
On Rapid Releases and Software Testing

Mika V. Mäntylä1, Foutse Khomh2, Bram Adams2, Emelie Engström3, Kai Petersen4
1 Dep. of Computer Science and Engineering, Aalto University, Finland

2 SWAT–MCIS, École Polytechnique de Montréal, Québec, Canada
3 Dep. of Computer Science, Lund University, Sweden

4 School of Computing, Blekinge Institute of Technology, Sweden
mika.mantyla@aalto.fi, {foutse.khomh, bram.adams}@polymtl.ca, emelie.engström@cs.lth.se, kai.petersen@bth.se

Abstract—Large open and closed source organizations like
Google, Facebook and Mozilla are migrating their products
towards rapid releases. While this allows faster time-to-market
and user feedback, it also implies less time for testing and
bug fixing. Since initial research results indeed show that rapid
releases fix proportionally less reported bugs than traditional
releases, this paper investigates the changes in software testing
effort after moving to rapid releases. We analyze the results
of 312,502 execution runs of the 1,547 mostly manual system-
level test cases of Mozilla Firefox from 2006 to 2012 (5 major
traditional and 9 major rapid releases), and triangulated our
findings with a Mozilla QA engineer. In rapid releases, testing has
a narrower scope that enables deeper investigation of the features
and regressions with the highest risk, while traditional releases
run the whole test suite. Furthermore, rapid releases make it
more difficult to build a large testing community, forcing Mozilla
to increase contractor resources in order to sustain testing for
rapid releases.

Keywords-Software testing; release model; builds; bugs; open-
source; agile releases; Mozilla.

I. INTRODUCTION

Due to heavy competition, web-based organizations, both
at the server side (e.g., Facebook and Google) and the client
side (e.g., Google Chrome and Mozilla Firefox), have been
forced to change their development processes towards rapid
release models. Instead of working for months on a major new
release, companies limit their cycle time (i.e., time between
two subsequent releases) to a couple of weeks, days or (in
some cases) hours to bring their latest features to customers
faster [1]. For example, starting from version 5.0, Firefox has
been releasing a new major version every 6 weeks [2].

Although rapid release cycles provide faster user feedback
and are easier to plan (due to the smaller scope) [3], they also
have important repercussions on software quality. For one, en-
terprises currently lack time to stabilize their platforms [4] and
customer support costs are increasing because of the frequent
upgrades [5]. More worrying are the conflicting findings that
rapid release models (RRs) are either slower [6] or faster [7]
at fixing bugs than traditional release models (TRs). Even in
the latter case, the study still found that proportionally less
bugs were being fixed, and that the bugs that were not fixed
led to crashes earlier on during execution.

Since testing plays a major role in quality assurance, this
paper investigates how RR models impact software testing

effort. For example, Porter et al. noted that, since there is
less time available, testers have less time to test all possible
configurations of a released product, which can have a negative
effect on software quality [8]. On the other hand, other studies
have reported the positive effects of RRs on software testing
and quality in the context of agile development, where testing
has become more focused [9], [10]. To our knowledge, the
impact of RRs on software testing measures, beyond defect
data, have not yet been investigated.

Hence, to analyze the impact of RR models on the testing
process, we analyze the system testing process in the Mozilla
Firefox project, a popular web browser, and the changes it
went through while moving from a TR model of one release
a year to an RR model where new releases come every 6
weeks. We analyzed the system-level test case execution data
from releases 2.0 to 13.0 (06/2006–06/2012), which includes
five major TR versions (2.0, 3.0, 3.5, 3.6, and 4.0) with 147
smaller releases (20 alphas, 29 betas, 12 release candidates,
and 86 minor), and nine RR versions (5.0 until 13.0) with 89
smaller releases (17 alphas, 56 betas, and 16 minor).

Based on this data and feedback from a Mozilla QA
engineer, we studied the following four research questions:

RQ1) Do RRs affect the amount of testing performed?
RRs perform more test executions per day, but these
tests focus on a smaller subset of the test case corpus.

RQ2) Do RRs affect the number of testers working on a
project?

RRs have less testers, but they have a higher workload.
RQ3) Do RRs affect the frequency of testing activity?

RRs test fewer, but larger builds.
RQ4) Do RRs affect the number of configurations being

tested?
RRs test fewer platforms in total, but test each sup-
ported platform more thoroughly.

A better understanding of the impact of the release cycle on
testing effort will help software organizations to plan ahead
and to safely migrate to an RR model, while enabling them
to safeguard the quality of their software product.

The rest of the paper is organized as follows. Section II pro-
vides some background on Mozilla Firefox, while Section III
describes the design of our study. Section IV presents the
results of the study, followed by a discussion of these results

mmantyla
Typewriter

15.0 NIGHTLY 16.0 NIGHTLY 17.0 NIGHTLY 18.0 NIGHTLY

15.0 AURORA 16.0 AURORA 17.0 AURORA

15.0 BETA 16.0 BETA

15.0 MAIN

New Feature Development

6 Weeks 6 Weeks 6 Weeks 6 Weeks

15.0a1

15.0a2

15.0b1

15.0, 15.0.1

16.0a1 17.0a1 18.0a1

16.0a2 17.0a2

16.0b1

Figure 1: Rapid release process of Mozilla Firefox.

(Section V). Section VI relates our study with previous work.
Finally, Section VII concludes the paper and outlines some
avenues for future work.

II. BACKGROUND

A. Firefox Development Process

Firefox is an open source web browser developed by the
Mozilla Corporation. As of April 2013, Firefox has approx-
imately 22% of web browser usage share worldwide [11],
with almost half a billion users. Firefox 1.0 was released
in November 2004 and the latest version, Firefox 21, was
released on May 7, 2013, containing more than 8 MLOC
(especially C++, C and JavaScript).

Firefox followed a traditional release model until version
4.0 (March 2011), after which it moved to a rapid release
cycle from version 5.0 on, in order to compete with Google
Chrome’s rapid release model [4], [12], which was eroding
Firefox’s user base. Every TR version of Firefox was followed
by a long series of minor versions, each containing bug fixes or
minor updates over the previous version. However, in the RR
model, every Firefox version now flows through four release
channels (Figure 1): nightly, aurora (alpha), beta and main.

In RRs, the versions basically move from one channel to
the next every 6 weeks [13]. The nightly channel integrates
new features from the developers’ source code repositories as
soon as the features are ready. The aurora channel inherits new
features from nightly at regular intervals (i.e., every 6 weeks).
The features that need more work are disabled and left for
the next import cycle into aurora. The beta channel receives
only new alpha features from aurora that are scheduled by
management for the next Firefox release. Finally, mature beta
features make it into main, i.e., the next official release.

B. Firefox Quality Assurance

Firefox heavily relies on contributors and end users to
participate in the quality assurance (QA) effort. The estimated
number of contributors and end users on the channels are
respectively 100,000 for nightly, 1 million for alpha (aurora),
10 million for beta and 100+ millions for a major Firefox ver-
sion [14]. Except for the automated Mozmill infrastructure for

in-house regression testing, the testing done by the community
is mostly manual.

To co-ordinate this community-based testing, Firefox has
a system-level regression testing infrastructure called Lit-
mus [15]. As explained by a Mozilla QA engineer, “We use
it primarily to test past regressions . . . and as an entry point
for community involvement in release testing”. It consists of
a database with well-documented, functional test cases and
stored execution results that are used to make sure that all
functionality still works. Each test case corresponds to a user-
visible feature, for example “Standard installation”, “Back and
Forward buttons”, and “Open a new window”. The test case
for “Back and Forward buttons” states: “Steps to perform: 1)
Visit two successive sites. 2) Click Back button twice. 3) Click
Forward button twice. Expected Results: page loading should
move back and forward through history as expected”.

The interface of Litmus is a web-based GUI that allows con-
tributors to follow the status of currently running or archived
test executions, and to submit the results of manual tests.
Furthermore, users can consult the error messages generated
during failing test runs. Litmus is used mainly for beta, release
candidate, main, and minor versions, but much less frequently
for alpha releases (only 27% of them used Litmus). The pass
percentage for test executions in Litmus is around 98%.

III. STUDY DESIGN

In order to address the four research questions presented in
the introduction, we mined the test execution data stored in
Firefox’ Litmus repository, then performed various analyses
on this data. The remainder of this section elaborates on our
data collection and analysis.

A. Data Collection

We performed web crawling of the Litmus system to get
the test cases and the execution data of the test cases for
Firefox versions 2.0 to 13.0. Overall, we identified 1,547
unique test cases (roughly 10% of them are automated) for a
total of 312,502 test case executions across 6 years of testing
(06/2006–06/2012), performed by 6,058 individuals on 2,009
software builds, 22 operating system versions and 78 locales.
During this time frame, the Firefox project made 249 releases,
of which 213 releases (142 TR and 71 RR) reported their
testing activity into the Litmus system. We only consider data
until June 2012, since immediately afterwards Litmus was
replaced by the Moztrap system in order to enable adding
new test cases in a collaborative way and scaling up in terms
of usability and functionality [16]. The transition to Moztrap
happened instantaneously from one version to the next, which
means that our data is not biased by this transition.

In Litmus, all test cases provide the following informa-
tion: major version number of the release (2.0–13.0), unique
identifier, summary, regression bug identifier (if any), the
test steps to perform, the expected results, the test group
and subgroup the test case belongs to (if any), and links to
the corresponding test execution results. Each test execution
contains the following information: status (“pass”/“fail”/“test

Traditional Rapid

0
20

40
60

80

D
ay

s
si

nc
e

pr
ev

io
us

 re
le

as
e

Figure 2: Distribution of release cycle length (in days) for TRs
and RRs.

unclear or broken”), test case identifier, time-stamp, platform
(e.g., Windows), operating system (e.g., Windows XP), build
identifier, locale, user agent, referenced bugs (if any), com-
ments (if any) and the test logs (if any). However, there was no
explicit information of the exact release (alpha, beta, release-
candidate, major or minor) each test execution was related
to. Hence, we mapped the test execution time-stamps to the
release dates, which were available online [17].

For each of the analyzed versions, we also extracted the
code revision history from the Mercurial repository [18] and
parsed it to extract information about the frequency and
number of commits. Finally, to triangulate our findings we
performed an email interview with a Mozilla QA engineer
who has been working on QA for the Firefox project for
the past five years. Although the interview results are based
on the views of one Mozilla employee (and hence might be
incomplete or contain small inaccuracies), they were consistent
with our analysis results and provide insights into some of our
empirical findings.

B. Data Analysis

We analyze the collected data set using a set of metrics
defined specifically for each question. Details of the metrics
are provided later on in the sections discussing the research
questions. We use the R statistical analysis tool to perform all
the calculations. The Shapiro-Wilk test showed that our data
is not normally distributed. Therefore, we use non-parametric
statistical analysis throughout the paper. To compare between
two groups, we use the Wilcoxon rank-sum test (WRST) and
to study effect sizes we use Cliff’s delta (provided by the R
package orrdom [19]), which varies between -1 and 1.

As the length of software release projects can vary greatly,
we normalized all metrics for project duration (measured in
days) to make statistical comparison between TR and RR
releases possible. In the RR model, the median time between
releases is 7 days while in the TR model it is 26 days, if we
consider all types of releases (i.e., alpha, beta, release candi-
date, major and minor) together. This difference is statistically

Table I: Comparison between metrics for the TR and RR.
Effect size uses Cliff’s Delta.

TR RR WRST Effect
(median) (median) (p-value) size

Release length 26.00 7.00 0.000 -0.586
Test exec. per day (RQ1) 50.86 127.3 0.000 0.359
Testcases per day (RQ1) 10.65 14.00 0.855 0.015

Testers per day (RQ2) 1.667 1.000 0.000 -0.297
Builds per day (RQ3) 0.427 0.250 0.004 -0.242

Locales per day (RQ4) 0.302 0.143 0.000 -0.356
OSs per day (RQ4) 0.270 1.286 0.000 0.695

Traditional Rapid

0
20

0
40

0
60

0
80

0

Te
st

 e
xe

cu
tio

ns
 p

er
 d

ay
Figure 3: Distribution of number of test executions per day
for TRs and RRs.

significant with a large effect size, see Table I. Note that this
normalization does not apply to Figure 4, Figure 5, Figure 7
and Figure 9, which show cumulative growth.

IV. CASE STUDY RESULTS

This section discusses for each research question, its moti-
vation, the approach we used, our findings and the feedback
by the interviewed QA engineer.

RQ1) Do RRs affect the amount of testing performed?

Motivation: In our previous work [7], we found that RR
models fix bugs faster than TR models, but fix proportionally
less bugs. Since the short release cycle time of RR models
seems to allow less time for developers to test the system, QA
teams could decide to reduce the amount of testing for their
RR versions in order to cope with their tight schedule. In this
research question, we verify this by investigating the amount
of testing effort performed for each TR and RR version of
Firefox.

Null Hypotheses: We test the following two null hypotheses
to compare the amount and the functional coverage of tests
executed for TR and RR models:
H1

01: There is no significant difference between the number
of tests executed per day for RR releases and TR releases.
H1

02: There is no significant difference between the number
of unique test cases executed per day for RR releases and TR
releases.

(a) (b)

Figure 4: Cumulative number of test executions over time (not normalized) for (a) TR and (b) RR releases.

(a) (b)

Figure 5: Cumulative number of unique test cases executed over time (not normalized) for (a) TR and (b) RR releases.

We use the Wilcoxon rank-sum test [20] to test H1
01 and H1

02

using a confidence level of 1% (i.e., p-value < 0.01).
Metrics: For each alpha, beta, release-candidate, major and

minor version of Firefox in our data set, we compute the
following two metrics that capture the amount of tests executed
and the functional coverage of the tests. Functional coverage
is the degree to which the different features in a software
version are tested by a test suite. The more unique (i.e.,
functionally different) test cases are being executed, the higher
the functional coverage.

• #Test exec. per day: the number of tests executed per day.
• #Test cases per day: the number of unique test cases

executed per day.
Findings: The RR model executes almost twice as many

tests per day (median) compared to TR models. Figure 3
and Table I show a statistically significant difference between
the two distributions, with a medium effect size of 0.359
(Cliff’s delta), i.e., RR models run more tests in a shorter time
frame. Therefore, we reject H1

01. This difference is also clear
from Figure 4, which shows the cumulative (absolute) number
of test executions for each major TR and RR releases over
time. Since alpha releases typically are not tested in Litmus,
the data for each RR starts from the first beta release (this
holds for all cumulative plots in this paper). The number of
test executions obtains a much higher absolute value (between

35,000 and 50,000, except for the 4.x release series) than the
RR releases (usually smaller than 9,000, except for release
10.0), but accumulates over a much longer time.

Firefox 10.0 is an exception for RRs, since it is the first
“Extended Support Release” (ESR) [21], i.e., it is meant to
last for 54 weeks instead of 6 (lifetime of 9 “normal” RRs).
An ESR helps corporate clients [22] to certify and standardize
on one particular browser version for a longer period, while
still receiving security updates (backported from more recent
non-ESR releases). We can see that testing for 10.0 evolved
linearly until its release, after which testing is resumed only
shortly before the release of a new version. In between, no
testing occurs for 10.0.

Especially for the TR releases, testing continues even
though development on a newer version has already started.
This is due to the many minor releases that follow a major
TR release. For RR releases, testing of the next release starts
soon after the testing for the previous release stops. Release
10.0 again is an exception, since testing needs to continue
for 9 releases. All releases (TR and RR) see accelerated test
execution right before a release, which is visible as an almost
vertical trend in Figure 4.

Similar functional test coverage per day, but lower
coverage overall. Data exploration revealed that the test
cases executed for each major release vary based on the

features implemented in the release. The median similarity
of functional test coverage between subsequent major releases
was 56% for both TRs and RRs. We counted the number of
unique test cases executed for a particular release, then divided
this by the length of the release cycle to compare the number of
unique test cases per day executed by each release. We found
that, on average, the number of unique test cases executed
per day is slightly higher in RR. However, this difference is
not statistically significant and the effect size is almost non-
existent (0.015). Therefore, we cannot reject H1

02. This means
that, although a particular test case gets more executions in
absolute numbers for TR releases, it will be executed more
frequently in a shorter time frame for RR releases.

However, since there is less time to run tests, RR testers
limit the scope (and hence coverage) of their tests to only
the most important ones. Figure 5 shows for each TR and
RR release the evolution over time of the cumulative number
of unique test cases being executed. The number of different
tests executed increases monotonically across the major TR
releases, i.e., Firefox 4.x was tested on more cases (almost
1,100) than Firefox 3.5.x and earlier releases. However, the
RR releases seem to be tested on progressively less different
test cases, going from 270 unique test cases for Firefox 5.0
down to 100 for Firefox 12. Most RR releases reach 90%
of their maximum number of unique test cases within a week,
which indicates that the reduced scope of testing is determined
very early during a new release cycle.

Feedback QA engineer The QA engineer could not confirm
the difference in the number of test executions, but strongly
supported our finding that testing is more focused: “To survive
under the time contraints of a rapid release we’ve had to
cut the fat and focus on those test areas which are prone to
failure, less on ensuring legacy support”. In particular, the
focused test set consists of “a fixed set of tests for areas
prone to regression (Flash plugin testing for example)” and “a
dynamically changing set of tests to cover recent regressions
we chemspilled for and high risk features”. A “chemspill” is a
negative event like a vulnerability that requires a quick update.
Overall, the QA engineer believed that the narrow scope of
RR tests is highly beneficial: “The greatest strength is that
the scope of what needs to be tested is narrow so we can
focus all of our energy on deep diving into a few areas”.�
�

�
�

The amount of test executions per day is significantly
larger in RR, but these tests focus on a smaller subset
of the test case corpus instead of on the full corpus.

RQ2) Do RRs affect the number of testers working on a
project?

Motivation: With short release cycles, development teams
have less time to implement new features and test the features
before they are released to users. In RQ1, we observed on
the one hand a reduction in functional coverage, while on
the other hand the remaining test cases are executed more
frequently in the shorter time between two releases. Given
these observations, does the same testing team as before handle

Traditional Rapid

0
2

4
6

8
10

Te
st

er
s

pe
r d

ay

Figure 6: Distribution of number of testers per day for TRs
and RRs.

testing, with each tester having to perform less work, or did
the test team shrink, either because there is less work to do,
or because the rapid succession of releases makes it harder to
retain testers?

Null Hypotheses: We test the following null hypothesis to
compare the number of testers for TR and RR releases:
H2

01: There is no significant difference between the number
of testers for RR releases and TR releases.
Similar to RQ1, we use the Wilcoxon rank-sum test [20] to
test H2

01 using a 1% confidence level.
Metrics: For each alpha, beta, release-candidate, major and

minor version of Firefox in our data set, we compute the
following metric:

• #Testers per day: the number of testers per day.
Findings: Fewer testers conduct testing for RR releases.

Figure 6 shows the distribution of the number of individuals
per day testing the traditional and rapid releases. We can
see that TR releases have a median of 1.67 testers per day
compared to 1.0 testers per day for RR releases. The Wilcoxon
rank-sum test yields a statistically significant result, i.e., we
can reject H2

01. This result in conjunction with the results
of the previous section means that the average workload per
individual is much higher under an RR model, since more tests
need to be executed per day by less people (i.e., median of 35
vs. 120 test executions per tester per day).

Figure 7a and Figure 7b by themselves do not show a
clear trend, with some releases having significantly more
testers than others. However, the contrast between TR and RR
releases again is very stark when measured from the Litmus
system. The most heavily tested RR releases (ESR release
10.0) reached 34 testers by July 2012, which is a factor 56
lower than the 1,900 different testers for version 4.x. Overall,
TR releases had a total of 6,010 unique testers, while for RR
releases there were only 105 unique software testers registered
in the Litmus system.

One possible hypothesis is that the drop in number of
testers can be explained by an increase in test automation.
For example, across the analyzed Firefox history, we found

(a) (b)

Figure 7: Cumulative number of unique testers running Litmus tests for (a) TR and (b) RR releases.

that 158 out of the 1,547 test cases have been executed by
the “#mozmill” username (corresponding to the name of the
automated regression testing system). However, 16 of those
test cases have been executed only once by “#mozmill”, sug-
gesting a failed automation attempt. Furthermore, all 158 test
cases had also been executed with other usernames, suggesting
that sometimes the test is run manually (the automated tests
contained detailed instruction for manual execution), perhaps
due to the test breaking down. However, if changes in the
share of test automation would have dramatically impacted
testing, this should have led to a significant positive correlation
between the evolution of the project and the number of test
executions (or cases) per day. Section V-A shows that this is
not the case.

Feedback QA engineer The interview confirmed our sta-
tistical findings about the decreasing number of testers: “The
weakest point [in RR] is that it’s harder to develop a large
community which more accurately represents the scale and
variability of the general population. Frequently this means
that we don’t hear about issues until after release, in effect
turning our release early adopters into beta testers”. To
counter this, Mozilla has augmented their core testing team
with contractors: “1) the core team has remained largely
unchanged since adopting rapid release 2) the contract team
has nearly doubled . . . We can scale up our team much faster
through contractors than through hiring. The time afforded to
us to make the switch to rapid releases left little room for
failure which is why we took that approach.”. The number of
testers has also been impacted by some competing Mozilla
projects. Regarding test automation, the QA engineer noted
that “many of our Litmus tests have partial coverage across
our various automation frameworks”, but that after the switch
to Moztrap all automated tests were left out. Furthermore, he
confirmed that “I think it’s impossible to say how much [test
automation] coverage we have for sure [in Litmus]”.

Traditional Rapid

0
1

2
3

4

Bu
ild

s
pe

r d
ay

Figure 8: Distribution of the number of builds tested per day
for TRs and RRs.

�

�

	

The migration to the RR model has reduced the
community participation in testing when adjusting for
project duration. However, to keep up with the rapid
releases the number of specialized testing resources
has increased.

RQ3) Do RRs affect the frequency of testing activity?

Motivation: Given that more tests are executed per day for
RR releases, this could be explained because comparatively
more intermediate builds that need testing are produced in
a shorter time frame. In other words, developer productivity
could have increased compared to TR releases, requiring
more tests to be run. Alternatively, maybe the number of
builds did not increase significantly, but the amount of change
between builds has increased, requiring more testing to be
performed on each build. This research question investigates
these hypotheses.

Null Hypotheses: We test the following null hypotheses:
H3

01: There is no significant difference between the number
of tested builds per day for RR releases and TR releases.
H3

02: There is no significant difference between the number
of commits per day for RR releases and TR releases.

(a) (b)

Figure 9: Cumulative number of unique builds for which tests have been run for (a) TR and (b) RR releases.

Traditional Rapid

40
50

60
70

80

C
om

m
its

 p
er

 d
ay

Figure 10: Distribution of the number of commits per day for
TRs and RRs.

We again use the Wilcoxon rank-sum test [20] to test these
null hypotheses using a 1% confidence level.

Metrics: We calculated the following metrics:

• #Tested builds per day: the number of tested builds per
day

• #Commits per day: the number of commits to the Mer-
curial repository per day

We calculated the #Tested builds per day for each alpha,
beta, release-candidate, major and minor version of Firefox in
our data set, while we calculated the #Commits per day only
for the major release, since commits are hard to link to specific
releases.

Findings: Less rapid release builds are being tested per
day. Figure 8 shows that the number of tested RR builds per
day is statistically significantly lower than the number of tested
TR builds per day (0.25 vs. 0.427). We reject H3

01. In other
words, the higher relative frequency of test executions cannot
be explained by more builds being tested, but it seems that
each build is tested more thoroughly (albeit with a smaller
coverage, see RQ2).

RR builds contain more code commits than TR builds.
To understand why less RR builds are being tested, we

Traditional Rapid

0
2

4
6

8

O
Ss

 p
er

 d
ay

Figure 11: Distribution of number of operating systems tested
per day for TRs and RRs.

analyzed whether these builds contain more commits relative
to TR builds. Figure 10 compares the distribution of the
number of commits per day for all major TR and RR releases.
RR releases result in statistically significantly more commits
per day than the TR releases. Hence, we can reject H3

02. Since
our data exploration showed a downward trend across time
in the number of commits, more commits are integrated into
version control in a shorter time frame.

Feedback QA engineer The QA engineer had not noticed
any difference between the number of builds tested between
TR and RR releases. However, he agreed that RRs contained
more changes, but he attributed this observation more to the
project’s evolution than to the RR model: “As time has gone
on we have increased the number of changes that land per
day”.�
�

�
�

RR releases focus testing on fewer, but larger builds
when adjusted for release duration.

RQ4) Do RRs affect the number of configurations being tested?

Motivation: The final dimension that we study are the dif-
ferent configurations that are tested, such as different operating
systems or support for more locales (i.e., language settings and

internationalization [23]). More thorough testing of different
configurations could explain the larger number of tests per
build (RQ3), as well as the higher workload of individual
testers (RQ2).

Null Hypotheses: We test the following null hypotheses:
H4

01: There is no significant difference between the number
of tested locales per day for RR releases and TR releases.
H4

02: There is no significant difference between the number
of tested operating systems per day for RR releases and TR
releases.
We again use the Wilcoxon rank-sum test [20] to test these
null hypotheses using a 1% confidence level.

Metrics: We calculated the following metrics:

• #Tested locales per day: the number of tested locales per
day

• #Tested operating systems per day: the number of oper-
ating systems tested per day

We calculated these metrics for all alpha, beta, release-
candidate, major and minor releases of Firefox in our data
set.

Findings: RR tests are conducted on only one locale
manually. When comparing the distribution of the number
of tested locales per day, we found that the number of RR
locales tested is only half the number of TR locales tested
(0.302 vs. 0.143). It should be noted that the locale “English
US” dominates the number of test executions in all TR and RR
releases. The average share of test executions of the English
US locale for TR models is 91%, compared to 99% for RR
models.

A slightly lower number of platforms is being tested,
but more thoroughly. Figure 11 shows that the number of
operating systems tested per day has increased by almost 400%
(median of 0.27 vs. 1.286) when moving to RR releases.
However, the total number of tested operating systems has
dropped slightly, with most of the RR releases testing 9
operating systems compared to 12 to 17 for TR releases. This
can be partly attributed to the longer time frame of the TRs,
e.g., if a major release is tested over a two years period versus
6 weeks (see Figure 4) it is far more likely that new operating
system versions enter the market during the longer time period.

Furthermore, when looking at the detailed execution data
per operating system, we found for each RR release that
all tested operating systems get roughly the same amount of
test executions. For TR releases, there were large fluctuations
in the number of executions between the tested operating
systems.

Feedback QA engineer The interview revealed that locale
test coverage has actually increased, but has been entirely
converted to automated tests, disappearing out of the scope of
the Litmus system. Furthermore, the total number of operating
systems tested has decreased because “we now distribute
across Betas. For example, we might test Windows 7, OSX
10.8, and Ubuntu in one Beta then Windows XP, Mac OSX
10.7, and Ubuntu in another Beta”.

Table II: Kendalls’s tau correlation between release model,
length and date. Significance levels *=0.05 **=0.01,
***=0.001.

Release length Project Evolution
Release model -0.397*** 0.634***
Release length N/A -0.294***

Table III: Partial correlation of three variables (release model,
length and date) to test effort, while controlling two out
of the three variables. Significance levels *=0.05 **=0.01,
***=0.001.

RQ
Partial Kendall correlation coefficients
Release Release Project
model length Evolution

#Test executions per day (RQ1) 0.026 -0.414*** 0.048
#Test cases per day (RQ1) -0.231*** -0.593*** 0.017

#Testers per day (RQ2) -0.224*** -0.331*** -0.069
#Builds per day (RQ3) -0.105* -0.258*** -0.176***

#Locales per day (RQ4) -0.281*** -0.443*** -0.115*
#OSs per day (RQ4) 0.149** -0.822*** 0.130**

�
�

�
�

RR releases test less locales manually. Each sup-
ported operating system is tested more thoroughly,
but spread across beta releases.

V. DISCUSSION

A. Confounding factors

During our empirical study, we realized that there are two
important confounding factors that may affect the results:
release length and the project’s natural evolution. First, one
could easily think that the differences observed between TR
and RR are not due to the release model, but due to the
release cycle length, since even some of the TR releases have
a shorter release cycle (see Figure 2). Second, the evolution of
the project refers to the natural changes and events occurring
over time, which are not necessarily related to release length
or release model. For example, the reduction in the number
of testers over time could be due to re-organization across
competing projects or to a loss in community interest. To
complicate matters more, both of these confounding factors
are impacted significantly by the choice of release model, as
the correlations between these variables show (Table II). In
these calculations, release length (days between releases) and
project evolution (the time-stamp of each release date) are
simply modelled as continous numeric variables, while release
model is nominal, set either to zero for TRs or one for RRs.

Hence, we investigated the effect of release model, release
length, and project evolution on the metrics calculated for
the four research questions, while controlling the confounding
effect that these variables have on each other. For this, we
used partial correlation (R package ppcor [24]), in which the
correlation of one of the RQs’ metrics between RRs and TRs
is measured, while controlling two variables out of release
model, release length, and project evolution. We used the non-
parametric Kendall’s tau instead of linear multiple regression,
since the data is not normally distributed.

Figure 12: Model explaining the relationship between release
model, release length and test effort.

Table III shows that the release model has a significant
effect for five out of the six metrics when controlling for
the release length and project evolution. It appears that the
number of testers, test cases, builds, and locales tested per
day are significantly smaller in the RR releases, while the
number of operating systems per day significantly increases
in the RR releases. On the other hand, the larger number of
test executions per day for RR releases is not statistically
significant when controlling for release length and project
evolution. Instead, the effect that we observed in RQ1 seems
to be due to the consistently shorter time in between releases.

Regarding release length, the results show that test effort
overall increases when release length shrinks, i.e., testing be-
comes more work. One hypothesis, supported by the feedback
that we received, is that for the short TR releases a fixed set
of regression tests needs to be run, regardless of the release
duration. Another hypothesis is that the shorter TR releases
are more often rapid patches used to quickly fix major bugs.
In such a scenario, the changes in code are small, but as the
release is going for millions of users they must be thoroughly
regression-tested.

Finally, for project evolution, we find that the number of
different locales and builds tested has decreased over time,
while the number of operating systems tested has increased
over time. No statistically significant change in number of
testers can be observed.

Taking all of this into account, our interpretation of the
relation between release model and test effort is depicted in
Figure 12. Our initial hypothesis was that the shorter release
length of RR releases was responsible for increased testing
effort. However, even after controlling for the effect of the
RRs’ shorter release length, the RRs still have a lower number
of test cases, testers, tested builds and tested locales. This
means that Firefox’ development process must have changed,
as supported by the received feedback, since otherwise one
would actually expect a higher proportion of the above metrics.
The change in process has focused the testing efforts for the
RR releases compared to the TR releases. Only the increase
in test executions per day can be fully attributed to the shorter
release length.

B. Limitations

Every empirical study has limitations. First, we cannot be
certain that the changes that we see in the TR and RR metrics
are caused by the change from TRs to RRs, which affects the
construct validity of this study. After all, there could always be
hidden factors that actually cause these observed differences,

such as the competing projects in RQ2. To control for this,
we triangulated our findings with a Mozilla engineer, who
confirmed most of our findings.

Second, although we study over 200 Firefox releases, our
study only considers one open source system, which affects the
external validity of the study. However, the test data used for
this study is not straightforward to obtain, even for open source
systems, while for closed source systems substantial data is
sealed within corporate walls. Nevertheless, more studies are
needed before affirmative conclusions on the effects of a
release model on testing effort can be made.

Third, the Litmus database only represents a part of the
Firefox testing process, which is mostly aimed at manual
regression testing of risky regression test cases and as entry
point for community members to join testing. Since we did not
study the automated regression test infrastructure, we cannot
provide a complete picture of the Firefox testing process. This
affects the internal validity of this study.

VI. RELATED WORK

To the best of our knowledge, this study is the first attempt
to empirically quantify the impact of release cycle time on
testing in a real world setting with a large quantitative data
set. This section looks at the literature on migration from TR
to RR release models, followed by work on the impact of agile
processes on testing.

A. Rapid releases and software quality

In recent years, many modern commercial software
projects [25], [26] and open source projects backed by a
company [12], [27] have switched towards shorter release
cycles. Tool builders and researchers (e.g., [8]) have focused
especially on enabling continuous delivery [28]. Amazon,
for example, deploys on average every 11.6 seconds [26],
achieving more than 1,000 deployments per hour.

However, the impact of rapid releases on the quality of the
software product experienced by the end user has not been
studied until recently. Baysal et al. [6] compared the release
and bug fix strategies of Mozilla Firefox 3.x (TR) and Google
Chrome (RR) based on browser usage data from web logs.
Although the different profiles of both systems make direct
comparison hard, the median time to fix a bug in the TR
system (Firefox) seemed to be 16 days faster than in the RR
system (Chrome), but this difference was not significant.

Khomh et al. [7] studied the impact of Firefox’ transition
to shorter development cycles on software quality and found
no significant difference in the number of post-release defects,
except that proportionally less defects were fixed (normalizing
for the shorter time between releases). This suggests that
Mozilla’s strategies for testing RR, such as more contractor
testing, more focused testing and alternating beta-release test-
ing for operating systems, have been succesful in assuring the
quality. However, the larger testing community in the TR era
might have been able to find some errors earlier than is the
case now, which could explain Khomh et al.’s findings about
faster crashes in RR versions.

B. Process changes

Petersen and Wohlin [9] showed that early and continu-
ous testing has a positive effect on fault-slip-through when
migrating from plan-driven to agile development with faster
releases. They reported on the improvements of test coverage
at unit-test level, but highlighted that test cycles are often too
short to conduct an extensive system test of quality attributes
(e.g., performance), as these are more time intensive. We found
that RR reduced the scope of testing, but allowed deeper
testing within that scope. Earlier research [29] found that
frequent deliveries to subsystem testing allowed earlier and
more frequent feedback on each release, and increased the
developers’ incentives to deliver higher quality.

Li et al. [10] investigated the effect on product quality of
introducing Scrum with a 30-day release cycle. They found
that the quality focus had improved due to regular feedback for
every sprint, better transparency, and an improved overview of
remaining defects, leading to a timely (i.e., improved) removal
of defects. Kettunen et al. [30] studied the differences in testing
activities due to differences in process models. They found that
early testing leads to more test execution time and a need for
more predictable test resources. Our results support the finding
that RR leads to more predictable test resource allocation.

VII. CONCLUSION

This paper has presented a case study on the effects of
moving from traditional to rapid releases on Firefox’ system
testing. By triangulating data from the Litmus regression
testing database with feedback from an interview with a
Mozilla QA engineer, we make four key findings. First, we
found that due to time-contraints RR system tests have a
smaller scope and that the RR model has forced the Firefox
testing team “to cut the fat and focus on those test areas
which are prone to failure”. This narrow scope allows deeper
testing in selected areas, which was seen as one of the largest
strengths of RR testing. Second, we found that the number
of specialized testers has grown due to an increase in the
number of contractors, which were needed to sustain testing
effort in the rapid release model. However, at the same time
the large testing community which “represent the scale and
variability of the general population” has decreased. Third,
comparison to [7] shows that these rather significant changes
in testing process have not significantly impacted the product
quality. Fourth, based on empirical data we have proposed a
theoretical model explaining the relationship between release
model, release length and test effort that needs to be validated
in future case studies.

ACKNOWLEDGMENT

We would like to thank the Mozilla QA engineer who
provided feedback to our findings. The responses by Mozilla
employees in this paper are accounts of personal experience
and opinion, and are in no means whatsoever an official
statement from Mozilla.

REFERENCES

[1] HP, “Shorten release cycles by bringing developers to application
lifecycle management,” HP Applications Handbook, Retrieved on
Febuary 08, 2012, 2012. [Online]. Available: http://bit.ly/x5PdXl

[2] InvestmentWatch, “Mozilla puts out firefox 5.0 web browser which
carries over 1,000 improvements in just about 3 months of development,”
http://bit.ly/aecRrL, June 2011.

[3] K. Beck and C. Andres, Extreme Programming Explained: Embrace
Change (2nd Edition). Addison-Wesley, 2004.

[4] S. Shankland, “Rapid-release firefox meets corporate backlash,”
http://cnet.co/ktBsUU, June 2011.

[5] M. Kaply, “Why do companies stay on old technology?” Retrieved on
January 12, 2012, 2012. [Online]. Available: http://bit.ly/k3fruK

[6] O. Baysal, I. Davis, and M. W. Godfrey, “A tale of two browsers,” in
Proc. of the 8th Working Conf. on Mining Software Repositories (MSR),
2011, pp. 238–241.

[7] F. Khomh, T. Dhaliwal, Y. Zou, and B. Adams, “Do faster releases
improve software quality? an empirical case study of mozilla firefox,”
in MSR, 2012, pp. 179–188.

[8] A. Porter, C. Yilmaz, A. M. Memon, A. S. Krishna, D. C. Schmidt, and
A. Gokhale, “Techniques and processes for improving the quality and
performance of open-source software,” Software Process: Improvement
and Practice, vol. 11, no. 2, pp. 163–176, 2006.

[9] K. Petersen and C. Wohlin, “The effect of moving from a plan-driven
to an incremental software development approach with agile practices,”
Empirical Softw. Engg., vol. 15, no. 6, pp. 654–693, Dec. 2010.

[10] J. Li, N. B. Moe, and T. Dybå, “Transition from a plan-driven process
to scrum: a longitudinal case study on software quality,” in Proc. of the
2010 ACM-IEEE Intl. Symp. on Empirical Software Engineering and
Measurement (ESEM), 2010, pp. 13:1–13:10.

[11] R. S. Ltd., “Web browsers (global marketshare),” http://bit.ly/81klgi,
April 2013.

[12] S. Shankland, “Google ethos speeds up chrome release cycle,”
http://cnet.co/wlS24U, July 2010.

[13] D. Sicore, “New channels for firefox rapid releases,” http://bit.ly/
hc1zmY, April 2011.

[14] R. Paul, “Mozilla outlines 16-week firefox development cycle,” http:
//bit.ly/fLHEfo, March 2011.

[15] Mozilla, “Litmus wiki,” http://mzl.la/evJmTW, January 2013.
[16] ——, “Moztrap wiki,” http://bit.ly/XBGMfu, January 2013.
[17] Wikipedia, “Firefox release history,” http://bit.ly/Ngvfln, January 2013.
[18] Mozilla, “Mozilla source code mercurial repositories,” 2013. [Online].

Available: http://hg.mozilla.org/
[19] J. J. Rogmann, “orddom: Ordinal dominance statistics,” http://bit.ly/

Y0K0eo, January 2013.
[20] M. Hollander and D. A. Wolfe, Nonparametric Statistical Methods,

2nd ed. John Wiley and Sons, inc., 1999.
[21] Wikipedia, “Extended support release,” http://bit.ly/ZlgqoM#Extended

Support Release, January 2013.
[22] R. Paul, “Firefox extended support will mitigate rapid release chal-

lenges,” http://ars.to/M2TbFQ, January 2012.
[23] Wikipedia, “Locale,” http://bit.ly/2iJLwB, January 2013.
[24] S. Kim, “ppcor: Partial and semi-partial (part) correlation,” http://bit.ly/

XkWuyn, October 2012.
[25] A. W. Brown, “A case study in agile-at-scale delivery,” in Proc. of the

12th Intl. Conf. on Agile Processes in Software Engineering and Extreme
Programming (XP), vol. 77, May 2011, pp. 266–281.

[26] J. Jenkins, “Velocity culture (the unmet challenge in ops),” Presentation
at O’Reilly Velocity Conference, June 2011.

[27] E. Gamma, “Agile, open source, distributed, and on-time – inside
the eclipse development process,” Keynote at the 27th Intl. Conf. on
Software Engineering (ICSE), May 2005.

[28] J. Humble and D. Farley, Continuous Delivery: Reliable Software
Releases through Build, Test, and Deployment Automation, 1st ed.
Addison-Wesley Professional, 2010.

[29] K. Petersen and C. Wohlin, “A comparison of issues and advantages
in agile and incremental development between state of the art and an
industrial case,” J. Syst. Softw., vol. 82, no. 9, pp. 1479–1490, Sep. 2009.

[30] V. Kettunen, J. Kasurinen, O. Taipale, and K. Smolander, “A study on
agility and testing processes in software organizations,” in Proc. of the
19th Intl. Symp. on Software Testing and Analysis (ISSTA), 2010, pp.
231–240.

