Towards this end, DaimlerChrysler devel-
oped their own Software quality management handbook
for their automotive projects [27], helping to address
C01 1/C01 2 which are related to lack of unified test
process definitions and test planning. A Draft of ISO
26262 (Road vehicles Functional safety) defines the
artefacts and activities for requirements specification,
architectural design, implementation and testing, sys-
tem integration and verification. The standard also pre-
scribes the use of formal methods for requirements ver-
ification, notations for design and control flow analysis,
the use of test case generation and in-the-loop verifica-
tion mechanisms, e.g. hardware in the loop, software in
the loop, [52] (related to challenge C07 3 on test equip-
ment). Controller Style Guidelines For Production In-

15

Table 9: Mapping of Challenge Areas to References of Solutions
Nr. ID Challenge Sources Process Areas

1 C01 1 No unified test process/approach [26, 27] Test Management
2 C01 2 Testing done in haste and not well planned [28, 29] Agile
3 C01 3 Stakeholders attitude towards testing: low priority [28] Agile
4 C01 4 Asynchronous test activities [28] Planning/Process
5 C02 1 No time and budget allocated for specifying validation require-

ments
- Planning/Process

6 C02 2 Unavailability of test equipment on time [28] Test Management
7 C03 1 Lack of requirements clarity [7, 30, 31, 32, 27, 33, 29, 34,

35]
Requirements Man-
agement

8 C03 2 Criteria for finalizing test design and start/stop testing are un-
clear

[7, 30, 36] Requirements Man-
agement

9 C03 3 Requirements traceability [37, 7, 33, 38, 30, 27, 36, 34] Requirements Man-
agement

10 C04 1 Lack of dedicated testers [32] Competence Man-
agement

11 C04 2 Unavailability of personnel for testing [32] Competence Man-
agement

12 C05 1 Knowledge transfer and sharing issues regarding testing - Competence Man-
agement

13 C05 2 Lack of testing fundamentals - Competence Man-
agement

14 C06 1 Lack of regular interactions with customer regarding require-
ments

- Requirements/Agile

15 C06 2 Lack of interactions with other roles within the project during
testing

- Test Management

16 C06 3 Informal communication with the customer - Requirements
17 C07 1 Lack of automation for test case generation leading to rework [39, 40, 41, 7, 42, 43, 44, 45,

46, 10, 47, 48, 49, 50, 28]
Automation

18 C07 2 No unified tool for entire testing activity [7] Automation/Tool
19 C07 3 Improper maintenance of test equipment [51, 52] Test Management
20 C08 1 Reliability issues [39, 53, 50] Automation
21 C08 2 Quality attributes are not specified well [51, 27, 54] Requirements
22 C08 3 Lack of quality measurement/assessment - Quality Assurance
23 C09 1 Testing late in the process makes it costly to fix defects - Agile/Defect Man-

agement
24 C09 2 Hard to track defects which are not fixed in previous releases - Agile/Defect Man-

agement
25 C10 1 Documentation regarding test artifacts is not updated continu-

ously
- Agile

26 C10 2 No manuals for test methods and tools - Test Management

16

tent Using MATLAB, Simulink and Stateglow is a mod-
eling catalogue for Simulink models in the context of
automotive systems developed by The MathWorks Au-
tomotive Advisory Board (MAAB) [56]. MAAB is an
association of leading automotive manufacturers such
as Ford, Toyota and DaimlerChrysler.

SP4: Test automation and SP5: test tool deploy-
ment: Automation is clearly one of the most important
issues in industry and there is a considerable amount
of research describing the state of the practice (C07 1).
As can be seen in Table 9, numerous test automation
solutions have been proposed and used in the automo-
tive domain. For example model-based black box test-
ing [39] [40] is proposed for systems that have high
safety and reliability requirements (C08 1); evolution-
ary testing has been proposed in many works [41] [43]
[57] as a solution with the challenge of automating func-
tional testing, and it has been successfully implemented
at DaimlerChrysler [44] with a tool called AUSTIN
[48] (C07 2); Furthermore, other type of testing and
quality assurance tools have been proposed such as
Classification-Tree editor CTE [58] for a systematic ap-
proach to the design of functional test cases [7]; semi-
automatic safety and reliability analysis of the soft-
ware design process [59] that has been validated in a
case study by Volvo involving 52 active safety functions
[60]; and a tool for resource usage and timing analysis
[61] (C08 1). Overall it can be concluded that when it
comes to test automation or tools there is no shortage of
proposals focusing on the automotive domain.

SP6: Agile incorporation: In recent years Agile de-
velopment methods have become popular in the indus-
try and it can also help with many problems experi-
enced in the case company. Based on our interviews,
we identified a need for change in the software devel-
opment process used in the case organization to cope
with requirements changes (C02 1, C03 1, C03 2), and
here agile process are a natural fit as they offer regular
communication where requirements can be changed or
clarified. Agile also emphasizes collaboration and com-
munication that can be seen as a solution to knowledge
transfer and interaction issues identified (C05 1, C06 1,
C06 2, C06 3). Finally, some agile methods emphasize
continuous and automated testing, which can potentially
help with many testing problems experienced (C01 1,
C01 2, C09 1 and C09 2). Although agile can be the-
oretically linked to many problems our domain specific
SLR was not able to find many academic publications
of agile. Agile development has been implemented at
DaimlerChrysler [62] and it was observed that Agile of-
fers flexibility, high-speed development and high qual-
ity. Mueller and Borzuchowski [28] report experiences

in using Extreme Programming (XP) on an embedded
legacy product and they report that TDD and automation
of Unit tests were the essential ingredients for success.

SP7: Test management: From the above identified
solution proposals it can found that most of the activi-
ties are concerned with the organization of testing and
its artifacts. It was also evident from our interviews that
most of the challenges identified in the case study were
more or less related to management of test activities.
There was no study identified that necessarily concen-
trates on test management activities related to automo-
tive domain. However, very few articles were found in
literature which describes the activities that test man-
agement must concentrate in order to improve testing
which suits this study context. So this solution proposal
was formulated to coordinate the above proposed solu-
tions. Test management [63] activities as observed in
our study can incorporate the following activities.

• Test Process management: Manages various activ-
ities within test process such as test planning, test
analysis, test build and test execution. This activ-
ity is also applicable when agile practices are in-
troduced.

• Test artifacts and assets organization: Reuse and
maintenance of test artifacts such as test cases,
test versions, test tools, test environment, test re-
sults and test documentation. This activity can also
be termed as test configuration management with
which change throughout the life cycle of test ac-
tivities can be managed.

• Requirements management in accordance to test-
ing: Responsible to analyze and determine require-
ments change which facilitate reasonable adjust-
ment in test schedule and test strategy and thus im-
prove test cases to fulfill new requirements.

• Competence management: Responsible to allocate
test personnel with required stock of skills and
knowledge necessary to perform the specific test-
ing activity.

• Defect management: Responsible for early detec-
tion of defects that need to be effectively managed
and supported through various stages by different
people working together.

17

6. Step 3: Critically Reflect on the Evidence and
How to Use it to Solve Problems in the Current
Situation

Value stream mapping (VSM) as a process analysis
tool is used to evaluate the findings of strengths and
weaknesses. This tool is used for uncovering and elim-
inating waste [23, 14]. A value stream captures all
activities (both value added and non-value added) cur-
rently required to bring a product through the main pro-
cess steps to the customer (end-to-end flow of the pro-
cess). Value adding activities are those that add value
to a product (e.g. by assuring the quality of a fea-
ture), while non-value added refers to waiting time. The
biggest delays or bottlenecks (i.e. non-value added) in
a value stream provide the biggest opportunity for im-
proving the process capability [23]. The motivation be-
hind choosing VSM is because it is an efficient tool,
with which we could walk through the testing process to
understand workflow and focus explicitly on identifying
waste with an end-to-end perspective [16]. It provides
managers the ability to step back and rethink the entire
process from a value creation perspective [14]. Further-
more, it comes natural for the automotive industry and is
easily accepted as an improvement approach there, as it
originates from the automotive domain (see e.g. Toyota
Product Development System [22]).

A value stream map is done in two steps. In the first
step the current activities are mapped using the notation
in Figure 3, distinguishing value adding and non-value
adding activities. Through burst signals wastes and in-
efficiencies are indicated. Seven wastes are commonly
defined for software engineering (see Table 12) [22, 23].
Thereafter, a future state map is drawn which incorpo-
rates improvements to the identified wastes. Figure 1
shows how the information obtained from the test pro-
cess assessment done in the case study maps to the value
stream activities.

Waiting Time

Processing Time

Value Adding Time
Non-Value Adding

Time

Processing Time

Value Adding Time

Process-step

or

Activity

Process-step

or

Activity

Figure 3: Value Stream Mapping Notation

6.1. Current State Map

We performed a process activity mapping with which
we visualized various activities carried out within test

process. This section presents the current value stream
map, which provides an overview of wastes identified
in VSM and the interviews. The values created by the
process are identified for various team sizes which are
presented in Table 10 (definition of value) and Table 11
(overview of values in the process).

Table 10: Value Definition
ID Value Description
V01 Functionality The capability of the tested product/ ser-

vice to provide functions which meet stated
and implied needs when the software is
used under specific conditions.

V02 Quality The capability of the software delivered af-
ter testing to provide reliability, usability
and other test attributes.

V03 Internal Effi-
ciency

Represents proper integration of both prod-
ucts features tested for and test process de-
ployment for better organization of criti-
cal complexities within the testing activity
with respect to time, cost and quality.

V04 Process
Value

Quality of entire test process in in-
stalling/upgrading/receiving the tested
artefact with respect to time, cost and
quality.

V05 Human Cap-
ital Value

Refers to the stock of skills and knowledge
embodied in the ability to perform labour
so as to produce economic value with the
testing being done.

The non-value adding activities are identified in the
current value stream of test process as shown in Figure
4 in order to see where improvements are needed.

The current state map of the test process revealed
all seven kinds of wastes as they are defined in [23] in
the context of lean software development/value stream
mapping. The seven kinds of wastes identified are
partially done work, extra processing, handoffs, task
switching, relearning, delays and defects (numbered as
W1-W7) (see Table 12 for waste definitions).

These wastes are identified in different activities
within test process which cause rework, increase in
waiting times or inefficient time spent within the en-
tire test activity. Figure 4 illustrates the mapped out test
process and the wastes identified. However, the issues
that occur in other activities (e.g., requirements man-
agement, etc) which affect testing are not shown in the
current stream map. The reason behind their cause and
their negative influence on test activities are discussed
in the previous section.

We identified twelve areas (1-12 as shown in Figure
4) in the test process where wastes occur. Below is a
description of the wastes that occur in every sub-process
as identified in the current stream map.

Waste identified in sub-process 1: The waste ob-
18

 38

Figure 9: Current Stream Map

Figure 4: Current State Map

19

Table 11: Value
Strength Small

team
Large
team

Description Value
added

Less docu-
mentation

√
More time is spent
on delivering func-
tionality

V01

Basic/unit test
√ √

Enables to deliver
quality functionality

V01

Integration
test

√
Incorporates efficient
way of testing by de-
tecting more defects
in less time

V01,
V03

Test envi-
ronment
depicts target
environment

√ √
Better deployment of
test process with test
environment

V03

Experience
based testing

√
Incorporates quality
aided by tester’s skill
and knowledge

V02

Exploratory
testing/session-
based test
management

√
Compatible to the
project requirements
and aids defect
prevention.

V02,
V03

Testing tools
√

Better organization
of test activities.

V03

Continuous
integration

√
More functionality. V01

Iterative de-
velopment
and testing

√ √
Better functionality
and quality.

V01,
V02

Roles and re-
sponsibilities

√
Flexible roles and re-
sponsibilities refers
that various stock of
skills and knowledge
used for testing.

V05

Verification
activities
(information
code reviews)

√
Quality incorpora-
tion.

V02

Reuse
√

Test artefacts from
previous releases
are organized and
reused.

V03

served in sub-process 1 is partially done work. The
reason for not completing tests are the lack of planning
tests due to lack of test definition and testing done in
haste (C1), ultimately resulting in conducting tests in
an unstructured manner with low test coverage. This is
amplified by unclear requirements.

Wastes identified in sub-process 2: In this process
we identified the wastes “extra features” and “hand-
offs”. Extra features that are at times removed from the
system prior to release, even though they were imple-
mented, e.g. due to volatile and unclear requirements
(C03). However, testing is also performed on such fea-
tures/functions. This waste occurs in the form of ef-
fort that is put in writing the test plan and subsequently
scheduling tests and allocating resources. Unclear re-

Table 12: Waste Definition
ID Waste Description
W01 Partially

done work
Test activities which are not completely
done such as unfixed defects, undocu-
mented test artefacts or not testing at all.

W02 Extra fea-
tures

Testing features/functionalities that are not
required by the customer.

W03 Relearning Misinterpretation caused due to no docu-
mentation of any activity that negatively
affect testing. Ex: misinterpreted require-
ments.

W04 Handoffs Lack of availability, knowledge or train-
ing in adopting compatible test techniques,
data, tools or environment.

W05 Task switch-
ing

Unclear roles and responsibilities as a part
of organization structure with respect to
testing which doesnt result in forming right
teams.

W06 Delays Delays that occur to elicit clear valida-
tion requirements, approvals and other re-
sources to perform test activities.

W06 Defects Testing in the end, no early defect detec-
tion or prevention activities and lack of ver-
ification activities such as code reviews, in-
spections.

quirements further require relearning (W3).
Waste identified in sub-process 3: As identified in the

case study, one general issue in the case organization is
resource constraints (C04). The wastes that occur here
are lack of availability of testers (W3: Handoffs) and un-
clear roles and responsibilities as a part of organization
structure ,which hinders the formation of right teams,
resulting in task switching (W4).

Waste identified in sub-process 4: Work is not mov-
ing forward and gets delayed (W1: partially done
work/W6) due to that customer and development orga-
nization require much time to negotiate candidate re-
quirements for the current release. It is observed that
this process repeats itself numerous times involving sev-
eral interactions with the customer since no one has the
same view as others on the requirements (C03). In or-
der to write test cases for the requirements, there must
be a stable and detailed set of requirements to design
and analyze the tests for the next release.

Waste identified in sub-process 5: The delay here
again occurs in form of long waiting times (W06: De-
lays) for eliciting validation requirements (C03) to final-
ize a checklist of test cases to be performed in the test
activity. The test cases from the previous releases are
sometimes not updated. This takes away lot of time and
effort to be spent on rewriting (W5: relearning) the re-
quirements of the previous version and including those
test cases in the current release. Lack of automation in
test case generation is also a reason for this delay as test-

20

ing is rework as long as it is not automated (related to
testing tools, C07).

Waste identified in sub-process 6: Documentation re-
garding testing is not always maintained as discussed in
challenge C10 earlier. The test cases from the previous
release are not always updated to the test case repository
which means undocumented test artifacts (W1: Partially
done work). Some of these missing test artifacts can put
the testing activity into a critical situation, which ends
in repeating the entire testing again.

Waste in sub-process area 7: Some projects need test
equipment to perform testing. The test equipment from
the customer is not available for tests on time (W3:
Handoffs). However, this waste is reduced in some
cases where the test environment used in the previous
releases is saved and maintained for the later versions
of the product. As identified in challenge C7, there is
no specific reason for this negligence.

Waste in sub-process area 8: All the test activities
carried out in the case organization are managed using
different tools, which are usually meant to save time.
But in practice these tools do not serve this purpose. In-
stead management and mapping of test artifacts using
these tools consume more resources and sometimes re-
dundancy creating unnecessary complexity. A unified
tool which can manage and organize all the test activi-
ties for automotive domain is not available which makes
it a challenge (C7) and thus creating a waste called
handoffs (W3), which is related to availability of peo-
ple, equipment, etc.

Waste in sub-process area 9: Testing is not done as
a parallel activity with development (C09). Tracking
defects in the end consumes time and money which ap-
pears to be a burden on testers leading to huge delays
(W6). Verification activities, which support early defect
detection, such as inspections and code reviews are not
used by most of teams. Another kind of waste (W4:
Handoffs) that occurs here can be due to a lack of avail-
ability of testers and training for implementing tests us-
ing specific testing techniques, such as exploratory tests
or experience based testing. Exploratory and experi-
ence based testing are based on testers’ intuition and
skills (see C04). Even though such testing techniques
are considered a strength within the case organization,
only a limited number of test personnel who have the
competence to perform such activities are available right
now. This in turn leads to delays in the testing when
such experienced testers quit or are shifted to another
project. However, documentation on how to use test-
ing techniques and tools are not updated continuously
(sometimes not available), and hence cannot be trusted
to perform testing (C10).

Waste in sub-process area 10: The quality attributes
that need to be incorporated in the tested artifact are not
properly elicited since the inception of the project (W1:
Partially done work), which leads to poor quality prod-
uct. Some of the interviewees feel that the testing is
being done to ensure quality of basic functionality only,
and thus one cannot ensure the reliability of the deliv-
ered system (C08). There is a lack of quality standard
that is essential to measure the level of quality and to
be able to compare test results with previous release.
The analysis of test results helps to redefine the quality
improvements that need to be implemented in the next
versions of the product. Some employees also reported
long delays (W6: Delays) for having to wait for the de-
velopers to fix the defects after they are reported. This
waiting time seems to be long when persons responsible
for the code are shifted to other projects as soon as they
finished their work in the previous project (see C04).
This could be solved if the testing is performed parallel
to development.

Waste in sub-process area 11: Due to requirements
volatility (C3), the requirements specifications are not
documented well, which leads to misinterpretations of
requirements. Effort and resources put in developing
and testing misinterpreted requirements is not useful
(W3: Relearning). Then after a series of interactions
with customer the necessary requirements are elicited
and developed, which leads to unnecessary rework and
task switching (W5).

Waste in sub-process area 12: The defects detected
in previous releases are sometimes not fixed (W1: par-
tially done work), which is agreed by the customer. But
these defects are difficult to track in the next releases as
the system evolves. Lack of verification activities and
early defect prevention activities (W7: Defects) creates
a mess before release, with which some of the unfixed
defects in the current release are left for the next release.
This process repeats itself many times during each re-
lease. As the functionality grows there are many un-
fixed defects left behind, which are hard to trace in such
complex systems.

A summary of wastes and their relation to challenges
is provided in Table 13.

6.2. Future State Map

It is apparent from the results that other processes,
especially requirements gathering and documentation,
impact testing in a negative manner and led to many
wastes. We found that most commonly perceived
wastes i.e., W3: handoffs and W1: partially done work
were occurring due to long delays in eliciting clear and

21

Table 13: Waste
ID Challenges Description
W01: Par-
tially done
work

C01,
C03,
C08,
C09, C10

This waste occurs due to partially
done work in terms of test activities
such as test plan, requirements, qual-
ity incorporation, defect detection and
prevention and test documentation.

W02: Extra
features

C03 This waste occurs due to extra fea-
tures developed due to lack of re-
quirements clarity, which are other-
wise misinterpreted.

W03: Re-
learning

C02,
C03,
C04,
C05,
C07, C10

This waste occurs to lack of availabil-
ity of test equipment on time, require-
ments for testing, and test person-
nel with required competence in test-
ing, knowledge transfer and knowl-
edge sharing within testing, proper
documentation on usage of test tech-
niques and tools. This waste also
occurs when there is no test mainte-
nance activity to save test artefacts.

W04: Hand-
offs

C04 This waste occurs due to lack of ded-
icated testing team or test personnel,
which is due to unclear roles and re-
sponsibilities within the team.

W05: Task
switching

C03,
C06, C07

This waste occurs due to rework
caused by misinterpreted require-
ments.

W06: De-
lays

C03, C04 Delays in the test process to elicit re-
quirements and allocate resources to
perform testing.

W07: De-
fects

C09 The waste related to defects occur
when there are no early defect detec-
tion and defect prevention activities,
which indicates that testing is done in
the end.

stable requirements for testing. The identified chal-
lenges in the test process report that continuous inflow
of requirements led to reduction in test coverage and in-
crease in the amount of faults due to late testing. The
faults that arose in the current release are sometimes not
fixed and delivered, due to which the same faults re-
peat in the next releases, but becomes hard and costly to
trace and fix. Hence the testing approach currently used
does not suit the continuous flow of requirements, indi-
cating the necessity of shifting to new approach, which
can manage and organize changes, and at the same add
quality.

The future state VSM is shown in Figure 5 and is ag-
ile in nature. The process shown represents one itera-
tion.

We recommend the use of agile practices (SP6) and
test management (SP7), which helps to utilize the time
of testers more efficiently through parallelization of de-
velopment and testing, incepting early fault detection,
and short ways of communication. Agile can also help

in achieving high transparency in terms of requirements
for testers since the test planning is done for all itera-
tions. However, test plans can be updated in detail for
every iteration. In particular agile practices (SP6) em-
phasize a requirements backlog and the estimation of
resources for iterations to keep them accurate and flex-
ible. At the same time there is a need to document the
test plan, as this is a pre-requisite to be able to effi-
ciently reuse test artifacts, and to align testing with re-
quirements activities (proposed in SP7, [63]) for each
iteration. To elicit requirements user stories were found
useful (see SP1, [29]). Abstraction levels might be of
importance as when prioritizing requirements on one
abstraction level, the prioritization has to be propagated
to the other levels (see SP1,[30]).

A flexible test process is found to be a strength in
the projects, especially in small teams. Most of time
testing is done in a way that more functionality is deliv-
ered (Value: V1) rather than quality. However, some of
the test techniques, such as exploratory and experience
based testing, which totally rely on testers abilities and
skills, are found to add quality to the test process im-
plemented in the automotive domain. This study also
implies that challenges with respect to resource con-
straints, such as difficulty in finding practitioners with
right competence in testing who have expertise and ex-
perience in performing testing specific to automotive
domain, act as a barrier to quality incorporation. The
wastes identified in this context can be long delays or
lack of people to perform testing activities (W3, W4).
Almost 6 out of 8 studied projects lack dedicated testers.

The use of quality standards/measures (SP3) could
help to arrive at a shared view of testing, and hence
communication and knowledge sharing becomes easier,
which is important when the number of people doing
testing is scarce. An agile test approach may not au-
tomatically lead to quality incorporation, but with ag-
ile practices in place this can be possible (see [62] in
SP6). The interview with the Scrum master in this
study clearly indicated that when properly employed ag-
ile methods are a strength, not only provide flexibility
and agility, but also quality.

The challenges related to time and cost constraints
and testing techniques (C02), as well as tools and envi-
ronment (C07) make it obvious that writing good tests
is challenging. Automating tests could save time and
improve value and benefits in testing. As documented
in SP4 a variety of tools and approaches have been pro-
posed to automate different types of tests, hence the op-
tions are manifold and which option to choose also de-
pends on comparative analysis in the given context. To
further improve on the situations teams can try to imple-

22

 53

Figure 11: Draft of Future State VSM

The challenges related to time and cost constraints and testing techniques
(C02), tools and environment (C07) make it obvious that writing good tests
which consume time and effort is more emphasized over defect prevention
activities. Automating tests could save time and improve value and benefits
in testing. Coming to the test levels, unit test and integration are the most
common strengths. Integration test is perceived as strength since it saves

Figure 5: Future State Map

23

ment other testing techniques, such as exploratory test-
ing, which is already used in some projects and can find
defects efficiently. Exploratory testing has been men-
tioned as a strength in Section 4.5.2. Automation of
unit tests and regression tests can facilitate reuse of test
cases and also add value to the end product. In agile
development (SP6) test driven development is aiding in
automation of unit tests as automated tests are written
before new functionality is coded. A variety of tools to
support testing, which are already used in the automo-
tive industry, were identified and suggested based on the
SLR (see SP4 in Section 5.1.3).

From this study it is reasonable to say that testing
is not as emphasized as developing new code, which
was also identified in [10]. Testing is given low pri-
ority, which does not facilitate knowledge sharing and
knowledge transfer in testing as observed from the in-
terviews. In this regard, competence management can
be considered essential to testing with activities, which
can improve skills and knowledge with respect to test-
ing through knowledge transfer and sharing (see [32] in
SP2). In addition, we believe it would be better if the
required testers can be estimated in the beginning of the
project and allocated in a way that they rotate and share
their knowledge with a multitude of teams. This would
also help them improve the competence level for every
iteration and hence improve testing.

Solution proposals for the identified opportunities
were based on the SLR and interviews (considering the
values and benefits mentioned). The validation of the
solution proposals was not possible in the the scope of
this research. However, the suggested proposals were
taken from peer-reviewed literature, which were vali-
dated in industry and also are well in-line with the expe-
rience of using agile in the company investigated in this
study. Furthermore, the solution was presented to the
practitioners who provided feedback. The future state
process presented already incorporates their feedback.

7. EBSE Step 4: Evaluate and Reflect on the EBSE
Process

We presented a staged EBSE process, which incor-
porates systematic literature review and value stream
mapping, and used it for software process improvement
applied to an automotive test process. In particular,
our EBSE process included four steps. First, we per-
formed a case study to investigate the challenges. Sec-
ond, we performed a domain specific systematic litera-
ture. Based on that we formulated solutions proposals
and linked it to our literature study findings (see Table
9). Third, we performed a value stream mapping where

we mapped the challenges of the testing process to the
value stream, which are all the actions needed to bring
the product through the main steps of process to the cus-
tomer (see Figure 4). This showed us the locations in
the process where the waste (as the challenges in the
value stream map are called) were located. We created
the future state map that shows the locations where im-
provements needed to be made (see Figure 5). In the
fourth step we reflect on the EBSE process.

As far as we can tell, our approach of integrating sys-
tematic literature review and value stream mapping in
an EBSE process is novel. Both of the techniques are
widely applied techniques in their respective domains,
i.e. systematic literature reviews [25] are widely applied
and software engineering research domain and value
stream mapping [16] is a technique to do process im-
provement in the lean and automotive domain process
improvement. Combining these two approaches can be
seen as a good way to do industry academia collabora-
tion and to transfer academic knowledge to industry.

However, this approach also has obvious challenges.
As can be seen from this paper the problems experi-
enced by the company where scattered to several dif-
ferent sub-areas of software engineering. Thus, had we
performed a complete systematic literature review for
all these challenges, we would have not been able to
complete this work in reasonable time. Therefore, we
performed a domain specific literature review to find
the solutions that had been applied in the automotive
and embedded domain only. Naturally, this leaves our
knowledge of possible solutions limited, but it would
have not been humanly possible to complete this work
had we not done so.

A possible solution to this problem would be to use
existing literature surveys as input to the solutions pro-
posals and value stream mapping. However, the current
literature surveys in software engineering are topic spe-
cific rather than problem specific, and thus we saw no
possible way of using them. With topic specific litera-
ture review we mean that the current systematic litera-
ture surveys address questions like ”The effect of pair
programming on software engineering?”[6], or ”What
do we know about software productivity?”[5]. We see
that industry would actually benefit more from problem
specific literature surveys as they should address ques-
tions like ”Why testing window gets squeezed and what
can we do about it?” or ”Why do we have poor customer
communications and how can we improve it?”. Maybe
in the future performing the later types of systematic
literature reviews becomes more common if the main
goal of the software engineering research community is
to serve industrial needs.

24

8. Validity Threats

A validity threat is a specific way in which you might
be wrong [64] Research based on empirical studies does
have threats to consider. Potential threats relevant to this
case study are: Construct validity, external validity and
reliability or conclusion validity.

8.1. Construct validity:
Construct validity is concerned with obtaining right

measures for the concept being studied. The following
actions were taken to mitigate this threat [20].

• Selection of people for interviews: There is a risk
to bias the results of the case study through a biased
selection of interviewees. The selection of the rep-
resentatives of the company was done having the
following aspects in mind such as process knowl-
edge, roles, distribution across various hierarchies
and having a sufficient number of people involved
(according to Table 2). Hence, care has been taken
to assure variety (across projects and roles) among
selected people, which aided in reducing the risk
of bias.

• Reactive bias: There is a threat that the presence
of research worker influences the outcome of the
study. There has been a contract signed by the
research worker and the organization to maintain
confidentiality, and each interviewee received a
guarantee for treating their responses anonymously
and only presenting aggregated results.

• Correct data Interview: Construct validity also ad-
dresses misinterpretation of interview questions.
Firstly, a mock-interview was conducted with an
employee with the organization in order to ensure
the correct interpretation of the questions. Fur-
thermore, the context of the study is clearly ex-
plained (through mail/in person) before the inter-
view. Member checking was done for each inter-
view by sending the results to each interviewee to
validate them.

8.2. External Validity:
External Validity is the ability to generalize the find-

ings to a specific context as well as to general process
models [20].

• A specific company: One of the potential threats to
validity is that test process at only one company is
studied for this case study. It has been impossible
to conduct a similar study at another organization

since this particular case study is aimed to improve
the test processes at the respective organization
only. However, this type of in-depth study gave an
insight into automotive development in general and
the findings have been mapped from the company’s
specific processes to general processes. Thus, the
context of the study and the situation at case orga-
nization are clearly described in detail, which sup-
ports the generalization of the problems identified,
allowing others to understand how the results map
to another specific context.

• Team size: The domain studied is automotive and
embedded software engineering. The team size is
influencing the applicability of the solution and the
challenges discussed here, e.g. small teams are a
central practice of working agile [65]. We would
like to get an indication whether our case is typical
with respect to the population of automotive soft-
ware companies. Given that we were not finding
surveys or studies reporting team sizes in that do-
main, we looked into similar domains. Hence, we
extended our search looking at the embedded do-
main in general (including avionics, robotics, etc.).
According to the survey presented in [66] the team
sizes vary a lot, from teams with less than 3 peo-
ple to teams with more than 300 people. The most
common cases are sizes of less than three people (8
out of 31 cases), team sizes of three to 10 people
(11 cases) and sizes of more than 10 to 30 peo-
ple (10 cases). For team sizes in general it was
found that the size was 8.16, standard deviation
20.16 and min-max 1 to 468 (cf. [67]). The authors
do not report median, but based on the numbers
it is certainly less than the mean. This is because
the few very large teams have a big impact on the
mean and on the small team side we cannot have
teams smaller than one person. Also, note the high
standard deviation. Thus, the questions of typical
the team size is similar to questions what is a typ-
ically size of a town or a software module [68].
They all are very likely to be distributed accord-
ing to power law (or Pareto principle), i.e. there
are few large teams/cities/modules and many small
teams/cities/modules. Hence, our team sizes seem
to match those of other (but not all) companies.

The team sizes studied in this case relate to 19
out of 31 cases reported in the survey by Salo and
Abrahamsson [66] (team sizes less than 10), which
indicates that a similar domain works with smaller
teams as well. Regarding the applicability of the
solution (agile test process for automotive) we can

25

only generalize to team sizes studied, and hence
for automotive companies working with smaller
teams, or companies breaking up a very large team
into smaller teams.

8.3. Reliability:

This threat is concerned with repetition or replication,
and in particular that the same result would be found if
re-doing the study in the same setting [20].

Interpretation of data: There is always a risk that the
outcome of the study is affected by the interpretation
of the researcher. To mitigate this threat, the study has
been designed so that the data is collected from differ-
ent sources, i.e., to conduct triangulation to ensure the
correctness of the findings. The interviews have been
recorded and the correct interpretations have been val-
idated through member checking to improve the relia-
bility of data. With respect to the structure of the re-
sults (coding, identification of challenge areas) the re-
searchers participating in the study reviewed the coding
and interpretation to avoid researcher bias. We also pre-
sented the results to the studied company, who agreed
to the structuring and the identified results. Company
representatives in addition to that reviewed the article to
check if the information is correct with respect to their
experience. Prior to reviewing the report, we also cre-
ated a structure of the results as a mind-map. This mind-
map was also used for review/member checking. We
had one of the practitioners do coding as well, to ver-
ify if we would arrive at the same interpretation, which
allowed us to discuss/refine the analysis and hence in-
crease the soundness of interpretation.

9. Discussion

9.1. RQ1: What are the practices in testing that can be
considered as strengths in automotive domain?

The strengths of the testing were first listed in Sec-
tion 4.5.2 and further elaborated in Section 6 where they
were mapped general value producing activities (see Ta-
ble 11). Working in small agile teams was considered as
a benefit as it reduces the need for documentation and
bureaucracy. Small teams were also perceived to lead
to more iterative development, easier continuous inte-
gration and allowing a better alignment of testing with
software requirements and design. Furthermore, team
size and the use of agile methods were also linked by
the interviewees to the improved communication that
made software testing easier. A prior works also de-
scribe the benefits of small and agile teams in relation
to software testing [69]. Additionally, the importance

of good communication has been repeatedly discussed
in the software engineering literature [70, 71].

The shared role of having the same person to write
code and test for that code was considered as a bene-
fit in a small, but the viewed was a drawback in large
teams. In many cases, there were no dedicated testers
either in small or large teams. Traditionally, the soft-
ware testing literature suggests that one should not test
their own programs [72]. However, a survey of unit-
testing practices in industry actually shows that the de-
velopers create the unit test [73] and not by an outside
test-organization as suggested for example in [72]. Fur-
thermore, a case study of three software product com-
panies shows a similar low share of dedicated testers
[74] as we have reported in this paper. Our findigs ex-
tend the findings of the prior work by suggesting that
the need for dedicated testers and the question whether
one should test their own programs might be related to
the context variable of the team size.

However, also large teams experienced several ben-
efits that were not identified in small teams. For ex-
ample large teams had often experienced people avail-
able. This allowed using testers knowledge and skill
and in deciding which test to execute. A recent work of
studying exploratory testing in the industry highlights
the importance of tester’s knowledge [75], as does an-
other study of test design also coming from the industry
[76]. Our finding strengthens the limited prior evidence
of the role of knowledge in industrial software testing.

Exploratory testing was found to be a strength, which
is a good complement to scripted and automated testing.
There is evidence of benefits of ET from industrial con-
text (cf. [75]), such as being able to find the most crit-
ical defects. Also an experimental comparison between
ET and TCT suggests that test cases may not add any
benefits when considering defect detection effectiveness
[77].

Large teams also had benefits from better manage-
ment that was visible in the reuse of testing artefacts,
better organization of test activities, more organized tool
usage, and controlling exploratory testing with session
based management. So although, considerable benefits
were seen stemming from small team and agile way of
working also the large teams had benefits, but they orig-
inated more from traditional management.

9.2. RQ2: What the challanages / bottlenecks identified
in testing automotive systems?

Even though many of the large team benefits came
from better management as pointed out in the previous
section, it was also found that organization and process
issues were problematic in both and large and small

26

teams. Lack of an unified testing process was found
problematic. Similar challenges on general software
process improvement can be found, e.g. people are not
aware of the process or the process is incompatible. We
also found haste in testing that was cause by a squeezed
testing window due to delays in software development.
The time and cost constraints were also closely linked
to the process challenges, e.g. if a customer is not able
to provide validation requirements then testing is ob-
viously difficult to scope and manage. In the gray lit-
erature procured by industry consultants, it is reported
that such squeezing of the testing window can be linked
backed to the V-model of software development [78] .
Furthermore, stakeholders poor attitudes towards test-
ing are something that has repeatedly been mentioned
in presentation and discussion as the authors have inter-
acted with several software testing professionals.

Additionally, the human resources constrain to test-
ing was found in teams without dedicated testing team.
Thus, they would have needed dedicated testing person-
nel or in general, more personnel that someone would
have had time for creating executing tests. The same
problem was found in prior work investigating com-
panies where testing was purposefully organized as a
crosscutting activity rather than relying on specialized
testers [74].

We found two types of knowledge related problems in
software testing. First, problems were related to the do-
main or to the system under test. In other words, the new
testers in the case company needed an training or expe-
rience before they could make useful contributions. The
prerequisite of domain and system knowledge was par-
ticularly linked to exploratory testing that matches re-
cent findings on exploratory testing [75]. We also found
that lack of appreciation to software had led to lack of
knowledge regarding testing fundamentals. The lack of
testing fundamentals has also been recognized by [79]
who indicates that although experienced industry pro-
fessionals know basic testing techniques they may not
be able to apply them correctly. Again, our empirical
findings strengthen our knowledge of the problems of
industrial software testing and it seems that lack of com-
pany specific knowledge as well as lack of fundamental
testing knowledge are challenges also in the automotive
domain.

Problems related to requirements were mentioned in
three development teams. It is well understood that well
specified requirements form the bases for software test-
ing, but addressing this problem in practice has until re-
cently received limited attention in empirical software
engineering research [80, 81]. In our case, we found
problems related to requirement clarity, volatility and

traceability.
The communication challenges were related either

due to lack of customer interaction regarding to the
software requirements or due interaction of previous
project employees who had been transferred to other
projects before testing. It is natural that lack of cus-
tomer communication combined with insufficient re-
quirements leads to problems in software testing. How-
ever, the project staff turnover also affects testing as the
original developers or other personnel will not be avail-
able to answer developers questions towards the end of
the project.

We also found challenges related to testing tech-
niques, tools, and environment. It is surprising that our
company was lacking the tools of test automation, as
one would think that automated test would be well un-
derstood in the embedded domain such as automotive
industry. The lack of tool usage could be traced to the
improper fit between the test automation tools the com-
pany had and the requirements for such tools. Some-
times the company was even forced to develop their own
tools. The problems with the tools are not surprising as
a recent survey indicated that roughly half of the respon-
dents considered that the current testing tools available
in the market offer a good fit for their needs [82].

Also incorporating quality aspects was considered
problematic, e.g. reliability goals were seen as difficult
achieve. Furthermore, missing or too late definition of
quality goals and lack of measures of quality was per-
ceived problematic. It is not surprising that companies
face problems in these areas and only in recent years
have light weight methods, which have been industri-
ally validated been developed to answer such problems
[13, 83].

Problems related to fixing were also found as it was
indicated that finding defects in the source code is dif-
ficult from a complex system. Other reason for difficult
defect detection was a big bang integration and testing
at the end of the project rather than continuous testing
and integration during the release.

A dualistic problem was faced with regarding the
documentation of testing. On the one hand it was
claimed that documentation was insufficient. On the
other hand it was claimed that there is too much docu-
mentation that does not support software testing activi-
ties in the company, which was partially due to the poor
updating of the documents. These documentation re-
lated issues are quite common in software industry and
partly the reason why agile methods have taken over -
when there is no documentation one does not have to
feel disappointed when it is constantly outdated.

27

9.3. RQ3: What improvements for the automotive test-
ing process based on practical experiences were
suggested in the literature?

For 15 out of 26 challenges we found solutions that
address those challenges in literature on automotive
testing. Given that we scoped the literature review on
literature related to automotive and embedded software
engineering, we were not able to identify solutions for
all challenges in the automotive literature. Hence, the
solutions might be available beyond the scope of our re-
view, but they were not applied in the studied domain.
We identified seven solution proposals based on the lit-
erature, which were related to requirements manage-
ment, competence management, quality assurance and
standards, test automation and tools, agile incorpora-
tion, and test management. The overview of the solu-
tions is presented in Section 5.1.3, and the mapping be-
tween challenges and solution references in Table 9.

9.4. RQ4: What is value and waste in the process con-
sidering process activities, strengths and weak-
nesses identified in EBSE Step 1?

We identified wastes and mapped their locations to
the automotive software testing process used in the com-
pany. A consolidated view of the wastes and values
is presented in Table 13. The table reveals that many
wastes are due to requirements issues, highlighting the
importance of requirements in software testing. Wastes
W2, W3, W5, and W6 are related to requirements is-
sues. A consequence of this is the recent focus of re-
search on aligning requirements research with verifica-
tion research. The importance of combining both disci-
plines is, for example, highlighted in [84].

9.5. RQ5: Based on the solutions identified in EBSE
Step 2, how should the process represented by the
current value stream map be improved?

A new process was proposed that incorporates the
improvement proposals from the literature review (see
Figure 5). The process incorporates agile software de-
velopment, reviews, automation of tests, as well as con-
tinuous defect detection and correction. It was visible
that the process of testing is not only concerned by the
improvements suggested, but also the requirements pro-
cess is affected. Overall, we can conclude that it is
important to conduct an impact assessment of the im-
proved process on other parts of the process to align the
improvement efforts. That is, when the process is up-
dated we have to think about the other process, but also
how the change affects the organization, architecture,

and so forth. In this regard, literature talks about align-
ment of the aspects of business, organization, process,
and architecture (BAPO), but to date no solutions for the
systematic alignment of those activities are not available
[85]. Hence, we highlight the importance here, but were
not able to provide a solution for the end-to-end process
at this point.

The practitioners reviewed the process, and agreed on
its design, feasibility and also that it has the potential to
address the challenges raised in the company context.

9.6. RQ6: What was working well in using the EBSE
process with mixed research methods and how can
the process be improved?

In our research we were facing a situation to improve
a process with scattered problem areas (e.g. require-
ments, test automation, communication issues, etc.) and
at the same time having an expectation from our indus-
try collaborator to provide a solution for their problem
in a reasonable time. As a consequence we decided to
scope the literature review focusing on automotive soft-
ware engineering. In a longer term we found that exist-
ing literature reviews would help that are less general,
and more problem driven/focused. We provided two
examples, namely, ”Why testing window gets squeezed
and what can we do about it?” or ”Why do we have
poor customer communications and how can we im-
prove it?”.

Beyond that we also see a need to further extend and
learn about evidence-based approaches building upon
the previous research. There are a variety of strategies
available to conduct the steps of the evidence-based pro-
cess, one way of conducting the evidence-based process
for process improvement has been presented here. In the
future, we would largely benefit from contrasting dif-
ferent strategies and providing evidence of their impact
on the result of e.g. a literature review. This will also
help in making trade-off decisions between effort/time
invested in the research, and the quality of the output,
allowing us to elaborate to companies how our strate-
gies will impact what we propose for them. Example
questions are:

• Is it better to search for articles using search
strings, conduct snowball sampling (looking at
references of identified papers - backward snow-
balling; or looking at papers citing a paper identi-
fied - forward snowballing)?

• Do we have to find all articles, or is there a good
strategy of sampling so that the overall conclusion
of a systematic review does not change?

28

• How can we select studies in an unbiased manner
efficiently to solve our research problem?

• How shall we interpret and aggregate the conclu-
sions of different studies?

In future studies on EBSE we will track time and ef-
fort as this is an important variable, which is seldom re-
ported (neither by us so far), but we recognize the need
for that to make informed decisions of what strategy
to choose. Literature that can be built upon to answer
the above mentioned questions has been presented, e.g.
Zhang et al. [86] evaluate searches in systematic lit-
erature reviews, Jalali et al. [87] compared snowball
sampling with database searches, Ali and Petersen [88]
identified paper selection strategies from a set of iden-
tified articles, and [89] present strategies to aggregate
evidence.

10. Conclusions

We used a staged evidence-based process that in-
corporates case study, systematic literature review, and
value stream analysis to study the challenges and to cre-
ate a map of solution proposals for our case company.
These techniques have been widely applied, but to our
knowledge this is the first time they have been used in
combination for solving a problem in a concrete case
study. We see that combining these approaches is a
good way to do industry academia collaboration as it
allows studying real industrial problems with rigorous
academic methods and produces a result that is mapped
to the companies current software processes. However,
when conducting this we realized a major challenge in
this approach as well. Often the industry problems are
scattered over different areas, e.g. problems affecting
a testing process may stem for example from require-
ments engineering, knowledge management, or test en-
vironments. Performing a literature study over such a
large area would be a task with huge work load. We
solved this by performing a domain specific literature
review where we focused only on the studies of auto-
motive and embedded domain. Another solution would
be to utilize existing literature reviews. However, they
are currently topic specific rather than problem specific,
which severely restricts using them off-the-shelf. Per-
haps in the future, systematic literature reviews should
be made problem specific, i.e. to help the industry,
rather than topic specific, i.e. helping the researchers
and thesis students.

For the automotive test process, we have identified
the strengths and challenges of software testing in auto-
motive software testing. We did this with a case study

of single company by studying 11 different development
teams of three different departments. We found that al-
though automotive has its own set of unique challenges,
e.g. issues related to testing environment, still most of
the challenges identified in this paper can be linked to
problems reported from other domains as discussed in
the previous section. Although, one could think that
automotive domain would often follow strict and rigor-
ous software development approaches, e.g. use formally
specified requirements and highly plan-driven software
development processes, we found that the opposite was
true. Furthermore, it was found that one of the devel-
opment teams that appeared to be one of the least prob-
lematic was benefiting from agile software development
methods. However, it must be admitted that the larger
teams often benefitted from better management than the
small teams did.

In future work there is a need to apply the evidence
based process to other process improvement problems.
Furthermore, we observed the need to characterize the
automotive domain with respect to state of practice (e.g.
regarding team size). Hence, surveys and questionnaires
characterizing the domain are needed.

11. Acknowledgements

We would like to thank all the participants in the
study who provided valuable input in interviews. Fur-
thermore, we thank the anonymous reviewers for valu-
able comments that helped in improving the paper. This
work has been supported by ELLIIT, the Strategic Area
for ICT research, funded by the Swedish Government.

References

[1] B. Kitchenham, T. Dyba, M. Jorgensen, Evidence-based soft-
ware engineering, in: Software Engineering, 2004. ICSE 2004.
Proceedings. 26th International Conference on, IEEE, 2004, pp.
273–281.

[2] K. Petersen, R. Feldt, S. Mujtaba, M. Matsson, Systematic map-
ping studies in software engineering, in: Proceedings of the
12th International Conference on Evaluation and Assessment in
Software Engineering (EASE 2012), British Computer Society,
2008, pp. 71–80.

[3] B. Kitchenham, Procedures for performing systematic reviews,
Tech. Rep. TR/SE-0401, Department of Computer Science,
Keele University, ST5 5BG, UK (2004).

[4] B. A. Kitchenham, E. Mendes, G. H. Travassos, Cross versus
within-company cost estimation studies: A systematic review,
IEEE Trans. Software Eng. 33 (5) (2007) 316–329.

[5] K. Petersen, Measuring and predicting software productivity: A
systematic map and review, Information and Software Technol-
ogy.

[6] J. Hannay, T. Dybå, E. Arisholm, D. Sjøberg, The effectiveness
of pair programming: A meta-analysis, Information and Soft-
ware Technology 51 (7) (2009) 1110–1122.

29

[7] K. Grimm, Software technology in an automotive company -
major challenges, in: Proceedings of the 25th International Con-
ference on Software Engineering, May 3-10, 2003, Portland,
Oregon, USA, 2003, pp. 498–505.

[8] D. Sundmark, K. Petersen, S. Larsson, An exploratory case
study of testing in an automotive electrical system release pro-
cess, in: Industrial Embedded Systems (SIES), 2011 6th IEEE
International Symposium on, Vasteras, Sweden, 15-17 June,
2011, 2011, pp. 166–175.

[9] A. Pretschner, M. Broy, I. H. Krüger, T. Stauner, Software en-
gineering for automotive systems: A roadmap, in: International
Conference on Software Engineering, ISCE 2007, Workshop on
the Future of Software Engineering, FOSE 2007, May 23-25,
2007, Minneapolis, MN, USA, 2007, pp. 55–71.

[10] E. Bringmann, A. Krämer, Model-based testing of automotive
systems, in: First International Conference on Software Testing,
Verification, and Validation, ICST 2008, Lillehammer, Norway,
April 9-11, 2008, 2008, pp. 485–493.

[11] R. Feldt, R. Torkar, E. Ahmad, B. Raza, Challenges with soft-
ware verification and validation activities in the space industry,
in: Third International Conference on Software Testing, Ver-
ification and Validation, ICST 2010, Paris, France, April 7-9,
2010, pp. 225–234.

[12] L. Karlsson, Å. G. Dahlstedt, B. Regnell, J. N. och Dag,
A. Persson, Requirements engineering challenges in market-
driven software development - an interview study with practi-
tioners, Information & Software Technology 49 (6) (2007) 588–
604.

[13] B. Regnell, R. Svensson, T. Olsson, Supporting roadmapping of
quality requirements, Software, IEEE 25 (2) (2008) 42–47.

[14] S. Mujtaba, R. Feldt, K. Petersen, Waste and lead time reduc-
tion in a software product customization process with value
stream maps, in: 21st Australian Software Engineering Confer-
ence (ASWEC 2010), 6-9 April 2010, Auckland, New Zealand,
2010, pp. 139–148.

[15] P. Runeson, M. Höst, Guidelines for conducting and reporting
case study research in software engineering, Empirical Software
Engineering 14 (2) (2009) 131–164.

[16] H. L. McManus, Product development value stream mapping
(pdvsm) manual, Tech. rep., Center for Technology, Policy, and
Industrial Development, Massachusetts Institute of Technology,
77 Massachusetts Avenue, Cambridge, USA (September 2005).

[17] Y. Cai, J. You, Research on value stream analysis and optimiza-
tion methods, in: Wireless Communications, Networking and
Mobile Computing, 2008. WiCOM’08. 4th International Con-
ference on, IEEE, 2008, pp. 1–4.

[18] R. K. Yin, Case study research : design and methods, 4th Edi-
tion, SAGE, London, 2009.

[19] C. Robson, Real world research : a resource for social scien-
tists and practitioner-researchers, 2nd Edition, Blackwell, Ox-
ford, 2002.

[20] K. Petersen, C. Wohlin, The effect of moving from a plan-driven
to an incremental software development approach with agile
practices - an industrial case study, Empirical Software Engi-
neering 15 (6) (2010) 654–693.

[21] M. Khurum, T. Gorschek, M. Wilson, The software value map -
an exhaustive collection of value aspects for the development of
software intensive products, Journal of Software: Evolution and
Process, in print.

[22] J. M. Morgan, J. K. Liker, The Toyota product development sys-
tem : integrating people, process, and technology, Productivity
Press, New York, 2006.

[23] M. Poppendieck, T. Poppendieck, Lean software development:
an agile toolkit, Addison-Wesley, Boston, 2003.

[24] T. Dybå, T. Dingsøyr, Empirical studies of agile software devel-

opment: A systematic review, Information & Software Technol-
ogy 50 (9-10) (2008) 833–859.

[25] B. Kitchenham, S. Charters, Guidelines for performing sys-
tematic literature reviews in software engineering, Tech. Rep.
EBSE-2007-01, Software Engineering Group, School of Com-
puter Science and Mathematics, Keele University (July 2007).

[26] G. Park, D. Ku, S. Lee, W. Won, W. Jung, Test methods of
the autosar application software components, in: ICCAS-SICE,
2009, IEEE, 2009, pp. 2601–2606.

[27] M. Weber, J. Weisbrod, Requirements engineering in automo-
tive development: Experiences and challenges, IEEE Software
20 (1) (2003) 16–24.

[28] G. Mueller, J. Borzuchowski, Extreme embedded a report from
the front line, in: OOPSLA 2002 Practitioners Reports, ACM,
2002, pp. 1–ff.

[29] S. Islam, H. Omasreiter, Systematic use case interviews for
specification of automotive systems, in: 12th Asia-Pacific Soft-
ware Engineering Conference (APSEC 2005), 15-17 December
2005, Taipei, Taiwan, 2005, pp. 17–24.

[30] S. Bühne, G. Halmans, K. Pohl, M. Weber, H. Kleinwechter,
T. Wierczoch, Defining requirements at different levels of ab-
straction, in: 12th IEEE International Conference on Require-
ments Engineering (RE 2004), 2004, pp. 346–347.

[31] X. Liu, X. Yan, C. Mao, X. Che, Z. Wang, Modeling require-
ments of automotive software with an extended east-adl2 archi-
tecture description language, in: Industrial and Information Sys-
tems (IIS), 2010 2nd International Conference on, Vol. 2, IEEE,
2010, pp. 521–524.

[32] A. Puschnig, R. T. Kolagari, Requirements engineering in the
development of innovative automotive embedded software sys-
tems, in: 12th IEEE International Conference on Requirements
Engineering (RE 2004), 6-10 September 2004, Kyoto, Japan,
2004, pp. 328–333.

[33] H. Post, C. Sinz, F. Merz, T. Gorges, T. Kropf, Linking func-
tional requirements and software verification, in: RE 2009, 17th
IEEE International Requirements Engineering Conference, At-
lanta, Georgia, USA, August 31 - September 4, 2009, 2009, pp.
295–302.

[34] B. Hwong, X. Song, Tailoring the process for automotive soft-
ware requirements engineering, in: Automotive Requirements
Engineering Workshop, 2006. AuRE’06. International, IEEE,
2006, pp. 2–2.

[35] P. Braun, M. Broy, F. Houdek, M. Kirchmayr, M. Müller,
B. Penzenstadler, K. Pohl, T. Weyer, Guiding requirements en-
gineering for software-intensive embedded systems in the auto-
motive industry, Computer Science-Research and Development
(2010) 1–23.

[36] N. Heumesser, F. Houdek, Experiences in managing an auto-
motive requirements engineering process, in: 12th IEEE Inter-
national Conference on Requirements Engineering (RE 2004),
6-10 September 2004, Kyoto, Japan, 2004, pp. 322–327.

[37] S. Lee, T. Park, K. Chung, K. Choi, K. Kim, K. Moon,
Requirement-based testing of an automotive ecu considering
the behavior of the vehicle, International Journal of Automotive
Technology 12 (1) (2011) 75–82.

[38] F. Merz, C. Sinz, H. Post, T. Gorges, T. Kropf, Abstract test-
ing: Connecting source code verification with requirements,
in: Quality of Information and Communications Technology,
7th International Conference on the Quality of Information and
Communications Technology, QUATIC 2010, Porto, Portugal,
29 September - 2 October, 2010, Proceedings, 2010, pp. 89–96.

[39] M. Conrad, I. Fey, S. Sadeghipour, Systematic model-based
testing of embedded automotive software, Electr. Notes Theor.
Comput. Sci. 111 (2005) 13–26.

[40] M. Lochau, U. Goltz, Feature interaction aware test case gener-

30

ation for embedded control systems, Electr. Notes Theor. Com-
put. Sci. 264 (3) (2010) 37–52.

[41] O. Bühler, J. Wegener, Evolutionary functional testing, Comput-
ers & OR 35 (10) (2008) 3144–3160.

[42] C. Pfaller, A. Fleischmann, J. Hartmann, M. Rappl, S. Rittmann,
D. Wild, On the integration of design and test: A model-based
approach for embedded systems, in: Proceedings of the 2006
International Workshop on Automation of Software Test, AST
2006, Shanghai, China, May 23-23, 2006, 2006, pp. 15–21.

[43] P. M. Kruse, J. Wegener, S. Wappler, A highly configurable
test system for evolutionary black-box testing of embedded sys-
tems, in: Genetic and Evolutionary Computation Conference,
GECCO 2009, Proceedings, Montreal, Québec, Canada, July 8-
12, 2009, 2009, pp. 1545–1552.

[44] J. Wegener, Evolutionary testing techniques, in: Stochastic Al-
gorithms: Foundations and Applications, Third International
Symposium, SAGA 2005, Moscow, Russia, October 20-22,
2005, Proceedings, 2005, pp. 82–94.

[45] R. Awedikian, B. Yannou, Design of a validation test process
of an automotive software, International Journal on Interactive
Design and Manufacturing 4 (4) (2010) 1–10.

[46] A. Brillout, N. He, M. Mazzucchi, D. Kroening, M. Purandare,
P. Rümmer, G. Weissenbacher, Mutation-based test case gener-
ation for simulink models, in: Formal Methods for Components
and Objects - 8th International Symposium, FMCO 2009, Eind-
hoven, The Netherlands, November 4-6, 2009. Revised Selected
Papers, 2009, pp. 208–227.

[47] C. Schwarzl, B. Peischl, Test sequence generation from commu-
nicating uml state charts: An industrial application of symbolic
transition systems, in: QSIC, 2010, pp. 122–131.

[48] K. Lakhotia, M. Harman, H. Gross, Austin: A tool for search
based software testing for the c language and its evaluation on
deployed automotive systems, in: Search Based Software En-
gineering (SSBSE), 2010 Second International Symposium on,
IEEE, 2010, pp. 101–110.

[49] V. Chimisliu, C. Schwarzl, B. Peischl, From uml statecharts to
lotos: A semantics preserving model transformation, in: Pro-
ceedings of the Ninth International Conference on Quality Soft-
ware, QSIC 2009, Jeju, Korea, August 24-25, 2009, 2009, pp.
173–178.

[50] P. Runeson, C. Andersson, M. Höst, Test processes in software
product evolution - a qualitative survey on the state of practice,
Journal of Software Maintenance 15 (1) (2003) 41–59.

[51] O. Niggemann, A. Geburzi, J. Stroop, Benefits of system sim-
ulation for automotive applications, in: Model-Based Engineer-
ing of Embedded Real-Time Systems - International Dagstuhl
Workshop, Dagstuhl Castle, Germany, November 4-9, 2007. Re-
vised Selected Papers, 2007, pp. 329–336.

[52] B. Schätz, Certification of embedded software - impact of ISO
DIS 26262 in the automotive domain, in: Leveraging Applica-
tions of Formal Methods, Verification, and Validation - 4th Inter-
national Symposium on Leveraging Applications, ISoLA 2010,
Heraklion, Crete, Greece, October 18-21, 2010, Proceedings,
Part I, 2010, p. 3.

[53] J. Seo, B. Choi, S. Yang, Lightweight embedded software per-
formance analysis method by kernel hack and its industrial field
study, Journal of Systems and Software 85 (1) (2012) 28–42.

[54] J.-L. Boulanger, V. Q. Dao, Requirements engineering in a
model-based methodology for embedded automotive software,
in: 2008 IEEE International Conference on Research, Innova-
tion and Vision for the Future in Computing & Communication
Technologies, RIVF 2008, Ho Chi Minh City, Vietnam, 13-17
July 2008, 2008, pp. 263–268.

[55] J. Cha, D. Lim, C. Lim, Process-based approach for develop-
ing automotive embeded software supporting tool, in: Software

Engineering Advances, 2009. ICSEA’09. Fourth International
Conference on, IEEE, 2009, pp. 353–358.

[56] T. Farkas, D. Grund, Rule checking within the model-based de-
velopment of safety-critical systems and embedded automotive
software, in: International Symposium on Autonomous Decen-
tralized Systems (ISADS 2007), 21-23 March 2007, Sedona,
AZ, USA, 2007, pp. 287–294.

[57] F. F. Lindlar, A. Windisch, J. Wegener, Integrating model-based
testing with evolutionary functional testing, in: Third Interna-
tional Conference on Software Testing, Verification and Vali-
dation, ICST 2010, Paris, France, April 7-9, 2010, Workshops
Proceedings, 2010, pp. 163–172.

[58] E. M. Clarke, D. Kroening, F. Lerda, A tool for checking ansi-c
programs, in: Tools and Algorithms for the Construction and
Analysis of Systems, 10th International Conference, TACAS
2004, Barcelona, Spain, March 29 - April 2, 2004, Proceedings,
2004, pp. 168–176.

[59] Y. Papadopoulos, C. Grante, Evolving car designs using model-
based automated safety analysis and optimisation techniques,
Journal of Systems and Software 76 (1) (2005) 77–89.

[60] Y. Papadopoulos, M. Maruhn, Model-based synthesis of fault
trees from matlab-simulink models, in: 2001 International Con-
ference on Dependable Systems and Networks (DSN 2001) (for-
merly: FTCS), 1-4 July 2001, Göteborg, Sweden, Proceedings,
2001, pp. 77–82.

[61] C. Ferdinand, R. Heckmann, H. Wolff, C. Renz, O. Parshin,
R. Wilhelm, Towards model-driven development of hard real-
time systems, Model-Driven Development of Reliable Automo-
tive Services (2008) 145–160.

[62] P. Manhart, K. Schneider, Breaking the ice for agile develop-
ment of embedded software: An industry experience report, in:
26th International Conference on Software Engineering (ICSE
2004), 23-28 May 2004, Edinburgh, United Kingdom, 2004, pp.
378–386.

[63] L. Gao, Research on implementation of software test manage-
ment, in: Computer Research and Development (ICCRD), 2011
3rd International Conference on, Vol. 3, IEEE, 2011, pp. 234–
237.

[64] J. Li, N. B. Moe, T. Dybå, Transition from a plan-driven process
to scrum: a longitudinal case study on software quality, in: Pro-
ceedings of the International Symposium on Empirical Software
Engineering and Measurement, ESEM 2010, 16-17 September
2010, Bolzano/Bozen, Italy, 2010, pp. 1–10.

[65] K. Petersen, C. Wohlin, A comparison of issues and advantages
in agile and incremental development between state of the art
and an industrial case, Journal of Systems and Software 82 (9)
(2009) 1479–1490.

[66] O. Salo, P. Abrahamsson, Agile methods in european embedded
software development organisations: a survey on the actual use
and usefulness of extreme programming and scrum, IET Soft-
ware 2 (1) (2008) 58–64.

[67] P. C. Pendharkar, J. A. Rodger, The relationship between soft-
ware development team size and software development cost,
Commun. ACM 52 (1) (2009) 141–144.

[68] P. Louridas, D. Spinellis, V. Vlachos, Power laws in software,
ACM Trans. Softw. Eng. Methodol. 18 (1).

[69] V. Kettunen, J. Kasurinen, O. Taipale, K. Smolander, A study
on agility and testing processes in software organizations, in:
Proceedings of the 19th international symposium on Software
testing and analysis, ISSTA ’10, ACM, New York, NY, USA,
2010, pp. 231–240. doi:10.1145/1831708.1831737.
URL http://doi.acm.org/10.1145/1831708.1831737

[70] H. Saiedian, R. Dale, Requirements engineering: making the
connection between the software developer and customer, Infor-
mation and Software Technology 42 (6) (2000) 419–428.

31

[71] L. Layman, L. Williams, D. Damian, H. Bures, Essential com-
munication practices for extreme programming in a global soft-
ware development team, Information and software technology
48 (9) (2006) 781–794.

[72] I. Burnstein, Practical software testing: a process-oriented ap-
proach, Springer-Verlag New York Inc, 2003.

[73] P. Runeson, A survey of unit testing practices, Software, IEEE
23 (4) (2006) 22–29.

[74] M. V. Mäntylä, J. Itkonen, J. Iivonen, Who tested my software?
testing as an organizationally cross-cutting activity, Software
Quality Journal 20 (2012) 145–172. doi:10.1007/s11219-011-
9157-4.

[75] J. Itkonen, M. Mäntylä, C. Lassenius, The role of the tester’s
knowledge in exploratory software testing, IEEE Transactions
on Software Engineering (accepted).

[76] A. Beer, R. Ramler, The role of experience in software testing
practice, in: Software Engineering and Advanced Applications,
2008. SEAA’08. 34th Euromicro Conference, IEEE, 2008, pp.
258–265.

[77] J. Itkonen, M. Mäntylä, C. Lassenius, Defect detection effi-
ciency: Test case based vs. exploratory testing, in: Proceedings
of the First International Symposium on Empirical Software En-
gineering and Measurement (ESEM 2007), 2007, pp. 61–70.

[78] J. Christie, The seductive and dangerous v-model,
http://www.clarotesting.com/page11.htm/ (2008).

[79] S. Eldh, H. Hansson, S. Punnekkat, Analysis of mistakes as a
method to improve test case design, in: Software Testing, Veri-
fication and Validation (ICST), 2011 IEEE Fourth International
Conference on, IEEE, 2011, pp. 70–79.

[80] E. Uusitalo, M. Komssi, M. Kauppinen, A. Davis, Linking re-
quirements and testing in practice, in: International Require-
ments Engineering, 2008. RE’08. 16th IEEE, IEEE, 2008, pp.
265–270.

[81] G. Sabaliauskaite, A. Loconsole, E. Engström, M. Unterkalm-
steiner, B. Regnell, P. Runeson, T. Gorschek, R. Feldt, Chal-
lenges in aligning requirements engineering and verification in
a large-scale industrial context, in: Requirements Engineering:
Foundation for Software Quality, 16th International Working
Conference, REFSQ 2010, Essen, Germany, June 30 - July 2,
2010. Proceedings, 2010, pp. 128–142.

[82] D. Rafi, R. D. K. Katam, K. Petersen, M. Mäntylä, Benefits and
limitations of automated software testing: Systematic literature
review and practitioner survey, in: 7th Workshop on automated
software test, 2012. AST’08. 7th IEEE (accepted), IEEE, 2012,
pp. 36–42.

[83] J. Vanhanen, M. V. Mäntylä, J. Itkonen, Lightweight elicita-
tion and analysis of software product quality goals: A mul-
tiple industrial case study, in: Software Product Management
(IWSPM), 2009 Third International Workshop on, Ieee, 2009,
pp. 42–52.

[84] Z. Alizadeh, A. H. Ebrahimi, R. Feldt, Alignment of require-
ments specification and testing: A systematic mapping study, in:
Proceedings of the ICST Workshop on Requirements and Val-
idation, Verification and Testing (REVVERT’11), IEEE, 2011,
pp. 476–485.

[85] S. Betz, C. Wohlin, Alignment of business, architecture, pro-
cess, and organisation in a software development context, in:
Proceedings of the International Conference on Empirical Soft-
ware Engineering and Measurement (ESEM 2012), Lund, Swe-
den, September 19-20, 2012, pp. 239–242.

[86] H. Zhang, M. A. Babar, P. Tell, Identifying relevant studies
in software engineering, Information & Software Technology
53 (6) (2011) 625–637.

[87] S. Jalali, C. Wohlin, Systematic literature studies: Database
searches vs. backward snowballing, in: Proceedings of the In-

ternational Conference on Empirical Software Engineering and
Measurement (ESEM 2012), Lund, Sweden, September 19-20,
2012, pp. 29–38.

[88] K. Petersen, N. B. Ali, Identifying strategies for study selec-
tion in systematic reviews and maps, in: Proceedings of the In-
ternational Conference on Empirical Software Engineering and
Measurement (ESEM 2012), Banff, Canada, September 19-20,
2011, pp. 351–354.

[89] D. Cruzes, T. Dybå, Research synthesis in software engineer-
ing: A tertiary study, Information & Software Technology 53 (5)
(2011) 440–455.

32

Abhinaya Kasoju is an application engineer with
Systemite AB. She received her Master of Science in
Software Engineering (M.Sc.) from Bleinge Institute of
Technology in 2011. Her interests are databases (Ora-
cle), value stream mapping, and empirical software en-
gineering.

Kai Petersen is an assistant professor in software en-
gineering at Blekinge Institute of Technology, Sweden.
He received his Ph.D. and Master of Science in Soft-
ware Engineering (M.Sc.) from Blekinge Institute of
Technology. His research interests include empirical
software engineering, software process improvement,
lean and agile development, software testing and soft-
ware measurement. He has over 30 publications in peer-
reviewed journals and conferences. He is the industry
co-chair at REFSQ 2013, the 19th International Work-
ing Conference on Requirements Engineering: Founda-
tions for Software Quality.

Mika V. Mäntylä is a post-doc researcher at Aalto
University, Finland. He received a D. Sc. degree in
2009 in software engineering from Helsinki Univer-
sity of Technology, Finland. In 2010 he was a visit-
ing scholar at Simula Re- search Laboratory, Oslo, Nor-
way. In 2011-2012 he was a post-doctoral researcher
at Lund Uni- versity, Sweden. His previous studies
have appeared in journals such as IEEE Transaction on
Software Engineering, Empirical Software Engineering
Journal and Information and Software Technology. His
research interests include empirical software engineer-
ing, software testing, human cognition, defect databases
and software evolution..

33

