
Empirical Software Engineering journal manuscript No.
(will be inserted by the editor)

On Rapid Releases and Software Testing: A Case

Study and a Semi-Systematic Literature Review

Mika V. Mäntylä, Bram Adams, Foutse
Khomh, Emelie Engström, Kai Petersen

Received: date / Accepted: date

Abstract Large open and closed source organizations like Google, Facebook and
Mozilla are migrating their products towards rapid releases. While this allows
faster time-to-market and user feedback, it also implies less time for testing and
bug �xing. Since initial research results indeed show that rapid releases �x pro-
portionally less reported bugs than traditional releases, this paper investigates the
changes in software testing e�ort after moving to rapid releases in the context of
a case study on Mozilla Firefox, and performs a semi-systematic literature review.
The case study analyzes the results of 312,502 execution runs of the 1,547 mostly
manual system-level test cases of Mozilla Firefox from 2006 to 2012 (5 major tra-
ditional and 9 major rapid releases), and triangulates our �ndings with a Mozilla
QA engineer. We �nd that rapid releases have a narrower test scope that enables
a deeper investigation of the features and regressions with the highest risk. Fur-
thermore, rapid releases make testing more continuous and have proportionally
smaller spikes before the main release. However, rapid releases make it more dif-

Mika V. Mäntylä
SPRG, Dep. of Computer Science and Engineering,
Aalto University, Finland
E-mail: mika.mantyla@aalto.�

Bram Adams
MCIS, Polytechnique Montréal,
Québec, Canada
E-mail: bram.adams@polymtl.ca

Foutse Khomh
SWAT, Polytechnique Montréal,
Québec, Canada
E-mail: foutse.khomh@polymtl.ca

Emelie Engström
Dep. of Computer Science,
Lund University, Sweden
E-mail: emelie.engstrom@cs.lth.se

Kai Petersen
School of Computing,
Blekinge Institute of Technology, Sweden
E-mail: kai.petersen@bth.se

�cult to build a large testing community, and they decrease test suite diversity
and make testing more deadline oriented. In addition, our semi-systematic liter-
ature review presents the bene�ts, problems and enablers of rapid releases from
24 papers found using systematic search queries and a similar amount of papers
found through other means. The literature review shows that rapid releases are a
prevalent industrial practice that are utilized even in some highly critical domains
of software engineering, and that rapid releases originated from several software
development methodologies such as agile, open source, lean and internet-speed
software development. However, empirical studies proving evidence of the claimed
advantages and disadvantages of rapid releases are scarce.

Keywords Software testing; release model; builds; bugs; open-source; agile
releases; Mozilla.

1 Introduction

Due to heavy competition, web-based organizations, both at the server side (e.g.,
Facebook and Google) and the client side (e.g., Google Chrome and Mozilla Fire-
fox), have been forced to change their development processes towards rapid release
models. Instead of working for months on a major new release, companies limit
their cycle time (i.e., time between two subsequent releases) to a couple of weeks,
days or (in some cases) hours to bring their latest features to customers faster [1].
For example, starting from version 5.0, Firefox has been releasing a new major
version every 6 weeks [2].

Although rapid release cycles provide faster user feedback and are easier to plan
(due to their smaller scope) [3], they also have important repercussions on software
quality. For one, enterprises currently lack time to stabilize their platforms [4], and
customer support costs are increasing because of the frequent upgrades [5]. More
worrying are the con�icting �ndings that rapid release models (RRs) are either
slower [6] or faster [7] at �xing bugs than traditional release models (TRs). Even in
the latter case, the study still found that proportionally less bugs were being �xed,
and that the bugs that were not �xed led to crashes earlier on during execution.

Since testing plays a major role in quality assurance, this paper investigates
how RR models impact software testing e�ort. For example, Porter et al. noted
that, since there is less time available, testers have less time to test all possible
con�gurations of a released product, which can have a negative e�ect on software
quality [8]. On the other hand, other studies have reported the positive e�ects of
RRs on software testing and quality in the context of agile development, where
testing has become more focused [9,10]. To the best of our knowledge, the im-
pact of RRs on software testing measures, beyond defect data, have not yet been
investigated.

Hence, to analyze the impact of RR models on the testing process, we analyze
the system testing process in the Mozilla Firefox project, a popular web browser,
and the changes it went through while moving from a TR model of one release a
year to an RR model where new releases come every 6 weeks. We analyzed the
system-level test case execution data from releases 2.0 to 13.0 (06/2006�06/2012),
which includes �ve major TR versions (2.0, 3.0, 3.5, 3.6, and 4.0) with 147 smaller
releases (20 alphas, 29 betas, 12 release candidates, and 86 minor), and nine RR

2

versions (5.0 until 13.0) with 89 smaller releases (17 alphas, 56 betas, and 16
minor).

Based on this data and feedback from aMozilla Firefox QA engineer, we studied
six research questions with respect to Mozilla Firefox, leading to the following
�ndings:

FF-RQ1) Does switching to RRs a�ect the number of executed tests per day?

This question analyzes possible correlations between RRs and testing ac-
tivity. We �nd that RRs perform more test executions per day, but these
tests focus on a smaller subset of the test case corpus.

FF-RQ2) Does switching to RRs a�ect the number of testers working on a project
per day?

To verify the �ndings of RQ1, we study the number of testers for RRs
and TRs. We �nd that RRs have less testers, but that they have a higher
workload.

FF-RQ3) Does switching to RRs a�ect the number of builds being tested per day?

Apart from number of testers, the number of builds to test also can impact
test acticity. We �nd that RRs test fewer, but larger builds.

FF-RQ4) Does switching to RRs a�ect the number of con�gurations being tested
per day?

In the same vein as RQ3, we �nd that RRs test fewer platforms in total,
but test each supported platform more thoroughly.

FF-RQ5) Does switching to RRs a�ect the similarity of test suites or test teams
across releases?

Developer and tester retention plays a major role in sustaining an open
source system. We �nd that RRs have higher similarity of test suites and
testers within a release series than TRs had.

FF-RQ6) Does switching to RRs a�ect when the testing happens for a release?

This question checks whether RR systems spread testing activity more uni-
formly, since they have less time in between releases. Empirical analysis
suggests that RR testing happens closer to the release date and is more
continuous, yet these �ndings were not con�rmed by the QA engineer.

A better understanding of the impact of the release cycle on testing e�ort will
help software organizations to plan ahead and to safely migrate to an RR model,
while enabling them to safeguard the quality of their software product.

This paper extends our previous work [11] in two ways. First, we added re-
search questions FF-RQ5 and FF-RQ6 that investigate respectively, the impact
of RRs on test suite and test team similarity between the releases (i.e. are the
same test cases executed in each release and are the same testers performing the
testing) , and the timing of test execution for TR and RR releases (i.e., whether
testing happens early or late in the releases cycle). Having established that rapid
releases provide a number of important challenges for testing, we performed a
semi-systematic literature study of empirical studies on rapid releases in order to
better understand the phenomenon and its origins. The literature review assesses
�ve research questions, with the following answers:

3

LR-RQ1) Where do RRs originate from?

Our literature study shows that RRs originate from agile, open source and
lean software development.

LR-RQ2) What is the prevalence of RRs?

Whereas RRs tend to be associated with less risky software systems, we �nd
that RRs are practiced in several di�erent domains, even in those requiring
high reliability.

LR-RQ3) What are the bene�ts of RRs?

The literature study shows that the main bene�ts of RRs are shorter time-
to-market, rapid feedback and the increased focus of development sta� on
quality.

LR-RQ4) What are the enablers of RRs?

Key enablers for RR are parallel development, tools for automatic deploy-
ment and testing, and the involvement of customers.

LR-RQ5) What are the problems of RRs?

The main problems of RR releases are technical debt, the con�ict between
high test coverage and high reliability, the customers' willingness to update,
and time-pressure.

The rest of the paper is organized as follows. Section 2 provides some back-
ground on Mozilla Firefox, while Section 3 describes the design of the Firefox study.
The results of this study are presented in Section 4. In Section 5 we analyze the
confounding factors and present a theoretical model explaining the relationship
between the release model, release length and test e�ort. Section 6 then discusses
the setup and results of the semi-systematic literature review, which is followed
by a discussion of the case study and literature review results (Section 7). Finally,
Section 8 concludes the paper and outlines some avenues for future work.

2 Research Context

2.1 Firefox Development Process

Firefox is an open source web browser developed by the Mozilla Corporation. As
of April 2013, Firefox has approximately 22% of web browser usage share world-
wide [12], with almost half a billion users. Firefox 1.0 was released in November
2004 and the latest version considered in this study, Firefox 13, was released on
June 5, 2012, containing more than 7.5 MLOC (especially C++, C and JavaScript).

Firefox followed a traditional release model until version 4.0 (March 2011), after
which it moved to a rapid release cycle from version 5.0 on, in order to compete
with Google Chrome's rapid release model [4,13], which was eroding Firefox's user
base. Every TR version of Firefox was followed by an unpredictably long series
of minor versions, each containing bug �xes or minor updates over the previous
version. However, in the RR model, every Firefox version now �ows through a

4

15.0 NIGHTLY 16.0 NIGHTLY 17.0 NIGHTLY 18.0 NIGHTLY

15.0 AURORA 16.0 AURORA 17.0 AURORA

15.0 BETA 16.0 BETA

15.0 MAIN

New Feature Development

6 Weeks 6 Weeks 6 Weeks 6 Weeks

15.0a1

15.0a2

15.0b1

15.0, 15.0.1

16.0a1 17.0a1 18.0a1

16.0a2 17.0a2

16.0b1

Fig. 1: Rapid release process of Mozilla Firefox.

�xed sequence of four release channels (Figure 1), each of which takes exactly
six weeks to complete: nightly, aurora (alpha), beta and main [14]. The nightly
channel integrates new features from the developers' source code repositories as
soon as the features are ready. The aurora channel inherits new features from
nightly at regular intervals (i.e., every 6 weeks). The features that need more
work are disabled and left for the next import cycle into aurora. The beta channel
receives only new alpha features from aurora that are scheduled by management
for the next Firefox release. Finally, mature beta features make it into main, i.e.,
the next o�cial release.

2.2 Firefox Quality Assurance

Firefox heavily relies on contributors and end users to participate in the quality
assurance (QA) e�ort. The estimated number of contributors and end users on
the channels are respectively 100,000 for nightly, 1 million for alpha (aurora), 10
million for beta and 100+ millions for a major Firefox version [15]. Except for the
automated Mozmill infrastructure for in-house regression testing, the testing done
by the community is mostly manual.

To co-ordinate this community-based testing, Firefox has a system-level re-
gression testing infrastructure called Litmus [16]. As explained by a Mozilla QA
engineer, �We use it primarily to test past regressions . . . and as an entry point
for community involvement in release testing�. It consists of a database with well-
documented, functional test cases and stored execution results that are used to
make sure that all functionality still works. Each test case corresponds to a user-
visible feature, for example �Standard installation�, �Back and Forward buttons�,
and �Open a new window�. The test case for �Back and Forward buttons� states:
�Steps to perform: 1) Visit two successive sites. 2) Click Back button twice. 3)
Click Forward button twice. Expected Results: page loading should move back
and forward through history as expected�.

The interface of Litmus is a web-based GUI that allows contributors to follow
the status of currently running or archived test executions, and to submit the re-
sults of manual tests. Furthermore, users can consult the error messages generated

5

during failing test runs. Litmus is used mainly for beta, release candidate, main,
and minor versions, but much less frequently for alpha releases (only 27% of them
used Litmus). The pass percentage for test executions in Litmus is around 98%.

3 Study Design

In order to address the research questions FF-RQ1 to FF-RQ6, we mined the test
execution data stored in Firefox' Litmus repository, then performed various anal-
yses on this data. The remainder of this section elaborates on our data collection
and analysis.

3.1 Data Collection

We performed web crawling of the Litmus system to get the test cases and their
execution data for Firefox versions 2.0 to 13.0. Overall, we identi�ed 1,547 unique
test cases (roughly 10% of them are automated) for a total of 312,502 test case
executions across 6 years of testing (06/2006�06/2012), performed by 6,058 in-
dividuals on 2,009 software builds, 22 operating system versions and 78 locales.
During this time frame, the Firefox project made 249 releases, of which 213 re-
leases (142 TR and 71 RR) reported their testing activity into the Litmus system.
We consider data only until June 2012, since immediately afterwards Litmus was
replaced by the Moztrap system in order to enable adding new test cases in a
collaborative way and scaling up in terms of usability and functionality [17]. The
transition to Moztrap happened instantaneously from one version to the next,
which means that our data is not biased by this transition.

In Litmus, all test cases provide the following information: major version num-
ber of the release (2.0�13.0), unique identi�er, summary, regression bug identi-
�er (if any), the test steps to perform, the expected results, the test group and
subgroup the test case belongs to (if any), and links to the corresponding test
execution results. Each test execution contains the following information: status
(�pass�/�fail�/�test unclear or broken�), test case identi�er, time-stamp, platform
(e.g., Windows), operating system (e.g., Windows XP), build identi�er, locale,
user agent, referenced bugs (if any), comments (if any) and the test logs (if any).
However, there was no explicit information of the invididual release (alpha, beta,
release-candidate, major or minor) each test execution was related to. Hence, we
mapped the test execution to the release dates, which were available online [18],
using the main release number (2.0-13.0) that was available and the time-stamps.

For each of the analyzed versions, we also extracted the code revision history
from the Mercurial repository [19] and parsed it to extract information about
the frequency and number of commits. Finally, to triangulate our �ndings we
performed an email interview with a Mozilla QA engineer who has been working
on QA for the Firefox project for the past �ve years. Although the interview results
are based on the views of one Mozilla employee (and hence might be incomplete
or contain small inaccuracies), they were consistent with our analysis results and
provide insights into our empirical �ndings.

6

Traditional Rapid

0
20

40
60

80

D
ay

s
si

nc
e

pr
ev

io
us

 re
le

as
e

Fig. 2: Distribution of release cycle length (in days) for TRs and RRs.

Table 1: Interpretation of Cli�'s delta [20].

Interpretation Cli�'s delta
Small 0.148
Medium 0.330
Large 0.474

3.2 Data Analysis

We analyze the collected data set using a set of metrics de�ned speci�cally for each
question. For the reader's comfort, details of the metrics are provided later on in
the sections discussing the research questions. We use the R statistical analysis
tool to perform all the calculations. The Shapiro-Wilk test showed that our data
is not normally distributed. Therefore, we use non-parametric statistical analysis
throughout the paper. To compare between two groups, we use the Wilcoxon
rank-sum test (WRST) and to study e�ect sizes we use Cli�'s delta (provided by
the R package orrdom [21]), which varies between -1 and 1. Table 1 explains the
interpretation of Cli�'s delta.

As the length of software release projects can vary greatly, we normalized all
metrics for project duration (measured in days) to make statistical comparison
between TR and RR releases possible [7]. If we consider all types of releases (i.e.,
alpha, beta, release candidate, major and minor) together, the median time be-
tween RR releases is 7 days while it is 26 days for TR releases. This di�erence is
statistically signi�cant with a large e�ect size, see Table 5.

We did not perform this normalization when analyzing cumulative growth over
time of a metric (i.e., Figure 4, Figure 5, Figure 7 and Figure 9), nor in FF-RQ5.
In the latter question, we use Cohen's Kappa to measure the similarity of test suite
and test team between two subsequent releases. Since Cohen's Kappa is similar
to correlation metric, i.e. Kappa has limited scale from -1 to 1, and it does not
increase as release length increases there is no need to normalize it for release
length.

7

Cohen's Kappa is originally developed to measure inter-rater agreement be-
tween two raters. In our case, the two raters are two subsequent releases, and
the agreement is measured across the boolean vector of all test cases (n=1547)
and testers (n=6,058), respectively. If two subsequent releases executed exactly
the same test cases, Cohen's Kappa value is 1. If only by chance, two subsequent
releases execute the same test case, the value is 0. If there is no agreement at all,
not even by chance, the value is -1. Cohen's Kappa is a more robust measure of
similarity between releases than simply calculating the percentage of di�erent test
cases or testers between releases, as it takes into account di�erences and similarities
that occur by chance.

Cohen's Kappa has known problems with unbalanced data (i.e., boolean vec-
tors in which the vast majority is �yes� or �no�), and prior work points out that
�no single omnibus index of agreement can be satisfactory for all purposes� [22].
For example, let's assume that we have four test cases (i.e., vectors with four
boolean values), with the test executions for releases R1 and R2 corresponding to
R1=[YYNN] and R2=[YNYN] (Y(es) meaning an executed test and N(o) meaning
a not executed test). In this case, Kappa would be 0 because all similarities in the
test execution suites are due to chance only. However, imagine that both test case
execution vectors would contain one thousand additional legacy test cases that
were never executed. Then, vectors R1 and R2 would have much higher similarity
due to the thousand no-no agreements and the Kappa between R1 and R2 would
increase to 0.499. Obviously, the same thing would happen if there are one thou-
sand yes-yes cases, for example tests that are always executed due to being part
of the core of the automated test suite.

To identify whether a Kappa value is a�ected by this problem, one should
follow the suggestion by Cicchetti et al. [23] to calculate proportions of positive
and negative similarity ppos and pneg. If these proportions di�er substantially from
each other, then the Kappa value is biased then the interpretation of the value
needs to take this bias into account. Table 2 shows how the test case executions
of two releases R1 and R2 can be organized as 2 X 2 table. In the table number
(a) means number same test cases that are executed in both releases. Similarly,
number (b) means the number of test cases that are executed in release R2, but
not executed in release R1 and so on. Then: ppos=2a/(N+a-d) and pneg=2d/(N-
a+d). Thus, when our vectors are R1=[YYNN] and R2=[YNYN], then both ppos
and pneg would be 0.5 (see Table 3), indicating that the positive and negative are
similar. When we add one thousand zero-zero cases to vectors R1 and R2 for the
legacy test cases that are never executed (see Table 4) , then ppos is still 0.5 while
pneg jumps to 0.999. The latter high value clearly indicates a bias towards negative
similarity between test executions in R1 and R2, providing a warning about the
causes (or lack) of similarity. In that case, the bias might be one of the possible
explanations of the corresponding Kappa value.

Cohen's Kappa has range from -1 to 1. The generally accepted linguistic labels
for values are < 0 as indicating no agreement and 0�0.20 as slight, 0.21�0.40 as
fair, 0.41�0.60 as moderate, 0.61�0.80 as high, and 0.81�1 as very high agreement
landis1977measurement. For ppos and pneg the range is from 0 to 1 and according
to [22] they are analogues to speci�city and sensitivity. We could not �nd gener-
ally accepted thresholds for ppos and pneg. For analogues metrics, e.g. speci�city,
sensitivity (recall), or precision, there exists research on empirically setting the
thresholds [24,25], but no common thresholds exits. Since the purpose of this

8

work is not to start setting empirical thresholds we simply scale linguistic labels
for Kappa landis1977measurement. Note, for any large random boolean data set
Kappa is 0 while ppos and pneg are 0.5. Thus, we set the following linguistic labels
for ppos and pneg to make the paper easier to follow: 0.51-0.60 as slight, 0.61-0.70
as fair, 0.71-0.80 as moderate, high 0.81-0.90 and 0.91-1.0 very high.

Table 2: Comparing test case execution similarity of two releases R1 and R2.

R1

R2

Yes No Total
Yes a b g
No c d h
Total e f N

Table 3: Comparing test case execution similarity of two releases with vectors
R1=[YYNN] and R2=[YNYN].

R1

R2

Yes No Total
Yes 1 1 2
No 1 1 2
Total 2 2 4

Table 4: Comparing test case execution similarity of two releases with vectors
R1=[YYNN] and R2=[YNYN] when we add one thousand No-No cases to both
vectors

R1

R2

Yes No Total
Yes 1 1 2
No 1 1001 1002
Total 2 1002 1004

4 Case Study Results

This section discusses for each research question, its motivation, the approach that
we used, our �ndings and feedback by the interviewed QA engineer.

FF-RQ1) Does switching to RRs a�ect the number of executed tests per day?

Motivation: In our previous work [7], we found that RR models �x bugs faster than
TR models, but �x proportionally less bugs. Since the short release cycle time of
RR models seems to allow less time for developers to test the system, QA teams
could decide to reduce the amount of testing for their RR versions in order to cope

9

Table 5: Comparison between metrics for the TR and RR. E�ect size uses Cli�'s
Delta.

TR RR WRST E�ect
(median) (median) (p-value) size

Release length 26.00 7.00 <0.001 -0.586
#Test exec./day (FF-RQ1) 50.86 127.3 <0.001 0.359
#Testcases/day (FF-RQ1) 10.65 14.00 0.855 0.015
#Testers/day (FF-RQ2) 1.667 1.000 <0.001 -0.297
#Builds/day (FF-RQ3) 0.427 0.250 0.004 -0.242
#Locales/day (FF-RQ4) 0.302 0.143 <0.001 -0.356

#OSs/day (FF-RQ4) 0.270 1.286 <0.001 0.695
Cohen's Kappa (Test suite) (FF-RQ5) 0.769 0.977 <0.001 0.480

Cohen's Kappa (Tester) (FF-RQ5) 0.108 0.625 <0.001 0.853
Temporal test distance (FF-RQ6) 0.356 0.200 <0.001 -0.467

Traditional Rapid

0
20

0
40

0
60

0
80

0

Te
st

 e
xe

cu
tio

ns
 p

er
 d

ay

Fig. 3: Distribution of number of test executions per day for TRs and RRs.

with their tight schedule. In this research question, we verify this by investigating
the amount of testing e�ort performed for each TR and RR version of Firefox.

Null Hypotheses: We test the following two null hypotheses to compare the
total number of test executions and the number of unique test cases executed for
TR and RR models:
H1

01: There is no di�erence between the number of tests executed per day for RR
releases and TR releases.
H1

02: There is no di�erence between the number of unique test cases executed per
day for RR releases and TR releases.
We use the Wilcoxon rank-sum test [26] to test H1

01 and H1
02 using a con�dence

level α of 1% (i.e., p-value needs to be < 0.01 to reject a null hypothesis).
Metrics: For each alpha, beta, release-candidate, major and minor version of

Firefox in our data set, we compute the following two metrics: the number of
tests executed and the number of unique test cases executed. The number of tests
executed captures the amount of testing performed per release. The number of
unique test cases executed captures the functional coverage of the tests per release.
Functional coverage is the degree to which the di�erent features in a software

10

(a) (b)

Fig. 4: Cumulative number of test executions over time (not normalized) for (a)
TR and (b) RR releases.

(a) (b)

Fig. 5: Cumulative number of unique test cases executed over time (not normal-
ized) for (a) TR and (b) RR releases.

version are tested by a test suite. Our only measure of functional coverage is the
number of unique test cases executed (the more functionally di�erent test cases
are being executed, the higher the functional coverage). Other possible measures
of functional test coverage could be for example requirements coverage or use case
coverage.

� #Test exec./day: the number of tests executed per day.
� #Test cases/day: the number of unique test cases executed per day.

Findings: The RR model executes almost twice as many tests per day
(median) compared to TR models. Figure 3 and Table 5 show a statistically
signi�cant di�erence between the two distributions, with a medium e�ect size
of 0.359 (Cli�'s delta), i.e., RR models run more tests in a shorter time frame.
Therefore, we reject H1

01. This di�erence is also clear from Figure 4, which shows
the cumulative (absolute) number of test executions for each major TR and RR
release over time. Since alpha releases typically are not tested in Litmus, the data
for each RR starts from the �rst beta release (this holds for all cumulative plots in
this paper). The number of test executions obtains a much higher absolute value
(between 35,000 and 50,000, except for the 4.x release series) than the RR releases
(usually smaller than 9,000, except for release 10.0), but accumulates over a much
longer time.

Firefox 10.0 is an exception for RRs, since it is the �rst �Extended Support
Release� (ESR) [27], i.e., it is meant to last for 54 weeks instead of 6 (lifetime of

11

9 �normal� RRs). An ESR helps corporate clients [28] to certify and standardize
on one particular browser version for a longer period, while still receiving security
updates, backported from more recent non-ESR releases. We can see that testing
for 10.0 evolved linearly until its release, after which testing is resumed only shortly
before the release of a new version. In between, no testing occurs for 10.0.

Especially for the TR releases, testing continues even though development on
a newer version has already started. This is due to the many minor releases that
follow a major TR release. For RR releases, testing of the next release starts
soon after the testing for the previous release stops. Release 10.0 again is an
exception, since testing needs to continue for 9 releases. All releases (TR and RR)
see accelerated test execution right before a release, which is visible as an almost
vertical trend in Figure 4.

Similar functional test coverage per day, but lower coverage overall.
Data exploration revealed that the test cases executed for each major release
vary based on the features implemented in the release. The median similarity
of functional test coverage between subsequent major releases was 56% for both
TRs and RRs. We then counted the number of unique test cases executed for a
particular release, then divided this by the length of the release cycle to compare
the number of unique test cases per day executed by each release. We found that,
on average, the number of unique test cases executed per day is slightly higher
in RR. However, this di�erence is not statistically signi�cant and the e�ect size
is almost non-existent (0.015). Therefore, we cannot reject H1

02. This means that,
although a higher absolute number of unique test cases gets executed in TR, there
is no di�erence between release models when the shorter time frame for RR releases
is taken into account.

However, since there is less time to run tests, RR testers limit the scope (and
hence coverage) of their tests to only the most important ones. Figure 5 shows
for each TR and RR release the evolution over time of the cumulative number of
unique test cases being executed. The number of di�erent tests executed increases
monotonically across the major TR releases, i.e., Firefox 4.x was tested on more
cases (almost 1,100) than Firefox 3.5.x and earlier releases. However, the RR re-
leases seem to be tested on progressively less di�erent test cases, going from 270
unique test cases for Firefox 5.0 down to 100 for Firefox 12. Most RR releases
reach 90% of their maximum number of unique test cases within a week, which
indicates that the reduced scope of testing is determined very early during a new
release cycle.

Feedback QA engineer The QA engineer could not con�rm the di�erence
in the number of test executions, but strongly supported our �nding that testing
is more focused: �To survive under the time contraints of a rapid release we've
had to cut the fat and focus on those test areas which are prone to failure, less
on ensuring legacy support�. In particular, the focused test set consists of �a �xed
set of tests for areas prone to regression (Flash plugin testing for example)� and
�a dynamically changing set of tests to cover recent regressions we chemspilled for
and high risk features�. A �chemspill� is a negative event like a vulnerability that
requires a quick update. Overall, the QA engineer believed that the narrow scope
of RR tests is highly bene�cial: �The greatest strength is that the scope of what
needs to be tested is narrow so we can focus all of our energy on deep diving into
a few areas�.

12

Traditional Rapid

0
2

4
6

8
10

Te
st

er
s

pe
r d

ay

Fig. 6: Distribution of number of testers per day for TRs and RRs.

(a) (b)

Fig. 7: Cumulative number of unique testers running Litmus tests for (a) TR and
(b) RR releases.

�

�

	
The amount of test executions per day is signif-
icantly larger in RR, but these tests focus on a
smaller subset of the test case corpus instead of on
the full corpus.

FF-RQ2) Does switching to RRs a�ect the number of testers working on a project
per day?

Motivation: With short release cycles, development teams have less time to im-
plement and test new features before they are released to users. In FF-RQ1, we
observed on the one hand a reduction in functional coverage, while on the other
hand the remaining test cases are executed more frequently in the shorter time be-
tween two releases. Given these observations, does the same testing team as before
handle testing, with each tester having to perform less work, or did the test team
shrink, either because there is less work to do, or because the rapid succession of
releases makes it harder to retain testers?

13

Null Hypothesis: We test the following null hypothesis to compare the number
of testers for TR and RR releases:
H2

01: There is no di�erence between the number of testers for RR releases and
TR releases.
Similar to FF-RQ1, we use the Wilcoxon rank-sum test [26] to test H2

01 using a
1% con�dence level.

Metrics: For each alpha, beta, release-candidate, major and minor version of
Firefox in our data set, we compute the following metric:

� #Testers/day: the number of testers per day.

Findings: Fewer testers conduct testing for RR releases. Figure 6 shows
the distribution of the number of individuals per day testing the traditional and
rapid releases. We can see that TR releases have a median of 1.67 testers per
day compared to 1.0 testers per day for RR releases. The Wilcoxon rank-sum
test yields a statistically signi�cant result, i.e., we can reject H2

01. This result
in conjunction with the results of the previous section means that the average
workload per individual is much higher under an RR model, since more tests need
to be executed per day by less people (i.e., median of 35 vs. 120 test executions
per tester per day).

Figure 7a and Figure 7b by themselves do not show a clear trend, with some
releases having signi�cantly more testers than others. However, the contrast be-
tween TR and RR releases again is very stark when measured from the Litmus
system. The most heavily tested RR releases (ESR release 10.0) reached 34 testers
by July 2012, which is a factor 56 lower than the 1,900 di�erent testers for version
4.x. Overall, TR releases had a total of 6,010 unique testers, while for RR releases
there were only 105 unique software testers registered in the Litmus system.

One possible hypothesis is that the drop in number of testers can be explained
by an increase in test automation. For example, across the analyzed Firefox history,
we found that 158 out of the 1,547 test cases have been executed by the �#mozmill�
username (corresponding to the name of the automated regression testing system).
However, 16 of those test cases have been executed only once by �#mozmill�,
suggesting a failed automation attempt. Furthermore, all 158 test cases had also
been executed with other usernames, suggesting that sometimes the test is run
manually (the automated tests contained detailed instructions), perhaps due to the
automation breaking down. However, if changes in the share of test automation
would have dramatically impacted testing, this should have led to a signi�cant
increase in the number of test executions (or cases) per day over time. Section 5
shows that this is not the case.

Feedback QA engineer The interview con�rmed our statistical �ndings
about the decreasing number of testers: �The weakest point [in RR] is that it's
harder to develop a large community which more accurately represents the scale
and variability of the general population. Frequently this means that we don't hear
about issues until after release, in e�ect turning our release early adopters into
beta testers�. To counter this, Mozilla has augmented their core testing team with
contractors: �1) the core team has remained largely unchanged since adopting rapid
release 2) the contract team has nearly doubled . . .We can scale up our team much
faster through contractors than through hiring. The time a�orded to us to make
the switch to rapid releases left little room for failure which is why we took that ap-
proach.�. The number of testers has also been impacted by some competing Mozilla

14

Traditional Rapid

0
1

2
3

4

Bu
ild

s
pe

r d
ay

Fig. 8: Distribution of the number of builds tested per day for TRs and RRs.

(a) (b)

Fig. 9: Cumulative number of unique builds for which tests have been run for (a)
TR and (b) RR releases.

projects. Regarding test automation, the QA engineer noted that �many of our
Litmus tests have partial coverage across our various automation frameworks�, but
that after the switch to Moztrap all automated tests were left out. Furthermore, he
con�rmed that �I think it's impossible to say how much [test automation] coverage
we have for sure [in Litmus]�.�

�

	

The migration to the RR model has reduced the
community participation in testing when adjusting
for project duration. To keep up with rapid releases,
the number of specialized testing resources has in-
creased.

FF-RQ3) Does switching to RRs a�ect the number of builds being tested per day?

Motivation: The �nding that more tests are executed per day for RR releases could
be explained because comparatively more intermediate builds that need testing are
produced in a shorter time frame. In other words, developer productivity could

15

Traditional Rapid

40
50

60
70

80

C
om

m
its

 p
er

 d
ay

Fig. 10: Distribution of the number of commits per day for TRs and RRs.

have increased compared to TR releases, requiring more builds to be tested. Alter-
natively, maybe the number of builds did not increase signi�cantly, but the amount
of change between builds has increased, requiring more testing to be performed on
each build. This research question investigates these hypotheses.

Null Hypotheses: We test the following null hypotheses:
H3

01: There is no di�erence between the number of tested builds per day for RR
releases and TR releases.
H3

02: There is no di�erence between the number of commits per day for RR releases
and TR releases.
We again use the Wilcoxon rank-sum test [26] to test these null hypotheses using
a 1% con�dence level.

Metrics: We calculated the following metrics:

� #Tested builds/day: the number of tested builds per day.
� #Commits/day: the number of commits to the Mercurial repository per day.

We calculated the #Tested builds per day for each alpha, beta, release-candidate,
major and minor version of Firefox in our data set, while we calculated the #Com-
mits per day only for the major releases, since for versions developed following the
TR model, commits are hard to link to speci�c alpha, beta, release-candidate or
minor releases.

Findings: Less rapid release builds are being tested per day. Figure 8
shows that the number of tested RR builds per day is statistically signi�cantly
lower than the number of tested TR builds per day (0.25 vs. 0.427). We reject H3

01,
i.e., the higher relative frequency of test executions cannot be explained by more
builds being tested. Instead, it seems that each build is tested more thoroughly
(albeit with a smaller coverage, see FF-RQ2).

RR builds contain more code commits than TR builds. To understand
why less RR builds are being tested, we analyzed whether these builds contain
more commits relative to TR builds. Figure 10 compares the distribution of the
number of commits per day for all major TR and RR releases. RR releases result
in statistically signi�cantly more commits per day than the TR releases. Hence,
we can reject H3

02.

16

Traditional Rapid

0
2

4
6

8

O
Ss

 p
er

 d
ay

Fig. 11: Distribution of number of operating systems tested per day for TRs and
RRs.

Feedback QA engineer The QA engineer had not noticed any di�erence
between the number of builds tested between TR and RR releases. However, he
agreed that RRs contained more changes, although he attributed this observation
more to the project's evolution than to the RR model: �As time has gone on we
have increased the number of changes that land per day�.�

�
�
�

RR releases focus testing on fewer, but larger builds
when adjusted for release duration.

FF-RQ4) Does switching to RRs a�ect the number of con�gurations being tested
per day?

Motivation: In this research question, we study the di�erent con�gurations that
are tested, such as di�erent operating systems or support for more locales (i.e.,
language settings and internationalization [29]). More thorough testing of di�erent
con�gurations could explain the larger number of tests per build (FF-RQ3), as
well as the higher workload of individual testers (FF-RQ2).

Null Hypotheses: We test the following null hypotheses:
H4

01: There is no di�erence between the number of tested locales per day for RR
releases and TR releases.
H4

02: There is no di�erence between the number of tested operating systems per
day for RR releases and TR releases.
We again use the Wilcoxon rank-sum test [26] to test these null hypotheses using
a 1% con�dence level.

Metrics: We calculated the following metrics:

� #Tested locales/day: the number of tested locales per day.
� #Tested operating systems/day: the number of operating systems tested per
day.

17

We calculated these metrics for all alpha, beta, release-candidate, major and
minor releases of Firefox in our data set.

Findings: RR tests are conducted manually on only one locale. When
comparing the distribution of the number of tested locales per day, we found that
the number of RR locales tested is only half the number of TR locales tested (0.302
vs. 0.143). It should be noted that the locale �English US� dominates the number
of test executions in all TR and RR releases. The average share of test executions
of the English US locale for TR models is 91%, compared to 99% for RR models.

A slightly lower number of platforms is being tested, but more thor-
oughly. Figure 11 shows that the number of operating systems tested per day has
increased by almost 400% (median of 0.27 vs. 1.286) when moving to RR releases.
However, the total number of tested operating systems has dropped slightly, with
most of the RR releases testing 9 operating systems compared to 12 to 17 for TR
releases. This can be partly attributed to the longer time frame of the TRs, e.g.,
if a major release is tested over a two years period versus 6 weeks (see Figure 4)
it is far more likely that new operating system versions enter the market during
the longer time period.

Furthermore, when looking at the detailed execution data per operating sys-
tem, we found for each RR release that all tested operating systems get roughly
the same amount of test executions. For TR releases, there were large �uctuations
in the number of executions between the tested operating systems.

Feedback QA engineer The interview revealed that locale test coverage
has actually increased, but has been entirely converted to automated tests, disap-
pearing out of the scope of the Litmus system. Furthermore, the total number of
operating systems tested has decreased because �we now distribute across Betas.
For example, we might test Windows 7, OSX 10.8, and Ubuntu in one Beta then
Windows XP, Mac OSX 10.7, and Ubuntu in another Beta�. This con�rms our
�ndings about uniform test attention.�

�
�
�

RR releases test less locales manually. Each sup-
ported operating system is tested more thoroughly,
but spread across beta releases.

FF-RQ5) Does switching to RRs a�ect the similarity of test suites or test teams
across releases?

Motivation: This question investigates how rapid releases a�ect test suite and
test team similarity between releases. A more diverse test suite is preferred (less
similarity) as it has a higher likelihood of �nding defects, and the same holds for
a more diverse set of testers [30]. However, in FF-RQ1 we learnt that the smaller
set of RR test cases consists of a �xed part and a variable part depending on
the feature set of a new release, while in FF-RQ2, we saw that a smaller team
of testers (including a �xed team of contractors) had become responsible for RR
testing. Here we analyze whether the same tests are being tested between every
two subsequent TR or RR releases, and whether this is done by the same testers.

Null Hypotheses: We test the following null hypotheses:
H5

01: There is no di�erence between the similarity of test suites executed for RR

18

Table 6: Average Kappa, ppos and pneg of test case similarity for successive pairs
of main releases only.

TR releases Kappa ppos pneg RR releases Kappa ppos pneg

2.0 vs. 3.0 0.27 0.51 0.73 5.0 vs. 6.0 0.24 0.28 0.91
3.0 vs. 3.5 0.30 0.67 0.61 6.0 vs. 7.0 0.27 0.31 0.93
3.5 vs. 3.6 0.91 0.97 0.94 7.0 vs. 8.0 0.61 0.65 0.95
3.6 vs. 4.0 0.28 0.76 0.52 8.0 vs. 9.0 0.80 0.81 0.98

9.0 vs. 10.0 0.67 0.70 0.97
10.0 vs. 11.0 0.71 0.74 0.97
11.0 vs. 12.0 1.00 1.00 1.00
12.0 vs. 13.0 0.85 0.86 0.99

average 0.441 0.726 0.702 average 0.644 0.670 0.964

releases and TR releases.
H5

02: There is no di�erence between the similarity of test teams for RR releases
and TR releases.
We again use the Wilcoxon rank-sum test [26] to test these null hypotheses using
a 1% con�dence level.

Metrics: As explained in Section 3.2, this question uses Cohen's Kappa to
measure similarity between the choice of test cases and testers of two subsequent
releases within a single main release. Additionally, we use ppos and pneg to investi-
gate whether the similarity is due to positive or negative recurrence. In particular,
we calculate the following metrics:

� #Similarity of test suites: the Kappa value between the test cases executed in
two subsequent releases.

� #Similarity of test teams: the Kappa value between the testers in two subse-
quent releases within a main release.

� #Positive similarity of test cases: the ppos value between the test cases executed
in two subsequent releases within a main release.

� #Positive similarity of testers: the ppos value between the testers in two sub-
sequent releases within a main release.

� #Negative similarity of test cases: the pneg value between the test cases exe-
cuted in two subsequent releases within a main release.

� #Negative similarity of testers: the pneg value between the testers in two sub-
sequent releases within a main release.

Note that these measures are di�erent from the number of test cases executed
per day of FF-RQ1, or the number of testers executing test cases per day of FF-
RQ2. Those metrics only concern individual releases, while the similarity measures
of this question look at the di�erence between the choice of test cases and testers
of two subsequent releases.

RR releases have higher test suite and test team similarity between
individual releases. Test suites between releases have high similarity in RR
releases, with median Kappa of 0.977, see Figure 12. Although TR releases also
have a relatively high similarity (median Kappa of 0.769), this is signi�cantly
lower than for RR releases, thus we reject H5

01. Studying Figure 14 (a) and (b)
shows that both the positive (ppos) and negative (pneg) similarity are higher in RR
and both di�erences are also statistically signi�cant (p<0.001). Positive similarity
measures the proportion of test cases that are executed in two subsequent releases

19

●

●

●

●
●

●

●

●

●●
●

Traditional Rapid

0.
2

0.
4

0.
6

0.
8

1.
0

Te
st

 c
as

es
 −

 C
oh

en
's

 K
ap

pa

Fig. 12: Similarity (Cohen's Kappa) of executed test cases (test suites) between
two subsequent RR or TR releases.

●

●

●●

●

●●

●

●

●

●

●

●

Traditional Rapid

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Te
st

er
s

−
 C

oh
en

's
 K

ap
pa

Fig. 13: Similarity (Cohen's Kappa) of testers between two subsequent RR or TR
releases.

and negative similarity measures the proportion of test cases that are executed
in neither of two subsequent releases. The investigation of ppos and pneg provides
strong support that the higher test suite similarity in RR is trustworthy and not
due to unbalanced data.

20

●
●
●

●

●

●

●

●

●
●

●

●

●

●●
●

Traditional Rapid

0.
2

0.
4

0.
6

0.
8

1.
0

Te
st

 c
as

es
 −

 p
 p

os

(a)

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●●

Traditional Rapid

0.
6

0.
7

0.
8

0.
9

1.
0

Te
st

 c
as

es
 −

 p
 n

eg

(b)

●

●

●●

●

●●

●

●

●

●

●

●

Traditional Rapid

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Te
st

er
s

−
 p

 p
os

(c)

●

●

●

●

●

●

●

●●

●

Traditional Rapid

0.
97

0.
98

0.
99

1.
00

Te
st

er
s

−
 p

 n
eg

(d)

Fig. 14: Proportions of positive ppos and negative pneg [23] similarity between two
subsequent RR or TR releases, for tests ((a) and (b)) and testers ((c) and (d)).

Since we did not expect such high similarities, we also checked the similarity of
test suites at the level of successive pairs of main releases, i.e., where we group all
individual releases into their main release. For RR releases, Table 6 shows that the
average Kappa over the main releases was 0.644, while for TR releases the average
Kappa over the main releases was 0.441. This lower test suite similarity at the
level of main releases (in contrast to individual releases) is what one would expect,
since each main release focuses on a di�erent scope of features and we have seen in
FF-RQ1 that a release's test suite (partially) depends on the release's scope. The
positive test suite similarity is somewhat higher in TR than in RR at the main
release level, which contradicts our �ndings from individual releases. However, one
should be careful interpreting the averages of Table 6, as the variations in the

21

Table 7: Average Kappa, ppos and pneg of tester similarity for successive pairs of
main releases only.

TR releases Kappa ppos pneg RR releases Kappa ppos pneg

2.0 vs. 3.0 -0.02 0.12 0.80 5.0 vs. 6.0 0.22 0.23 0.99
3.0 vs. 3.5 -0.20 0.12 0.67 6.0 vs. 7.0 0.55 0.56 1.00
3.5 vs. 3.6 -0.14 0.09 0.76 7.0 vs. 8.0 0.60 0.60 1.00
3.6 vs. 4.0 -0.15 0.10 0.71 8.0 vs. 9.0 0.36 0.36 1.00

9.0 vs. 10.0 0.30 0.30 1.00
10.0 vs. 11.0 0.47 0.47 1.00
11.0 vs. 12.0 0.67 0.67 1.00
12.0 vs. 13.0 0.67 0.67 1.00

average -0.130 0.108 0.733 average 0.479 0.482 0.997

metrics are large and the data set at the level of main releases is too small for
reliable conclusion.

Figure 13 shows that the similarity of test teams between releases is higher for
RR, with a median Kappa of 0.625 vs. 0.108 for TR releases. This di�erence is
statistically signi�cant and we therefore reject H5

02. Studying Figure 14 (c) and
(d) shows that both the positive and negative similarity of test teams are higher
in RR and both di�erences are also statistically signi�cant (p<0.001).

The result of FF-RQ2 already showed that there is a reduction in number of
testers, while the result of FF-RQ5 shows that mostly the same testers work in
all releases. These are two di�erent �ndings. Indeed, having a smaller test team
in the worst case could mean that tester retention is very hard, with each release
seeing a di�erent group of testers starting up. Our �ndings suggest that this is not
the case, and that despite its smaller size the composition of testers remains more
stable over time.

To understand whether the more stable composition is due to testers being
stable inside a particular release series (e.g., all alpha, beta and main releases of
Firefox 5.x) compared to across di�erent release series (e.g., Firefox 5.x vs. 6.x),
we also calculated test team similarity at the main release level (Table 7). We
�nd that tester similarity between the main releases is lower than between the
individual releases. This suggests that, similar to test cases, testers are relatively
stable inside a particular release series, while across di�erent release series the
composition of the test team varies. This might be due in part to the reduction in
the testing community, as discussed in FF-RQ2.

Feedback QA engineer Regarding the di�erences in similarity of test suites,
the QA engineer explained that before the switch to rapid release, tests were
grouped into basic smoke tests run once per week, more complex tests run once
per beta version, and very deep and hard to set up tests run right before the main
release. All tests in the �rst category and many of the tests in the second were
automated when switching to RRs.

After the switch, Litmus and Moztrap (successor of Litmus) tests consist of
a varying set of feature tests that change for each main release, a �xed set of
smoketests run on a weekly basis �as a community-oriented set of tests to teach
newcomers about testing�, and a more or less �xed set of regression tests run
throughout the beta releases. As a rough ballpark number, the QA engineer es-
timated �This is a really really wild guess but it might breakdown something like
10:10:80 per 100 tests (Smoketests, Regression Tests, and Feature Tests respec-

22

tively)�. Regardless of the exact percentage, it is clear that the main release-speci�c
set of tests dominates, which explains why similarity across release series is rela-
tively low compared to between the individual releases.

Regarding test team similarity, there are three main groups of testers. Test
leads are assigned to a speci�c version that they follow from start to end, across
the di�erent release channels. Afterwards, they start with a new version from the
�rst channel on. These test leads come from a �xed pool of people. The second
group (again a relatively �xed pool of people) consists of testers that are in charge
of speci�c features, regression testing and bug triaging (on a weekly basis). Con-
trary to the test leads, �These people are working across all four branches at any
given time. Once their feature is shipped they pick up a new feature that's under
development in Nightly�. Finally, volunteers help out with smoke testing and bug
triaging, on-demand (as requested by a test lead). This group consists of a �xed
group of committed people and ever-changing group of newcomers. The QA engi-
neer noted that �There is certainly a group of people who come to report a bug and
leave once they've tested its been �xed but I think that group is in the minority�.
These �ndings support our �nding that for RR, the set of testers is relatively �xed
within a release series and explains that the changes in testers across release series
are caused by some testers being tied to one particular release or feature only, and
by a changing group of newcomers.�

�
�
�RR releases have higher similarity in test suites and

test teams inside a release series.

FF-RQ6) Does switching to RRs a�ect when the testing happens for a release?

Motivation: This �nal research question further explores our �ndings for FF-RQ1,
where we found that RR releases execute more tests per day than TR releases.
Although we analyzed the cumulative trend of the number of test executions over
time (Figure 4), we could not di�erentiate between beta, minor or major releases,
nor did we analyze or compare for each release whether testing occurs early on,
is done at the last minute or at a constant rate during the release cycle. This
is important to understand, since prior work indicates that early testing has a
positive impact on product quality [9]. Hence, here we study the di�erences in the
temporal distance of testing, i.e., does system testing happen early or late in the
release cycle.

Null Hypothesis: We test the following null hypothesis:
H6

01: There is no di�erence between the normalized temporal test distance of RR
releases and TR releases.
We again use the Wilcoxon rank-sum test [26] to test this null hypothesis using a
1% con�dence level.

Metrics: Our measure for this hypothesis is the temporal distance between a
test case execution and the release date. All test cases that are executed on the
day of the release get a value of zero. The test cases executed the day before get a
value of one and so on. To summarize these values into one number, we calculate
the average value across all test cases, then divide by the release cycle length to
normalize the average to a value between zero and one (to resolve di�erences in
release cycle length). For each release, we obtain the following metric:

23

Fig. 15: Normalized temporal distance of test executions. Values closer to zero
indicate that testing happens closer to the release date.

� Normalized temporal test distance: the average distance of test cases to the
release date, normalized by the release cycle length of that release.

RR testing happens closer to the release date. Figure 15 shows that the
bulk of RR testing happens closer to the release date. This result is statistically
signi�cant (0.200 vs. 0.356), hence we reject H6

01. This suggests that testing in
RR releases perhaps is performed under greater time or deadline pressure than
in TR, although FF-RQ1 showed that in RR releases testing is rather linearly
distributed, starting roughly when the previous main release has been released
(Figure 4).

To further investigate the e�ect of deadline pressure and the timing of the
testing, Figure 16 plots a four week (28 days) moving average of the number of
test executions of all releases for the TR and RR releases. This means that for each
day, we calculate the average number of test executions in the past four weeks (28
days), which gives us a measure of the amount of test e�ort in the near past. The
�gure shows that spikes in testing, that correspond to the main releases, have equal
heights in TR and RR. Additionally, the �gure shows that the higher number of
test execution of RR are due to having continuously high volume. Thus, in TR
the spikes in the amount of testing are proportionally higher than in RR due to
lower overall test execution volume. The extra high peaks in early 2012 correspond
to the ESR version 10.0. During that time, the upcoming release 11.0 was tested

24

0

100

200

300

400

2007 2008 2009 2010 2011 2012

Te
st

 e
xe

cu
tio

ns
 −

 2
8

da
y

av
er

ag
e

Fig. 16: 28-day moving average of the number of test executions for all TR (blue)
and RR releases (red). Dashed lines represent main release dates for TR (blue 2.0,
3.0, 3.5, 3.6, 4.0) and RR (red 5.0-13.0)

while the testing for the released ESR version 10.0 continued. To conclude, RR
testing sees a more continuous activity with less variation.

Feedback QA engineer Regarding the more deadline oriented testing in RR
the QA engineer was unsure �I don't know, I think testing has always been and will
always be deadline oriented�. This observation matches the spikes in Figure 16 for
testing related to the main releases of both TR and RR. However, we received
no con�rmation of our �ndings in Figure 15 that individual RR releases would
be more deadline-oriented. Perhaps, this observation, which comes from 213 indi-
vidual releases, is unnoticeable in practice. Additionally, the interview con�rmed
that after the switch to rapid release, testing continuously is done in a high vol-
ume, in the following sense: �Before the switch to rapid release the deadlines ran
in serial, now they run in parallel. As such we now test in parallel (or near par-
allel). Betas get most of our attention as they're the closest to release, Aurora is
our second priority, and Nightly is our third priority�. However, the QA engineer
pointed out that periods with very low o�cial testing volume in TR, in particular
the zeros in Figure 16, might have masked other means of testing not visible in the
Litmus system: �When builds were in Alpha before rapid release there was daily
dogfooding�. �

�

	

Our �ndings suggest that RR testing is more
deadline-oriented and continuous, yet this was not
con�rmed by the QA engineer. The spikes in the
amount of TR testing before main releases are pro-
portionally higher than for RR testing.

25

Table 8: Kendall's tau correlation between release model, length and date. Signif-
icance levels *=0.05 **=0.01, ***=0.001.

Release length Project Evolution
Release model 0.397*** -0.634***
Release length N/A -0.294***

Table 9: Partial correlation of three variables (release model, length and date) with
test e�ort, while controlling for two out of the three variables. Signi�cance levels
*=0.05 **=0.01, ***=0.001.

FF-RQ
Partial Kendall correlation coe�cients

Release Release Project
Model Length Evolution

#Test executions/day (FF-RQ1) 0.026 -0.414*** 0.048
#Test cases/day (FF-RQ1) -0.231*** -0.593*** 0.017

#Testers/day (FF-RQ2) -0.224*** -0.331*** -0.069
#Builds/day (FF-RQ3) -0.105* -0.258*** -0.176***
#Locales/day (FF-RQ4) -0.281*** -0.443*** -0.115*

#OSs/day (FF-RQ4) 0.149** -0.822*** 0.130**
Cohen's Kappa (Test suite) (FF-RQ5) 0.187*** 0.117* 0.177***

Cohen's Kappa (Tester) (FF-RQ5) 0.422*** -0.036 0.030
Temporal test distance (FF-RQ6) -0.176*** -0.002 -0.110*

Table 10: E�ects of Rapid Releases.

Signi�cant increase No Signi�cant e�ect Signi�cant decrease

E�ect of RR Test executions, Op-
erating systems, Test
case similarity, Tester
similarity

Unique test cases Release length,
Testers, Builds, Lo-
cales, Temporal test
distance

E�ect of RR after

controlling for con-

founders

Operating systems ,
Test case similarity,
Tester similarity

Test executions Release length,
Testers, Builds, Lo-
cales, Temporal test
distance, Unique test
cases

Fig. 17: Model explaining the relationship between release model, release length
and test e�ort.

5 Confounding Factors and a Theoretical Model

During our empirical study, we realized that there are two important confound-
ing factors that may a�ect the results: release length and the project's natural
evolution. First, one could easily think that the di�erences observed between TR
and RR are not due to the choice of release model itself, but due to the release

26

cycle length, since some of the TR releases have a shorter release cycle as well
(see Figure 2). Second, the evolution of the project refers to the natural changes
and events occurring over time, which are not necessarily related to release length
or release model. For example, the reduction in the number of testers over time
could be due to re-organization across competing projects or to a loss in com-
munity interest. To complicate matters more, both of these confounding factors
are impacted signi�cantly by the choice of release model, as the correlations be-
tween these variables show (Table 8). In these calculations, release length (days
between releases) and project evolution (the time-stamp of each release date) are
simply modelled as continuous numeric variables, while release model is nominal,
set either to zero for TRs or one for RRs.

To analyze the impact of these confounding factors, we investigated the e�ect
of release model, release length, and project evolution on the metrics calculated for
the research questions, while controlling the confounding e�ect that these variables
have on each other. For this, we used partial correlations (R package ppcor [31]),
in which the correlation of one of the FF-RQ's metrics between RRs and TRs is
measured, while controlling for two variables out of release model, release length,
and project evolution. We used the non-parametric Kendall tau correlation instead
of linear multiple regression, since the data is not normally distributed.

Table 9 shows that the release model has a signi�cant e�ect for eight out of
the nine metrics when controlling for the release length and project evolution. It
appears that the number of test cases, testers, builds and locales tested per day
are signi�cantly smaller in the RR releases, while the number of operating systems
per day signi�cantly increases in the RR releases. Furthermore, test suite and
test team similarity increase with RR model, while temporal test distance (early
testing) shrinks, making the testing more deadline-oriented. On the other hand,
the larger number of test executions per day for RR releases is not statistically
signi�cant when controlling for release length and project evolution. Instead, the
e�ect that we observed in FF-RQ1 seems to be due to the consistently shorter
time in between releases.

Regarding release length, the results show that test e�ort overall increases when
release length shrinks, i.e., testing becomes more work. One hypothesis, supported
by the feedback that we received, is that for the short TR releases a �xed set
of regression tests needs to be run, regardless of the release duration. Another
hypothesis is that the shorter TR releases are more often rapid patches used to
quickly �x major bugs in an earlier release. In such a scenario, the changes in code
are small, but as the release is going for millions of users they must be thoroughly
regression-tested.

When looking at project evolution, we �nd �ve signi�cant correlations. It ap-
pears that the number of builds and locales tested decreases as the project moves
along while the number of tested operating system increases. Perhaps this is due
to project members learning what variation factors in testing are more signi�-
cant than others. This seems to be con�rmed by the fact that test suite similarity
increases, perhaps due to increased understanding about which test cases are im-
portant. Finally, testing starts later as time moves along. This might be caused by
the use of a more similar set of test cases: testing a familiar set of test cases takes
less time, thus, one starts working on it later. However, these �ndings regarding
project evolution are hypotheses and should be more thoroughly investigated in
further studies.

27

Taking all of this into account, our interpretation of the relation between release
model and test e�ort is depicted in Figure 17. Our initial hypothesis was that
the shorter release length of RR releases was responsible for increased testing
e�ort. However, even after controlling for the e�ect of the RRs' shorter release
length, the RRs have a lower number of test cases, testers, tested builds and
tested locales. This means that Firefox' development process must have changed,
as supported by the received feedback, since otherwise one would actually expect
a higher proportion of the above metrics. The change in process has focused the
testing e�orts for the RR releases compared to the TR releases. Only the increase
in test executions per day can be fully attributed to the shorter release length.

Table 10 shows the e�ects of rapid releases before and after controlling for
the confounding factors. We like to think that the �rst row of the table shows
the impact of RR from a practitioner's viewpoint. Practitioners are not interested
whether something stems from changes to release length or to the rapid release
model as these two are highly correlated, as seen in Figure 2 and Table 8. However,
from a researcher or developer viewpoint it is interesting to see whether something
is explained directly by the release length or by the change in the release model,
cf. Table 9. Additionally, the separation allowed us to create a model for rapid
release testing that explains the e�ects of the shortening of release cycle length
and the necessary level of test e�ort, see Figure 17.

6 Semi-Systematic Literature Review

Given the �nding that, even after controlling for confounding factors, rapid releases
have an important impact on system testing, we decided to analyze the concept
of rapid releases from closer by. This section discusses our semi-systematic lit-
erature review on the migration from TR to RR release models. Our literature
review full�lls some criteria of a systematic literature review (SLR) [32], but not
all. In particular, the SLR criteria that were ful�lled are design and documenta-
tion of search strings, usage of dedicated databases, analysis of number of hits,
documenting the included papers for each search string, and the usage of explicit
inclusion/exclusion criteria. The SLR criteria that we failed to meet are having
multiple authors evaluate the papers, and doing more rigorous quality assessment
of the study, data extraction and data synthesis. Additionally, we included papers
that were not found via our search strings, which is not part of SLR process. We
therefore called our literature review a semi-systematic literature review, since this
seems to be the most accurate description.

In particular, we searched for existing empirical studies of rapid releases in
software engineering, to answer the following research questions:

LR-RQ1) Where do RRs originate from?

LR-RQ2) What is the prevalence of RRs?

LR-RQ3) What are the bene�ts of RRs?

LR-RQ4) What are the enablers of RRs?

LR-RQ5) What are the problems of RRs?

28

Fig. 18: Main �ndings of the semi-systematic literature review and the Firefox
study.

Table 11 describes the search queries that were used and the number of papers
returned for each of them in paper abstracts hosted by the Scopus database.
The queries are variations of the terms �continuous release�, �continuous delivery�
and �continuous deployment� [33]. The Scopus database contains the titles and

29

abstracts of articles of all major academic databases, such as IEEEXplore, ACM
digital library, Elsevier and Springer.

Once we had obtained the results of these queries, we applied our inclusion
and exclusion criteria. To be included paper needed to ful�ll one or more of the
following criteria:

� Papers with the main focus on rapid releases
� Papers with the main focus on an aspect of software engineering that was
largely impacted by the rapid release model

� Papers with the main focus on an agile, lean or open source process having
results of rapid releases

From the included papers, we particularly excluded:

� Opinion papers without empirical data on rapid releases

Table 11 shows how our systematic search was plagued by a low signal to noise
ratio, i.e., we found many papers that mentioned our search terms, but lacked
actual empirical data about rapid releases in an industrial or open source soft-
ware engineering context. In many abstracts, rapid releases were mentioned, but
no empirical results were given in the paper. Conversely, we encountered papers
where rapid releases were not mentioned in the abstract, but the papers still pre-
sented results of rapid releases in the other sections. To deal with those cases, we
performed additional literature search in a less systematic approach, focusing on
papers that we were already aware of ourselves, papers found by a full text search
using google scholar, and papers studying agile adoption that did not explicitly
mention our search terms in their abstract. We believe that our search results o�er
the most comprehensive review of rapid releases to date.

The following sections present our �ndings in more detail, together with the
appropriate references. Figure 18 provides the reader with a high-level overview of
the results from our semi-systematic literature review.

6.1 Context and Prevalence of Rapid releases - LR-RQ1 and LR-RQ2

Rapid releases are becoming an important part of several software engineering
processes, and they are also used in several di�erent software domains. Thus, rapid
releases are cross-cutting approaches that are highly relevant to many software
development organizations. At the same time, the amount of high quality evidence,
i.e., the measured impact of rapid releases is weak. We can �nd papers on agile
adoption, but often the papers rely on perceived opinions, in the form of interviews
or survey answers, rather than actually measured data. Additionally, the agile
adoption papers do not make a clear distinction between TR and RR releases,
which makes it di�cult to see what changes are caused by rapid releases.

6.1.1 Software Development Processes - LR-RQ1

First, shorter release cycles form an integral part of various agile methodologies,
such as XP [3] or Scrum [56], since they enable companies to act faster on changing
market demands and they enable faster customer feedback. The latter is believed to
lead to better product quality, since every release undergoes separate QA scrutiny

30

Table 11: Search queries of the literature review.

Search String used in Scopus Papers in-
cluded /
Papers found

Included pa-
pers

TITLE-ABS-KEY((�continuous release� OR �rapid release�
OR �frequent release� OR �fast release� OR �quick release�
OR �speedy release� OR �accelerated release� OR �agile
release� OR �short release� OR �lightning release� OR �brisk
release� OR �hasty release� OR �compressed release� OR
�release length� OR �release size� OR �release cadence�)
AND Software) AND (LIMIT-TO(SUBJAREA,�COMP�
) OR LIMIT-TO(SUBJAREA,�ENGI�) OR LIMIT-
TO(SUBJAREA,�BUSI�))

15/72 [34,35,36,37,
38,39,40,41,7,
42,43,44,45,
46,47]

TITLE-ABS-KEY((�continuous delivery� OR �rapid de-
livery� OR �frequent delivery� OR �fast delivery� OR
�quick delivery� OR �speedy delivery� OR �accelerated
delivery� OR �agile delivery� OR �short delivery� OR
�lightning delivery� OR �brisk delivery� OR �hasty de-
livery� OR �compressed delivery� OR �delivery length�
OR �delivery size� OR �delivery cadence�) AND Software
AND Delivery) AND (LIMIT-TO(SUBJAREA,�COMP�
) OR LIMIT-TO(SUBJAREA,�ENGI�) OR LIMIT-
TO(SUBJAREA,�BUSI�))

4/145 [48,49,50,51]

TITLE-ABS-KEY((�continuous deployment� OR �rapid
deployment� OR �frequent deployment� OR �fast deploy-
ment� OR �quick deployment� OR �speedy deployment�
OR �accelerated deployment� OR �agile deployment� OR
�short deployment� OR �lightning deployment� OR �brisk
deployment� OR �hasty deployment� OR �compressed
deployment� OR �deployment length� OR �deployment
size� OR �deployment cadence�) AND Software AND
Deployment) AND (LIMIT-TO(SUBJAREA,�COMP�
) OR LIMIT-TO(SUBJAREA,�ENGI�) OR LIMIT-
TO(SUBJAREA,�BUSI�))

5/211 [34,52,53,54,
55]

and customers will quickly report severe bugs, which then in turn can be �xed
earlier.

Second, the free and open-source software community (FOSS) has also been
propagating a rapid release approach, popularized by Raymond's book using the
statement �Release early. Release often.� [30]. The release cycles of FOSS develop-
ment have been studied in various papers. Ten years ago, Zhao et al. found that
54% of the open source apps released at least once per month. Five years later,
Otte et al. [57] found slightly contrasting numbers (on a di�erent set of apps), i.e.,
49.3% released at least once per 3 months. Although this is still relatively rapid,
it is not clear why this shift has happened. It seems that projects still followed
shorter cycles, but they seemed to have moved to a combination of time- and
feature-based releases instead of time-based only.

Third, lean software development [58,59,60,61], which originates from Toyota's
car manufacturing philosophy, emphasizes rapid releases. A cornerstone of lean is
a continuous �ow of work items and a minimized waste and inventory. In software
engineering, the inventory could be features or bug �xes that have not yet been
delivered to the customer. Thus, a lean approach to software engineering also drives
rapid releases. For example, a case study in the UK [49] shows how the adoption
of the lean approach resulted in more rapid releases with shorter lead time.

31

Fourth, rapid releases are also known under the terms �internet-time� soft-
ware development or �high-speed� development. For example, Cusuman et al. (p.
233, [62]) show how major releases of Netscape and Microsoft browser and server
products occurred faster than the operating system releases of Microsoft of that
era (3 to 18 months versus 24 to 41 months). Yet, even the browser and server
products release cycle was relatively slow in today's standards. Additionally, a case
study of high-speed development in ten US companies [35] points out that frequent
software releases are a key practice in high-speed software development. The ma-
jor �nding regarding software quality was to have frequent synchronizations of
work through builds and have stabilization periods for more serious testing. Those
studies present no measures of the impact of rapid releases on software quality,
software testing, or other software engineering concepts.

6.1.2 Domains - LR-RQ2

In recent years, many modern commercial software projects [63,64] and open
source projects backed by a company [13,65] have switched towards shorter re-
lease cycles. Tool builders and researchers (e.g., [8]) have focused especially on
enabling continuous delivery [33]. Amazon, for example, deploys on average every
11.6 seconds [64], achieving more than 1,000 deployments per hour.

We found studies of rapid releases from several domains, such as �nance [52,
63], automotive [45,53], telecom [9], online shops [64], and systems of systems from
the surveillance domain [54]. In addition, even domains where strict processes are
traditionally followed, such as the US Department of Defense [40], fusion reac-
tors [41] and space shuttles [38] are starting to use rapid releases. Hence, rapid
releases can be part of any software development domain. However, no concrete
�ndings or numbers are provided to prove why rapid releases and related ideas
improve on the existing approaches, making RR models still a largely open area.

6.1.3 Prevalence and Importance - LR-RQ2 and LR-RQ3

We found several survey studies that have assessed the prevalence of rapid releases.
A survey of agile adoption and perceptions at Microsoft [37] found that rapid
release was the second most mentioned bene�t of agile software development and
it was practiced by 2/3 of the respondents. It was perceived that rapid releases
enable easier progress tracking, easier monitoring of the quality of the software,
more rapid feedback to improve the product, a reduction of turnaround time and
hence easier bug �xing.

Another survey of agile perception in 62 UK organizations found that 53% of
these organizations delivered software at least once a month, 31% used three month
cycles while only 17% delivered just the �nal release [51]. Kong et al.'s survey
with 57 developers [66] shows that shorter release cycles are (amongst others) the
best practice for �achieving customer satisfaction� and for �being responsive to
customers' changing needs�. In contrast, the 2012 State of Agile Survey [67] with
4,048 participants showed that shorter releases (in the survey the question asked
for use of continous deployment and not rapid releases) are the least popular agile
practices, mentioned by 23% of the respondents. Still, 73% of the people stated that
reduced time to market was ranked as the number one reason for agile adoption.

32

Although some contradictions between the results can be found, due to the
di�erences in populations and questionnaire setup, still it seems that rapid releases
are a highly popular industrial practice that is often among the top items among
agile practices.

6.2 Rapid releases as main study targets - LR-RQ3 and LR-RQ5

Despite the prevalence and increased adoption, the impact of rapid releases on
the quality of the software product experienced by the end user has not been
studied until recently. Baysal et al. [6] compared the release and bug �x strategies
of Mozilla Firefox 3.x (TR) and Google Chrome (RR) based on browser usage
data from web logs. Although the di�erent pro�les of both systems make direct
comparison hard, the median time to �x a bug in the TR system (Firefox) seemed
to be 16 days faster than in the RR system (Chrome), but this di�erence was not
signi�cant.

Khomh et al. [7] studied the impact of Firefox' transition to shorter develop-
ment cycles on software quality and found no signi�cant di�erence in the number of
post-release defects. However, proportionally less defects were �xed (when normal-
izing for the shorter time between releases) and users experienced crashes sooner
than with traditional releases.

Baysal et al. [36] found no signi�cant di�erence in source code patch life cycle
when comparing the traditional and rapid releases of the Mozilla Firefox project.
Thus, that part of development process was una�ected by the move to the rapid
release model.

Lavoie et al. [42] studied Firefox source code changes in traditional and rapid
releases with a clone detector. They found that in rapid releases there are fewer
changes between the main version releases at the source code level. However, the
changes were not normalized for the time elapsed between releases and the authors
themselves speculate that �. . . even if the release cycle changed, the total amount
of work put in the same period of time may still be similar�.

Maalej [44] found that individuals working in rapid release projects (with a
release cycle of less than 4 weeks compared to a control group with a release
cycle longer than 8 weeks) preferred software engineering tool integration through
tasks whereas the control group preferred an activity- or component-based tool
integration. This suggests that rapid releases increase work orientation to tasks
over software engineering process or software architecture, e.g., what steps I have
to take to get this task done over what steps I have to take in software design,
implementation or testing.

6.3 Bene�ts of rapid releases in agile and lean process adoption - LR-RQ3

A number of case studies have been published by companies that moved to agile
methodologies [9,10,68,69]. However, since many agile techniques and team re-
structurings were introduced at once, the observed changes cannot be related to
shorter release cycles alone.

Petersen et al. [9] showed that early and continuous testing has a positive
e�ect on fault-slip-through when migrating from plan-driven to agile development

33

with faster releases. They also reported on the improvements of test coverage at
unit-test level. Earlier research [70] found that frequent deliveries to subsystem
testing allowed earlier and more frequent feedback on each release, and increased
the developers' incentives to deliver higher quality.

Li et al. [10] investigated the e�ect on product quality of introducing Scrum
with a 30-day release cycle. They found that the quality focus had improved due to
regular feedback for every sprint, better transparency, and an improved overview
of remaining defects, leading to a timely (i.e., improved) removal of defects.

Escrow.com reduced its release cycle to iterations of 2 weeks, with up to three
iterations forming a customer release [68], resulting in a reduction of the number of
defects by 70%. They noticed that the number of defects surviving until acceptance
testing reduced by 70%. Marschall [69] found that releasing features as soon as
they are done increases the developers' awareness of quality and their commitment,
as they are able to see the link between their contribution and the quality of the
end result.

Kettunen et al. [71] studied the di�erences in testing activities due to di�erences
in process models. Organizations applying agile methods in general have to be more
�exible in terms of testing practices in order to manage testing in parallel with
development work. They found that early testing leads to more test execution time
and a need for more predictable test resources.

Other process models than agile also have assessed rapid releases. In distributed
software development, rapid releases were also found to be a practice that improves
collaboration between distributed software development sites [50]. A case study
from the UK [49] claims that the lean approach resulted in more rapid releases with
shorter lead time that reduced both technical and market risks. Furthermore, the
lean approach, which promotes continuous �ow (i.e., continuous releases), indicates
that workload peaks should be avoided for multiple reasons: defects are hidden and
discovered late, the introduction of the defect has occurred a longer time ago (the
person �xing it has di�culty to remember the whole context), waiting times are
created, waiting times are reduced (SPI-LEAM), and stress-peaks are avoided [58].
Bell et al showed how defect prediction can be used even under a continuous release
process with more frequent release dates [47].

6.4 Enablers - LR-RQ4

The enablers describe accelarating factors that facilitate the adoption of rapid
releases, although they are not necessary preconditions. Several case studies [34,
35,45] point out that frequent software releases are achieved through the parallel
development of several releases. Hence, it is possible for a single release to have a
long lead time on its own, but because development of di�erent releases overlaps,
the customer sees a frequent stream of new releases.

Olsson et al. [72] present a framework with key barriers for moving from tra-
ditional development to rapid releases in �innovation experiment systems�. They
validate their approach with a case study in four companies. The given key barri-
ers were the deployment of agile practices, automated testing, the involvement of
product managers and pro-active customers. Other reports and companies point
out that rapid releases require e�cient build, test, and release infrastructure [34,
69].

34

A case study of a US Department of Defense (DoD) contractor [40], showed
that DoD contractors also can have rapid releases. However, to enable rapid release
all the way through to the production environment, one needs to accelerate the
approval testing process of the software, which goes through 3 phases of external
testing that can take up to 9 months. This problem was partially solved by starting
the approval testing process simultaneously with the contractor testing process.
The organization also planned to use more automated tests to further accelerate
this process.

One area where release cycle time and software quality intersect is release
planning, i.e., �the selection and assignment of features to a sequence of consecutive
product releases such that the most important technical, resource, budget and risk
constraints are met� [73]. Either the release cycle is �xed, and features need to
be selected to ensure a given quality level, or a feature set has been selected and
the release cycle varies to ensure a given quality level. In principle, one could also
vary the quality between releases, but in practice this is dangerous as users are
expecting a certain quality level and deviating from that would reduce the user
base permanently. A set of articles regarding release planning matched our search
term �agile release�, but when we looked into those articles the release length
simply appeared as a variable in the release models without providing insights
regarding rapid releases [74,75].

6.5 Negative Issues - LR-RQ5

There are a number of negative issues surrounding rapid releases. First, literature
links rapid releases with problems of reliability and lack of testing coverage. Li et
al. [43] point out that rapid releases and high reliability are con�icting aims. The
authors propose a reliability model that �nds an optimal compromise between hav-
ing rapid releases and high reliability, and test the model with data from Apache
and Gnome projects. Similarly, shorter release cycles make it impossible to test all
possible con�gurations of a released product [8]. Furthermore, Petersen et al. [9]
point out that in rapid releases the test cycles are often too short to conduct an
extensive system test of quality attributes (e.g., performance), as these are more
time-intensive.

Second, advocates of rapid releases and agile methods state that automated
testing is the solution for reliability and testing problems. Although automated
unit tests start becoming a standard practice in the industry, automated accep-
tance testing is more di�cult to achieve, as only 27% of the respondents of a
large practitioner survey used it (compared to 74% using unit tests) [67]. Simi-
larly, case studies and surveys [76,77,78] show that automation is no silver bullet.
For example, in a recent survey [78] only 6% of the respondents agreed that test
automation can fully replace manual testing. An example of test automation prob-
lems comes from an Indian company that had implemented rapid releases [34]. The
GUI-tests were created through manual testing, during which the testers recorded
their actions into an automated GUI-script. However, when using the recorded
scripts afterwards, the company had problems recognizing when the automated
tests failed, i.e., the test-oracle problem. Hence, they have testers to �watch the
system manually as the automatic testing takes place�. This was despite the fact
that the company had used several di�erent GUI testing tools. Thus, although

35

automation can alleviate the problems of rapid releases it seems unlikely that it
can completely solve the challenges related to reliability or test coverage.

Third, releasing too frequently not only decreases the time to run tests, but
it might also make customers weary of yet another update to install [8,79]. This
problem might be exacerbated by customers who have heavy formal acceptance
processes for a new version or by customers that developed in-house applications
on top of a software product that changes to a rapid release model. An example
of the former is a DoD project where the formal acceptance phase could take 9
months [40], while an example of the latter is given by a Firefox corporate cus-
tomer: The customer has thousands of internal apps that have to be tested and
validated for each major Firefox release, thus, the adoption of rapid release model
�is a kick in the stomach� [4]. For this reason, many projects do not automati-
cally distribute each release to their customers. To cope with exactly this problem
Firefox adopted an �Extended Support Release� (like Firefox 10.0, see FF-RQ1)
that has a lifetime of 54 weeks instead of the standard six weeks [27]. Similarly,
the Eclipse project uses 6-week release cycles, but the resulting milestone releases
are only available to interested users and developers [65]. Naturally, clear commu-
nication about each release is necessary to make sure that only the intended user
group deploys the new release [65,79].

Fourth, rapid releases may also increase technical debt as there is less time
available for thinking things through. A case study of technical debt within a
large US company (250 developers) [39] found that developers observe technical
debt stemming from speed and lack of discipline in the development environment.
Thus, the rapid releases may force software engineers and testers to cut some
corners. Furthermore, a case study of 5 industrial projects (2 from Ericsson, the
open source Linux kernel, FreeBSD and JBoss projects) [46] found that strict
deadlines increase technical debt.

To control for technical debt in rapid releases, one must dedicate time to �x
technical debt outside of the tight time frame of rapid releases [46]. Another way
to avoid technical debt occurs in the Linux and FreeBSD projects, which do not
set deadlines for tasks although they have a regular release schedule (3 month for
Linux and 12 months for FreeBSD). Furthermore, low quality work is blocked by
the pre-commit review phase [46], or alternatively, in a scrum project, one can
have a separate backlog for such tasks. For example, Azham [48] suggests that
having a separate backlog to deal with security issues can be a certain type of
technical debt.

7 Discussion

Here, we compare the �ndings of the Firefox case study and the semi-systematic
literature review, i.e., what do our �ndings in the case study add to existing
work? Again, Figure 18 helps to obtain a high-level view of all our �ndings, both
originating from the Firefox study and the literature review.

LR-RQ1) Where do RRs originate from?

In the literature review, we found that rapid releases are part of agile, open
source, lean and internet speed development. On the other hand, our study on
the transition to rapid releases of the Mozilla Firefox project is not tied to a new

36

development paradigm such as agile or lean. Rather, in our study the move to
rapid releases was market-driven, inspired by a competitor's strategy on frequent
releases. Such changes are not necessarily driven by traditional software process
improvement drivers like improving the software quality or decreasing the cost
of the development process. Although those drivers played a role in the case of
Firefox, the changes to the software development process correlated with faster
crashes in the early RR releases [7], and created a need to hire more contractors
for testing, as shown in FF-RQ2.

Firefox is an open source project and rapid releases are a practice of open source
development. In the traditional release model, Firefox had the main version coming
up roughly once a year and individual smaller releases every 26 days (median),
see Figure 2. Thus, we cannot say that the traditional model had particularly
infrequent releases since a release came out roughly once a month. However, when
moving to RR the process became more organized with �xed, faster main releases
coming out every six weeks and individual smaller releases coming out roughly
once a week (median). Thus, the Firefox case can be summarized as moving from
somewhat rapid, but irregular releases to predictable, rapid releases because of
market-driven reasons.

LR-RQ2) What is the prevalence of RRs?

The literature shows how rapid releases are adopted in several domains such as
banking, internet software, telecom, and even in projects of the US Department of
Defense (DoD). The Firefox case study does not add any new domain as internet-
related products have been previously investigated in the context of rapid releases,
e.g., [7,62]. Additionally, the literature shows that 23% of practitioners perform
continuous releases, while 83% of practitioners release at least once every three
months. This case study showed how Firefox release cycles went down from 26
days to 7 days.

LR-RQ3) What are the bene�ts of RRs?

In the literature, several bene�ts of RR were mentioned: rapid feedback, improved
quality focus of the developers and testers, easier monitoring of progress and qual-
ity, customer satisfaction, shorter time-to-market, and increased e�ciency due to
increased time-pressure. Our study brings an important addition to this list, which
is the smaller scope of testing that allows targeted, in-depth testing. Thus, although
there is less time for testing, testing is more manageable due to its smaller scope.
We also found that in RR releases, testing is more continuous, whereas in TR the
variation in test executions over time is higher.

LR-RQ4) What are the enablers of RRs?

From literature, we found that rapid releases were enabled through parallel de-
velopment, with tools enabling easy automatic deployment and testing, and with
proactive customers and product managers. In the case of Firefox, frequent releases
are created with a short lead time, but they also work on releases simultaneously,
as we saw in Figure 1. Additionally, we found that dedicated and paid testing
resources enabled rapid release testing. Additionally, we also found evidence both
from qualitative interviews and statistical data analysis that testing has become
more focused. Thus, rather than trying to cover everything, only the high risk areas

37

receive signi�cant test e�ort. Overall, Mozilla's strategies for testing RR releases
have been succesful as Khomh et al. [7] found only a small decrease in quality
when investigating the move to rapid release in the Firefox project.

LR-RQ5) What are the problems of RRs?

In literature, the problems related to rapid releases were increased technical debt,
con�icts with high reliability and high test coverage, problems with the customer
adoption of releases, and increased time-pressure that can lead to sta� burnout.
Regarding technical debt, we found no evidence of cutting corners. Our �ndings
partially support these �ndings, as we found that Firefox had reduced the legacy
support in their testing and that a reduction in the testing community had re-
duced the number of environments that were being tested. On the other hand, the
Firefox QA engineer also stated that in-depth testing of a few features was one
of the greatest bene�ts of rapid releases. The decline in quality or reliability in
the Firefox case has indeed been small, since rapid releases caused no change in
the post-release defect counts or number of crashes experienced, except for crashes
appearing faster for the users of rapid releases and fewer defects being �xed [7].
Problems of customer adoption were solved in the Firefox case by adoption of an
�Extended Support Release� (like Firefox 10.0, see FF-RQ1) with longer release
lifetime.

In addition to literature, we showed that rapid releases had led to a decrease
in the test-suite (test case set) and tester diversity between releases, i.e., we found
a higher similarity of the test teams and test cases, i.e. do the same testers partic-
ipate and are the same test cases executed between subsequent releases. Diversity
in testing is important, but we are unaware of prior work on test-suite and tester
diversity, although diversity [80] and similarity [81] have been studied at the level
of individual test cases. Also, the number of testers participating in the release has
decreased, as the community participation has decreased. The lack of variability
in the general test population has made testing weaker. We also found that rapid
release may increase time-pressure as testing becomes more deadline-oriented, as
shown in FF-RQ6. Time-pressure has been linked to work burn-out in software
development organizations [82] and technical debt, but on the positive side, exper-
iments on time-pressure have shown an increase in individual e�ciency in software
testing [83] and in other types of tasks, e.g., accounting [84].

7.1 Limitations

7.1.1 Firefox study

Every empirical study has limitations. In this section we structure our analysis
of the limitations according to the framework by Runeson et al. [85]: construct
validity, internal validity, external validity and reliability.

Construct validity concerns the match between our research questions and what
we observe or measure. In our study, the selection of metrics and analysis methods
is critical. To enable comparison between releases of varying length we normalized
all metrics for project duration. Our data was not normally distributed so all our
statistical analysis including e�ect sizes are computed with non-parametric meth-
ods. We mapped test executions to individual releases based on timestamp and

38

Table 12: Controlled and non-controlled confounding factors.

Controlled Uncontrolled
Project evolution, Release length Competing projects, Other type of testing (e.g., dog-fooding)

the main release label. The main release label allowed us to correctly di�erentiate
between simultaneous testing on di�erent channels, e.g., 5.0 beta and 6.0 alpha
could be tested simultaneously but labels of 5.0 and 6.0 in addition to the time-
stamps allowed us to correctly identify the release. Since it is a case study, another
threat to construct validity is our interpretation of the context of the project. To
control for this, we triangulated our �ndings with a Mozilla engineer.

Internal validity concerns causal relationships. We cannot be certain that the
changes that we see in the TR and RR metrics are caused by the change from
TRs to RRs. Again, there is a di�erence between a case study and a controlled
experiment and we cannot interpret our statistical �ndings in isolation. There
could be hidden factors that actually cause these observed di�erences, such as
the competing projects in FF-RQ2 or dog-fooding in FF-RQ6. The confounding
e�ect of project evolution and release length was thoroughly studied in Section 5.
Table 12 summarized the identi�ed confounding factors. Yet, more studies are
needed before a�rmative conclusions on the e�ects of a release model on testing
e�ort can be made.

External validity concerns the ability to generalize our �ndings. Although we
study over 200 Firefox releases, our study only considers one open source system.
Moreover, the Litmus database represents only one part of the Firefox testing
process that is mostly aimed at manual regression testing of risky regression test
cases and as entry point for community members to join testing. Since we did not
study the automated regression test infrastructure, we cannot provide a complete
picture of the Firefox testing process.

However, the test data used for this study is not straightforward to obtain,
even for open source systems, while for closed source systems substantial data is
sealed within corporate walls. Although statistical generalization between contexts
cannot be made based on the results from this study, analytical generalization is
supported through the context description in the paper. Our study highlights
possible e�ects on testing due to a transition from TR to RR releases.

Reliability regards the reproducibility of our results. All observations are inter-
preted by researchers and thus also �ltered through their perceptions, knowledge
and experiences. In our case, �ve researchers with di�erent backgrounds have been
involved in the interpretation of the observations, which supports the reliability.
We also provide transparency in the report of the study design, data collection
and analysis.

7.1.2 Literature Review

In many abstracts, rapid releases were mentioned, yet no actual empirical result
of rapid releases was given in the paper. We suspect that also the dual situation
can be true, i.e., studies that do not advertise results regarding rapid releases in
their abstract. For this reason, all authors also performed other types of litera-
ture search, but with a less systematic approach (i.e., papers that we could recall,

39

papers found by full text search using google scholar, or papers studying agile
adoption that did not explicitly mention our search terms in the abstract). De-
spite this limitation, we think that the literature review's results o�er the most
comprehensive review of evidence of rapid releases to date. However, future re-
views of rapid releases should systematically search for agile and lean adoption
papers, as such papers can contain data about rapid releases.

8 Conclusion

This paper has presented a case study on the e�ects of moving from traditional to
rapid releases on Firefox' system testing. By triangulating data from the Litmus
regression testing database with feedback from an interview with a Mozilla QA
engineer, we make four key �ndings.

First, we found that due to time-contraints RR system tests have a smaller
scope, are performed more continuously and that the RR model has forced the
Firefox testing team �to cut the fat and focus on those test areas which are prone to
failure�. This narrow scope allows deeper testing in selected areas, which was seen
as one of the largest strengths of RR testing. Second, we found that the number of
specialized testers has grown due to an increase in the number of contractors, which
were needed to sustain testing e�ort in the rapid release model. However, at the
same time the large testing community which �represent the scale and variability of
the general population� has decreased as has test suite diversity. Third, comparison
to Khomh et al.'s work [7] shows that these rather signi�cant changes in testing
process have not signi�cantly impacted the product quality. Fourth, based on
empirical data we have proposed a theoretical model explaining the relationship
between release model, release length and test e�ort that needs to be validated in
future case studies.

Additionally, this paper presents a semi-systematic literature review showing
that rapid releases are a prevalent industrial practice that a�ects several domains
of software engineering and is part of several software development methodologies
like agile, lean and open source. The bene�ts of rapid releases according to litera-
ture include shorter time to market, rapid feedback and an increased quality focus
of development sta�. Furthermore, moving to rapid releases is enabled by parallel
development, tools for automatic deployment and testing, and the involvement of
customers. Finally, the negative aspects of rapid releases are increased technical
debt, the customers' (un)willingness to update, time pressure, and the con�icting
goals of releasing rapidly and achieving high reliability and test coverage. Future
work should focus on empirical studies of these factors that complement the ex-
isting qualitative observations and perceptions of rapid releases.

Acknowledgment

We would like to thank the Mozilla QA engineer who provided feedback to our
�ndings. His responses are accounts of personal experience and opinion, and are in
no means whatsoever an o�cial statement from Mozilla. This work has been par-
tially supported by EU FP7 Grant 318082 (U-QASAR, http://www.uqasar.eu/),
ELLIIT (the StrategicArea for ICT research, funded by the Swedish Government,

40

http://www.liu.se/elliit), N4S (research program managed by DIGILE and funded
by TEKES, http://www.n4s.�/), and NSERC (Natural Sciences and Engineering
Research Council of Canada).

References

1. HP: Shorten release cycles by bringing developers to application lifecycle management.
HP Applications Handbook, Retrieved on Febuary 08, 2012 (2012)

2. InvestmentWatch: Mozilla puts out �refox 5.0 web browser which carries over 1,000 im-
provements in just about 3 months of development. http://bit.ly/aecRrL (2011)

3. Beck, K., Andres, C.: Extreme Programming Explained: Embrace Change (2nd Edition).
Addison-Wesley (2004)

4. Shankland, S.: Rapid-release �refox meets corporate backlash. http://cnet.co/ktBsUU
(2011)

5. Kaply, M.: Why do companies stay on old technology? Retrieved on January 12, 2012
(2012)

6. Baysal, O., Davis, I., Godfrey, M.W.: A tale of two browsers. In: Proc. of the 8th Working
Conf. on Mining Software Repositories (MSR). (2011) 238�241

7. Khomh, F., Dhaliwal, T., Zou, Y., Adams, B.: Do faster releases improve software quality?
an empirical case study of mozilla �refox. In: MSR. (2012) 179�188

8. Porter, A., Yilmaz, C., Memon, A.M., Krishna, A.S., Schmidt, D.C., Gokhale, A.: Tech-
niques and processes for improving the quality and performance of open-source software.
Software Process: Improvement and Practice 11 (2006) 163�176

9. Petersen, K., Wohlin, C.: The e�ect of moving from a plan-driven to an incremental
software development approach with agile practices. Empirical Softw. Engg. 15 (2010)
654�693

10. Li, J., Moe, N.B., Dybå, T.: Transition from a plan-driven process to scrum: a longitudinal
case study on software quality. In: Proc. of the 2010 ACM-IEEE Intl. Symp. on Empirical
Software Engineering and Measurement (ESEM). (2010) 13:1�13:10

11. Mantyla, M., Khomh, F., Adams, B., Engstrom, E., Petersen, K.: On rapid releases and
software testing. In: Proceedings of the 29th IEEE International Conference on Software
Maintenance (ICSM). (2013) 20�29

12. Ltd., R.S.: Web browsers (global marketshare). http://bit.ly/81klgi (2013)
13. Shankland, S.: Google ethos speeds up chrome release cycle. http://cnet.co/wlS24U (2010)
14. Sicore, D.: New channels for �refox rapid releases. http://bit.ly/hc1zmY (2011)
15. Paul, R.: Mozilla outlines 16-week �refox development cycle. http://bit.ly/fLHEfo

(2011)
16. Mozilla: Litmus wiki. http://mzl.la/evJmTW (2013)
17. Mozilla: Moztrap wiki. http://bit.ly/XBGMfu (2013)
18. Wikipedia: Firefox release history. http://bit.ly/Ngvfln (2013)
19. Mozilla: Mozilla source code mercurial repositories. (2013)
20. Cohen, J.: Statistical Power Analysis for the Behavioral Sciences. 2nd edn. Academic

Press (1988)
21. Rogmann, J.J.: orddom: Ordinal dominance statistics. http://bit.ly/Y0K0eo (2013)
22. Byrt, T., Bishop, J., Carlin, J.B.: Bias, prevalence and kappa. Journal of clinical epidemi-

ology 46 (1993) 423�429
23. Cicchetti, D.V., Feinstein, A.R.: High agreement but low kappa: Ii. resolving the paradoxes.

Journal of clinical epidemiology 43 (1990) 551�558
24. Carney, P.A., Sickles, E.A., Monsees, B.S., Bassett, L.W., Brenner, R.J., Feig, S.A., Smith,

R.A., Rosenberg, R.D., Bogart, T.A., Browning, S., et al.: Identifying minimally acceptable
interpretive performance criteria for screening mammography 1. Radiology 255 (2010)
354�361

25. Pérez-Castillo, R., Sánchez-González, L., Piattini, M., García, F., Garcia-Rodriguez de
Guzman, I.: Obtaining thresholds for the e�ectiveness of business process mining. In: Em-
pirical Software Engineering and Measurement (ESEM), 2011 International Symposium
on, IEEE (2011) 453�462

26. Hollander, M., Wolfe, D.A.: Nonparametric Statistical Methods. 2nd edn. John Wiley and
Sons, inc. (1999)

41

27. Wikipedia: Extended support release. http://bit.ly/ZlgqoM#Extended_Support_Release
(2013)

28. Paul, R.: Firefox extended support will mitigate rapid release challenges. http://ars.to/
M2TbFQ (2012)

29. Wikipedia: Locale. http://bit.ly/2iJLwB (2013)
30. Raymond, E.S.: The Cathedral and the Bazaar. 1st edn. O'Reilly & Associates, Inc.,

Sebastopol, CA, USA (1999)
31. Kim, S.: ppcor: Partial and semi-partial (part) correlation. http://bit.ly/XkWuyn (2012)
32. Kitchenham, B.: Procedures for performing systematic reviews. Keele, UK, Keele Univer-

sity 33 (2004) 2004
33. Humble, J., Farley, D.: Continuous Delivery: Reliable Software Releases through Build,

Test, and Deployment Automation. 1st edn. Addison-Wesley Professional (2010)
34. Agarwal, P.: Continuous scrum: Agile management of saas products. (2011) 51�60
35. Baskerville, R., Ramesh, B., Levine, L., Pries-Heje, J.: High-speed software development

practices: What works, what doesn't. IT Professional 8 (2006) 29�36
36. Baysal, O., Kononenko, O., Holmes, R., Godfrey, M.: The secret life of patches: A �refox

case study. (2012) 447�455
37. Begel, A., Nagappan, N.: Usage and perceptions of agile software development in an

industrial context: An exploratory study. (2007) 255�264
38. Boshuizen, C., Marshall, W., Bridges, C., Kenyon, S., Klupar, P.: Learning to follow:

Embracing commercial technologies and open source for space missions. Volume 10. (2011)
8097�8101

39. Codabux, Z., Williams, B.: Managing technical debt: An industrial case study. (2013)
8�15

40. Cohan, S.: Successful integration of agile development techniques within disa. (2007)
255�260

41. Kühner, G., Bluhm, T., Heimann, P., Hennig, C., Kroiss, H., Krom, J., Laqua, H., Lewer-
entz, M., Maier, J., Schacht, J., Spring, A., Werner, A., Zilker, M.: Progress on standard-
ization and automation in software development on w7x. Fusion Engineering and Design
87 (2012) 2232�2237

42. Lavoie, T., Merlo, E.: How much really changes? a case study of �refox version evolution
using a clone detector. (2013) 83�89

43. Li, X., Li, Y., Xie, M., Ng, S.: Reliability analysis and optimal version-updating for open
source software. Information and Software Technology 53 (2011) 929�936

44. Maalej, W.: Task-�rst or context-�rst? tool integration revisited. (2009) 344�355
45. Sundmark, D., Petersen, K., Larsson, S.: An exploratory case study of testing in an

automotive electrical system release process. (2011) 166�175
46. Torkar, R., Minoves, P., Garrigós, J.: Adopting free/libre/open source software practices,

techniques and methods for industrial use. Journal of the Association of Information
Systems 12 (2011) 88�122

47. Bell, R., Ostrand, T., Weyuker, E.: Looking for bugs in all the right places. Volume 2006.
(2006) 61�71

48. Azham, Z., Ghani, I., Ithnin, N.: Security backlog in scrum security practices. (2011)
414�417

49. Middleton, P., Joyce, D.: Lean software management: Bbc worldwide case study. IEEE
Transactions on Engineering Management 59 (2012) 20�32

50. Paasivaara, M., Lassenius, C.: Collaboration practices in global inter-organizational soft-
ware development projects. Software Process Improvement and Practice 8 (2003) 183�199

51. Patel, C., Lycett, M., Macredie, R., De Cesare, S.: Perceptions of agility and collaboration
in software development practice. Volume 1. (2006) 10c

52. Gundebahar, M., Kus Khalilov, M.: A hybrid deployment model for �nancial systems with
service oriented architecture (soa): Running from client via branch server. (2013) 365�370

53. Iwai, A., Aoyama, M.: Automotive cloud service systems based on service-oriented archi-
tecture and its evaluation. (2011) 638�645

54. Jones, G., Leung, V.: Visual surveillance: A systems engineering approach for rapid de-
velopment. Number 2005-11033 (2005) 161�166

55. Olsson, H., Alahyari, H., Bosch, J.: Climbing the "stairway to heaven" - a mulitiple-
case study exploring barriers in the transition from agile development towards continuous
deployment of software. (2012) 392�399

56. Schwaber, K.: Scrum development process. In: Proceedings of the 10th Annual ACM Con-
ference on Object Oriented Programming Systems, Languages, and Applications (OOP-
SLA. (1995) 117�134

42

57. Otte, T., Moreton, R., Knoell, H.D.: Applied quality assurance methods under the open
source development model. In: Proc. of the 32nd Annual IEEE Intl. Computer Software
and Applications Conf. (COMPSAC). (2008) 1247�1252

58. Middleton, P.: Lean software development two case studies. Software Quality Journal 9
(2001) 241�252

59. Poppendieck, M.: Lean software development. In: Companion to the proceedings of the
29th International Conference on Software Engineering, IEEE Computer Society (2007)
165�166

60. Reinertsen, D.G.: The principles of product development �ow: second generation lean
product development. Celeritas Redondo Beach, Canada: (2009)

61. Oza, N., Ebert, C., Abrahamsson, P.: Lean software development. IEEE Software 29

(2012) 0022�25
62. Cusumano, M.A., Yo�e, D.B.: Competing on internet time: Lessons from netscape and

its battle with microsoft. Simon and Schuster (1999)
63. Brown, A.W.: A case study in agile-at-scale delivery. In: Proc. of the 12th Intl. Conf.

on Agile Processes in Software Engineering and Extreme Programming (XP). Volume 77.
(2011) 266�281

64. Jenkins, J.: Velocity culture (the unmet challenge in ops). Presentation at O'Reilly Velocity
Conference (2011)

65. Gamma, E.: Agile, open source, distributed, and on-time � inside the eclipse development
process. Keynote at the 27th Intl. Conf. on Software Engineering (ICSE) (2005)

66. Kong, S., Kendall, J.E., Kendall, K.E.: The challenge of improving software quality:
Developers' beliefs about the contribution of agile practices. In: Proc. of the Americas
Conf. on Information Systems (AMCIS). (2009) 12p.

67. VersionOne: 7th annual state of agile survey. http://www.versionone.com/pdf/7th-
Annual-State-of-Agile-Development-Survey.pdf (2012)

68. Hodgetts, P., Phillips, D.: 30. In: eXtreme Adoption eXperiences of a B2B Start Up.
Addison-Wesley Longman Publishing Co., Inc. (2002) Extreme Programming Perspectives.

69. Marschall, M.: Transforming a six month release cycle to continuous �ow. In: Proc. of the
conf. on AGILE. (2007) 395�400

70. Petersen, K., Wohlin, C.: A comparison of issues and advantages in agile and incremental
development between state of the art and an industrial case. J. Syst. Softw. 82 (2009)
1479�1490

71. Kettunen, V., Kasurinen, J., Taipale, O., Smolander, K.: A study on agility and testing
processes in software organizations. In: Proc. of the 19th Intl. Symp. on Software Testing
and Analysis (ISSTA). (2010) 231�240

72. Olsson, H., Bosch, J., Alahyari, H.: Towards r&d as innovation experiment systems: A
framework for moving beyond agile software development. (2013) 798�805

73. Ruhe, G., Saliu, M.O.: The art and science of software release planning. IEEE Softw. 22
(2005) 47�53

74. Heikkilä, V., Rautiainen, K., Jansen, S.: A revelatory case study on scaling agile release
planning. (2010) 289�296

75. Sz®ke, Á.: Conceptual scheduling model and optimized release scheduling for agile envi-
ronments. Information and Software Technology 53 (2011) 574�591

76. Berner, S., Weber, R., Keller, R.K.: Observations and lessons learned from automated
testing. In: Proceedings of the 27th international conference on Software engineering,
ACM (2005) 571�579

77. Martin, D., Rooksby, J., Rounce�eld, M., Sommerville, I.: 'good'organisational reasons
for'bad'software testing: An ethnographic study of testing in a small software company. In:
Software Engineering, 2007. ICSE 2007. 29th International Conference on, IEEE (2007)
602�611

78. Ra�, D.M., Moses, K.R.K., Petersen, K., Mäntylä, M.V.: Bene�ts and limitations of
automated software testing: Systematic literature review and practitioner survey. In: Au-
tomation of Software Test (AST), 2012 7th International Workshop on, IEEE (2012) 36�42

79. Jansen, S., Brinkkemper, S.: Ten misconceptions about product software release man-
agement explained using update cost/value functions. In: Proc. of the Intl. Workshop on
Software Product Management. (2006) 44�50

80. Hemmati, H., Arcuri, A., Briand, L.: Achieving scalable model-based testing through test
case diversity. ACM Transactions on Software Engineering and Methodology (TOSEM)
22 (2013) 6

43

81. Greiler, M., van Deursen, A., Zaidman, A.: Measuring test case similarity to support test
suite understanding. In: Objects, Models, Components, Patterns. Springer (2012) 91�107

82. Sonnentag, S., Brodbeck, F.C., Heinbokel, T., Stolte, W.: Stressor-burnout relationship in
software development teams. Journal of occupational and organizational psychology 67

(1994) 327�341
83. Mäntylä, M.V., Itkonen, J.: More testers â�� the e�ect of crowd size and time restriction

in software testing. Information and Software Technology 55 (2013) 986 � 1003
84. McDaniel, L.S.: The e�ects of time pressure and audit program structure on audit perfor-

mance. Journal of Accounting Research 28 (1990) 267�285
85. Runeson, P., Höst, M.: Guidelines for conducting and reporting case study research in

software engineering. Empirical Software Engineering 14 (2009) 131�164

44

