
Why Are Industrial Agile Teams Using Metrics and How Do
They Use Them?

Eetu Kupiainen
Department of Computer
Science and Engineering

Aalto University
FI- 00076 AALTO, FINLAND
eetu.kupiainen@aalto.fi

Mika V. Mäntylä
Department of Computer
Science and Engineering

Aalto University
FI- 00076 AALTO, FINLAND
mika.mantyla@aalto.fi

Juha Itkonen
Department of Computer
Science and Engineering

Aalto University
FI- 00076 AALTO, FINLAND
juha.itkonen@aalto.fi

ABSTRACT
Agile development methods are increasing in popularity, yet
there are limited studies on the reasons and use of metrics
in industrial agile development. This paper presents prelim-
inary results from a systematic literature review. Based on
our study, metrics and their use are focused to the follow-
ing areas: Iteration planning, Iteration tracking, Motivat-
ing and improving, Identifying process problems, Pre-release
quality, Post-release quality and Changes in processes or
tools. The findings are mapped against agile principles and
it seems that the use of metrics supports the principles with
some deviations. Surprisingly, we find little evidence of the
use of code metrics. Also, we note that there is a lot of evi-
dence on the use of planning and tracking metrics. Finally,
the use of metrics to motivate and enforce process improve-
ments as well as applicable quality metrics can be interesting
future research topics.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
D.2.8 [Software Engineering]: Metrics—agile metrics

General Terms
Measurement

Keywords
Agile software development, metrics, measurement

1. INTRODUCTION
Software metrics have been studied for decades and several

literature reviews have been published. Yet, the literature
reviews have been written from an academic viewpoint. For
example, Catal et al. review fault prediction metrics [2],
Purao et al. review metrics for object oriented systems [33]
and Kitchenham performs a mapping of most cited software

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
WETSoM ’14, June 3, 2014, Hyderabad, India
Copyright 2014 ACM 978-1-4503-2854-8/14/05 ...$15.00.
http://dx.doi.org/10.1145/2593868.2593873.

metrics papers [20]. To our knowledge there are no system-
atic literature reviews on the actual use of software metrics
in the industry.

Agile software development is becoming increasingly pop-
ular in the software industry. The agile approach seems to be
contradicting with the traditional metrics approaches. For
example, the agile emphasizes working software over mea-
suring progress in terms of intermediate products or docu-
mentation, and embracing the change invalidates the tradi-
tional approach of tracking progress against pre-made plan.
However, at the same time agile software development high-
lights some measures that should be used, e.g., burndown
graphs and 100% automated unit testing coverage. How-
ever, metric research in the context of agile methods remains
scarce.

The goal of this paper is to review the literature of actual
use of software metrics in the context of agile software de-
velopment. This study lays out the current state of metrics
usage in industrial agile software development teams based
on literature. Moreover, the study uncovers the reasons for
metric usage as well as highlights actions that the use of
metrics can trigger. In this paper, we cover the following
research questions:

• Why are metrics used?

• What actions do the use of metrics trigger?

• Which metrics are used?

This paper is structured as follows. Section 2 describes
how the systematic literature review (SLR) was conducted.
Section 3 reports the results from the study. Section 4 dis-
cusses about the findings and how they map to agile princi-
ples. Section 5 concludes the paper.

2. REVIEW METHOD
Systematic literature review (SLR) was chosen as research

method because we are trying to understand a problem in-
stead of trying to find a solution to it. Also, there was
already existing literature that could be synthesized.

2.1 Protocol development
Kitchenham’s guide for SLRs [19] was used as a basis for

developing the review protocol. Additionally, an SLR on
agile development [7] and an SLR on SLR [21] were used
to further understand the challenges and opportunities of
SLRs. The protocol was also iterated in weekly meetings
with the authors, as well as in a pilot study.

Table 1: Paper selection funnel
Stage Amount of papers
Stage 1 774
Stage 2 163
Stage 3 29

2.2 Search and selection process
The strategy for finding primary studies was following:

• Stage 1: Automated search

• Stage 2: Selection based on title and abstract

• Stage 3: Selection based on full text. Conduct data
extraction and quality assessment.

Table 1 shows the selection funnel in terms of the number
of papers after each stage.

Scopus database 1 was used to find the primary documents
with automated search. Keywords include popular agile de-
velopment methods and synonyms for the word metric. The
search was improved incrementally in three phases because
we noticed some key papers and XP conferences were not
found initially. The search strings, hits and dates can be
found from appendix A.

The selection of the primary documents was based on in-
clusion criteria: papers that present empirical findings on
the industrial use and experiences of metrics in agile con-
text. The papers were excluded based on multiple criteria,
mainly due to not conforming to our requirements regard-
ing empirical findings, agile and industrial context, and the
quality of the results. Full criteria are listed in appendix B.

In stage 1, Scopus was used as the only search engine as
it contained the most relevant databases IEEE and ACM.
Also, it was able to find Agile and XP conference papers.
Only XP Conference 2013 was searched manually because it
couldn’t be found through Scopus.

In stage 2, papers were included and excluded by the first
author based on their title and abstract. As the quality
of abstracts can be poor in computer science [19], full texts
were also skimmed through in case of unclear abstracts. Un-
clear cases were discussed among researchers in weekly meet-
ings and an exclusion rule was documented if necessary.

The validity of the selection process was analysed by per-
forming the selection for a random sample of 26 papers also
by the second author. The level of agreement was ’substan-
tial’ with Kappa 0.67 [23].

Stage 3 included multiple activities in one workflow. Se-
lection by full text was done, data was coded and quality
assessment was done. Once again, if there were unclear pa-
pers, they were discussed in the meetings. Also, selection
of 7 papers was conducted by the second author with an
’almost perfect’ agreement, Kappa 1.0 [23].

2.3 Data extraction
Integrated coding was selected for data extraction strategy

[4]. Integrated coding includes having a start list of codes
as well as creating new codes if necessary (ground-up). It
provided focus to research questions but flexibility regarding
findings. Deductive coding would have been too restraining

1http://www.scopus.com

and inductive coding might have caused too much bias. In-
tegrated coding made it possible to create a sample list of
code categories: Why is the metric used?, How is the metric
used? and Metrics.

The coding started with the first author reading the full
text and marking interesting quotes with a temporary code.
After, reading the full text first author checked each quote
and coded again with an appropriate code based on the built
understanding. In weekly meetings, we slowly built a rule
set for collecting metrics:

• Collect metric only if team or company uses it.

• Don’t collect metrics that are only used for the com-
parison and selection of development methods.

• Don’t collect metrics that are primarily used to com-
pare teams. (There were cases where a researcher or
management uses a metric to compare teams. We
wanted to find metrics a team could use.)

• Collect metric only if something is said about why it
is used or what actions it causes.

Atlas.ti Visual QDA (Qualitative Data Analysis), version
7.1.x was used to collect and synthesize the qualitative data.

To evaluate the repeatability of finding the same metrics,
second author coded metrics from three papers. Capture-
recapture method [34] was then used which showed that 90%
of metrics were found.

A quality assessment form adopted from [7] was used to
evaluate the quality of each primary study.

2.4 Data synthesis
Data synthesis followed the steps recommended by Cruzes

et al. [4]. Process started by going through all quotes within
one code and giving each quote a more descriptive code de-
scribing the quote in high level. Then the descriptive codes
were organized in groups based on their similarity. These
groups were then given high level codes which are seen as
categories in table 5.

3. RESULTS
This chapter presents the preliminary results from the sys-

tematic literature review. Table 2 shows the distribution of
primary documents by publication channels. Table 3 lists
the distribution of agile methods and Table 4 lists the dis-
tribution of domains.

Categories for the reasons and the use of metrics are listed
in table 5. The following chapters will describe each category
in more detail.

3.1 Iteration planning
Many metrics were used to support iteration planning.

The metrics were used for task prioritization and scoping of
the iteration.

Many metrics were focused to help in the prioritization of
the tasks for the next iteration [10, 12, 14]. Prioritization of
features was affected by a metric that measured the amount
of revenue a customer is willing to pay for a feature [14].

Effort estimation metrics were used to measure the size of
the features [8]. Furthermore, velocity metrics were used to
calculate how many features is the team able to complete
in an iteration [32]. Knowing the teams’ effective available

Table 2: Publication distribution of primary studies
Publication channel Type # %
Agile Conference Conference 8 38
HICCS Conference 3 14
ICSE SDG Workshop 2 10
XP Conference Conference 2 10
Agile Development Conference Conference 1 5
APSEC Conference 1 5
ASWEC Conference 1 5
Elektronika ir Elektrotechnika Journal 1 5
Empirical Software Engineering Journal 1 5
EUROMICRO Conference 1 5
ICSE Conference 1 5
ICSP Conference 1 5
IST Journal 1 5
IJPQM Journal 1 5
JSS Journal 1 5
PROFES Conference 1 5
Software - Prac. and Exp. Journal 1 5
WETSoM Workshop 1 5

Table 3: Distribution of agile methods

Agile method Amount

Scrum 15
XP 7

Lean 5
Other 5

Table 4: Distribution of domains

Domain Amount

Telecom 10
Enterprise information system 7

Web application 4
Other 11

Table 5: Categories for metric usage
Categories Sources

Iteration planning [8, 32, 3, 10, 15,
24, 12, 14]

Iteration tracking [31, 40, 24, 6, 15,
5, 9, 8, 25, 41, 42,
13, 38, 35, 32, 10,
30]

Motivating and improving [41, 39, 17, 5, 3,
32, 38, 40]

Identifying process problems [31, 41, 25, 17, 38,
24, 29, 36, 26, 43,
28]

Pre-release quality [18, 18, 6, 41]
Post-release quality [29, 3, 9, 38]

Changes in processes or tools [17, 31, 26, 5, 38,
18, 37, 30]

hours was found useful when selecting tasks for an iteration
[3]. Velocity metrics were also used to improve the next iter-
ation estimates [24]. At Ericsson product maintenance team,
lead time was used to understand if all planned corrections
can be completed before release date [35].

3.2 Iteration tracking
Purpose of iteration tracking was to track how the tasks

selected for the iteration were performed and that necessary
modifications were done to the plan to complete the iteration
according to schedule.

Metrics helped in monitoring, identifying problems, and
predicting the end result by making it transparent to the
stakeholders how the iteration is progressing [31, 40, 24, 6,
15, 9, 41, 42].

Progress metrics included number of completed web pages
[15], story completion percentage [41] and velocity metrics
[6]. However, using velocity metrics had also negative effects
such as cutting corners in implementing features to main-
tain velocity with the cost of quality [8]. One qualitative
progress metric was feedback from product demonstrations
with customer [42]. Measuring the completion of tasks en-
abled selecting incomplete tasks to the next iteration [15].

When the metrics indicated, during an iteration, that all
planned tasks could not be completed, the iteration was
rescoped by cutting tasks [24, 6, 25] or adding extra re-
sources [6, 25].

When there were problems that needed to be fixed, whether
they were short or long term, the metrics helped in making
decisions to fix them [38, 6, 31, 5]. Balance of workflow was
mentioned as a reason for using metrics in multiple papers
[32, 29, 30, 10, 31, 6, 17]. Progress metrics were used to fo-
cus work on tasks that matter the most [39], avoid partially
done work [35], avoid task switching [35] and polishing of
features [39]. Finally, open defects metric was used to delay
a release [13].

3.3 Motivating and improving
This section describes metrics that were used to motivate

people and support team level improvement of working prac-
tices and performance.

Metrics were used to communicate different data about
the project or product to the team members [41, 39, 32,
38, 40]. Measurement data motivated teams to act and im-
prove their performance [39, 32, 3, 5, 17]. Some examples
included fixing the build faster by visualizing build status
[17, 5], fixing bugs faster by showing number of defects in
monitors [3] and increasing testing by measuring product
size by automated tests that motivated team to write more
tests [39].

Metrics were also used to prevent harmful behavior such
as cherry picking features that are most interesting to the
team. Measuring work in progress (WIP) and setting WIP
limits prevented cherry picking by enforcing working only
two features at a time. This prevented them from working
simultaneously on lower priority but more interesting fea-
tures [25].

3.4 Identifying process problems
Metrics were often used to identify or avoid problems in

processes and work flows. This chapter describes how met-
rics were used to spot problems.

There were multiple cases highlighting how metrics are

used to identify or predict problems in order to solve or
avoid them [31, 41, 24, 29, 36, 26, 43].

Sometimes there were work phases where no value was
added, e.g., “waiting for finalization”. This type of activity
was called waste and was identified by using lead time [28].

Story implementation flow metric describes how efficiently
a developer has been able to complete a story compared to
the estimate [17]. This metric helped to identify a problem
with receiving customer requirement clarifications.

Creating awareness with defect trend indicator helped to
take actions to avoid problems [38]. One common solution
to problems was to find the root cause [17, 25].

3.5 Pre-release quality
Metrics in the pre-release quality category were used to

prevent defects reaching customers and to understand what
the current quality of the product was.

Integration fails was a problem to avoid with static code
check metrics [18]. Moreover, metrics were used to make sure
that the product is sufficiently tested before the next step in
the release path [18][6]. Additionally, making sure that the
product is ready for further development was mentioned [9].

Some metrics forced writing tests before the actual code
[41]. Technical debt was measured with a technical debt
board that was used to facilitate discussion on technical debt
issues [5].

3.6 Post-release quality
Metrics in post-release quality deal with evaluating the

quality of the product after it has been released.
Customer satisfaction, customer responsiveness, and qual-

ity indicators were seen as attributes of post-release qual-
ity. Some metrics included customer input to determine
post-release quality [29, 9, 3] while other metrics used pre-
release data as predictors of post-release quality [38, 29,
9]. Customer related metrics included, e.g., defects sent
by customers[3], change requests from customers [29] and
customer’s willingness to recommend product to other po-
tential customers [9]. Quality prediction metrics included
defect counts [29], maintenance effort [38], and deferred de-
fect counts [9].

3.7 Changes in processes or tools
This chapter describes the reported changes that apply-

ing metrics had for processes and tools. The changes in-
clude changes in measurement practices, development poli-
cies, and the whole development process.

The successful usage of sprint readiness metric and story
flow metric changed company policy to have target values
for both metrics as well as monthly reporting of both metrics
by all projects [17].

At Ericsson by monitoring the flow of requirements metric,
they decided to change their implementation flow from push
to pull to help them deliver in a more continuous manner.
Also, based on the metric they added an intermediate release
version to have release quality earlier in the development
cycle [30].

Changes to requirements management were also made based
on lead time in other case at Ericsson. Analysing lead time
contributed to moving technical design after purchase order
was received, providing customer a rough estimate quickly
and merging the step to create solution proposal and tech-
nical design [26].

Problem with broken build, and the long times to fix the
build, led to metrics that monitor and visualize the state of
the build and the time it takes to fix it [5, 17, 18].

Also, additional code style rules were added to code check-
in and build tools so that builds would fail more often and
defects would get caught before release [17, 18].

Similarly, testing approaches were changed based on flow
metrics. Using lead time led to that integration testing could
be started parallel to system testing [26]. Also, throughput
of a test process showed insufficient capability to handle the
incoming features, which led to changing the test approach
[37].

4. DISCUSSION

4.1 Implications for practice
To provide implications to practice we map our findings to

the principles of agile software development [1] categorized
by Patel et al. [27]. For each paragraph we use the naming
by Patel et al. and provide references to the agile principles
by numbers.

Communication and Collaboration (4th and 6th agile prin-
ciples [1]) was reflected in metrics that motivated a team to
act and improve, see section 3.3. Also, progress metrics were
used to communicate the status of the project to the stake-
holders, see section 3.2.

Team involvement (5,8) was reflected in metrics that mo-
tivated team to act and improve, see section 3.3. Also, to
promote sustainable development metrics were targeted to
balance the workflow, see section 3.2.

Reflection (12) was visible in metrics that were used to
identify problems and to change processes, see section 3.4
and section 3.7.

Frequent delivery of working software (1,3,7) was directly
identified in one paper, where the team measured progress
by demonstrating the product to the customer [42]. Addi-
tionally, there were cases where e.g. completed web-pages
[15] were the primary progress measure. Also, many metrics
focused on progress tracking and timely completion of the
iteration, see section 3.2. However, some other measures
from section 3.2 show that instead of working code agile
teams followed completed tasks and velocity metrics.

An integral part of the concept of working software is mea-
suring post-release quality, see section 3.6. This was mea-
sured by customer satisfaction, feedback, and customer de-
fect reports. It was also common to use pre-release data to
predict post-release quality. Agile developers tend to mea-
sure the end product quality with customer based metrics
instead of the traditional quality models, such as ISO/IEC
25010 [16].

Managing Changing Requirements (2) was seen in the
metrics that support prioritization of features in each itera-
tion, see section 3.1. Additionally, different metrics helped
keeping the internal quality of the product high throughout
the development which then provided safe development of
modifications from new ideas, see section 3.5.

Design (9,10,11) was seen in focus to measuring technical
debt and using metrics to enforce writing tests before actual
code, see section 3.5. Additionally, the status of the build
was continuously monitored, see section 3.7. However, the
use of velocity metric had a negative effect on technical qual-
ity, see section 3.2. Many metrics focused on making sure
that the right features were selected for implementation, see

section 3.1, thus avoiding unnecessary work.
There were also metrics, or their usage, which were not

agile in nature. E.g., maintaining velocity by cutting corners
in quality instead of dropping features from that iteration
[8]. Also, adding people to project to reach a certain date
[6, 25] doesn’t seem that agile compared to removing tasks.
Adding people can have a negative impact to progress, con-
sidering the lack of knowledge and training time required.
Also, the use of number of defects to delay a release [13]
is against agile thinking as one should rather decrease the
scope to avoid such a situation.

Some agile metrics that work well for an agile team, such
as tracking progress by automated tests [39], or measuring
the status of the build [18] can turn against the agile prin-
ciples if used as an external controlling mechanism. The
fifth agile principle requires trust in the team, but if the
metrics are enforced outside of the team, e.g., from upper
management there is a risk that the metrics turn into control
mechanisms and the benefits for the team itself suffer.

4.2 Comparison to prior studies
Only few papers have broadly studied the reasons for soft-

ware metrics use in the context of agile software develop-
ment. Hartmann & Dymond [11] highlight process improve-
ment as one of the reasons for measurement in their agile
metrics paper. Also, they emphasize that creation of value
should be the primary measure of progress - which was also
seen in our study.

Korhonen [22] found in her study that traditional defect
metrics could be reused in agile context - if modified. Defect
metrics were also used in many of the primary studies.

Kitchenham’s mapping study [20] identified several code
metrics in academic literature. However, in our study we
found almost no evidence of code metric use in the agile
industrial context. Maybe agile practitioners consider code
metrics self-evident and do not report them, or maybe code
metrics are not widely used by agile industrial teams.

4.3 Limitations
The large shares of specific application domains in the

primary documents is a threat to external validity. Seven
out of 29 studies were from enterprise information systems
domain and especially strong was also the share of ten tele-
com industry studies out of which eight were from the same
company, Ericsson. Also, Israeli Air Force was the case or-
ganization in three studies.

The threats to reliability in this research include mainly
issues related to the reliability of primary study selection and
data extraction. The main threat to reliability was having
a single researcher performing the study selection and data
extraction. It is possible that researcher bias could have
had an effect on the results. This threat was mitigated by
analysing the reliability of both study selection and data
extraction as described in section 2.

Due to iterative nature of the coding process, it was chal-
lenging to make sure that all previously coded primary doc-
uments would get the same treatment, whenever new codes
were discovered. In addition, the first author’s coding ’sense’
developed over time, so it is possible that data extraction ac-
curacy improved during the analysis. In order to mitigate
these risks we conducted a pilot study in order to improve
the coding scheme, get familiar with the research method,
refine the method and tools.

5. CONCLUSIONS
In this paper we present the preliminary results from a

systematic literature review of 29 primary studies. To our
knowledge there is no previous systematic reviews of metric
use in the context of industrial agile software development.
In this paper we classify and describe the main metric types
and areas that are reported in empirical studies. We provide
descriptions of how and why metrics are used to support ag-
ile software development. We also analyse how the presented
metrics support the twelve principles of Agile Manifesto [1].

The results indicate that the reasons and use of metrics
is focused on the following areas: Iteration planning, Iter-
ation tracking, Motivating and improving, Identifying pro-
cess problems, Pre-release quality, Post-release quality and
Changes in processes or tools.

This paper provides researchers and practitioners with an
overview of the metric use in agile context and documented
reasonings behind the proposed metrics. This study can be
used as a source of relevant studies regarding researchers’
interests and contexts.

Finally, we identified few propositions for future research
on measuring in agile software development. First, in the
academia lot of emphasis has been given to code metrics yet
we found a little evidence of their use. Second, the applicable
quality metrics for agile development and the relationship of
pre-release quality metrics and post-release quality are im-
portant directions of future research. Third, we found that
planning and tracking metrics for iteration were often used
indicating a need to focus future research efforts on these
areas. Fourth, use of metrics for motivating and enforcing
process improvements can be an interesting future research
topic.

6. ACKNOWLEDGMENTS
This work has been funded by EU FP7 Grant 318082 (U-

QASAR, http://www.uqasar.eu/).

7. REFERENCES
[1] K. Beck, M. Beedle, A. van Bennekum, A. Cockburn,

W. Cunningham, M. Fowler, J. Grenning,
J. Highsmith, A. Hunt, R. Jeffries, J. Kern, B. Marick,
R. C. Martin, S. Mellor, K. Schwaber, J. Sutherland,
and D. Thomas. Manifesto for agile software
development.

[2] C. Catal and B. Diri. A systematic review of software
fault prediction studies. Expert Systems with
Applications, 36(4):7346–7354, 2009.

[3] T.-H. Cheng, S. Jansen, and M. Remmers. Controlling
and monitoring agile software development in three
dutch product software companies. In Proceedings of
the 2009 ICSE Workshop on Software Development
Governance, SDG 2009, pages 29–35, Vancouver, BC,
2009.

[4] D. Cruzes and T. Dyba. Recommended steps for
thematic synthesis in software engineering. In
Empirical Software Engineering and Measurement
(ESEM), 2011 International Symposium on, pages
275–284, 2011.

[5] P. S. M. dos Santos, A. Varella, C. R. Dantas, and
D. B. ao Borges. Visualizing and managing technical
debt in agile development: An experience report. In
Agile Processes in Software Engineering and Extreme

Programming, volume 149 of Lecture Notes in
Business Information Processing, pages 121–134, 2013.

[6] Y. Dubinsky, D. Talby, O. Hazzan, and A. Keren.
Agile metrics at the israeli air force. In Proceedings -
AGILE Confernce 2005, volume 2005, pages 12–19,
Denver, CO, 2005.

[7] T. Dyb̊a and T. Dingsøyr. Empirical studies of agile
software development: A systematic review.
Information and Software Technology, 50(9):833–859,
Aug. 2008.

[8] A. Elssamadisy and G. Schalliol. Recognizing and
responding to ”bad smells” in extreme programming.
In Proceedings - International Conference on Software
Engineering, pages 617–622, Orlando, FL, 2002.

[9] P. Green. Measuring the impact of scrum on product
development at adobe systems. In Proceedings of the
Annual Hawaii International Conference on System
Sciences, Koloa, Kauai, HI, 2011.

[10] D. Greening. Enterprise scrum: Scaling scrum to the
executive level. In Proceedings of the Annual Hawaii
International Conference on System Sciences, Koloa,
Kauai, HI, 2010.

[11] D. Hartmann and R. Dymond. Appropriate agile
measurement: using metrics and diagnostics to deliver
business value. In Agile Conference, 2006, pages 6
pp.–134, 2006.

[12] N. Haugen. An empirical study of using planning
poker for user story estimation. In Proceedings -
AGILE Conference, 2006, volume 2006, pages 23–31,
Minneapolis, MN, 2006.

[13] P. Hodgetts. Refactoring the development process:
Experiences with the incremental adoption of agile
practices. In Proceedings of the Agile Development
Conference, ADC 2004, pages 106–113, Salt Lake
City, UT, 2004.

[14] P. Hodgkins and L. Hohmann. Agile program
management: Lessons learned from the verisign
managed security services team. In Proceedings -
AGILE 2007, pages 194–199, Washington, DC, 2007.

[15] N. Hong, J. Yoo, and S. Cha. Customization of scrum
methodology for outsourced e-commerce projects. In
Proceedings - Asia-Pacific Software Engineering
Conference, APSEC, pages 310–315, Sydney, NSW,
2010.

[16] ISO/IEC. ISO/IEC 25010 - Systems and software
engineering - Systems and software Quality
Requirements and Evaluation (SQuaRE) - System and
software quality models. Technical report, 2010.

[17] C. Jakobsen and T. Poppendieck. Lean as a scrum
troubleshooter. In Proceedings - 2011 Agile
Conference, Agile 2011, pages 168–174, Salt Lake City,
UT, 2011.

[18] A. Janus, R. Dumke, A. Schmietendorf, and J. Jager.
The 3c approach for agile quality assurance. In
Emerging Trends in Software Metrics (WETSoM),
2012 3rd International Workshop on, pages 9–13,
2012.

[19] B. Kitchenham. Procedures for performing systematic
reviews. Keele, UK, Keele University, 33:2004, 2004.

[20] B. Kitchenham. What’s up with software metrics? - a
preliminary mapping study. Journal of Systems and
Software, 83(1):37–51, Jan. 2010.

[21] B. Kitchenham and P. Brereton. A systematic review
of systematic review process research in software
engineering. Information and Software Technology,
55(12):2049–2075, 2013.

[22] K. Korhonen. Migrating defect management from
waterfall to agile software development in a large-scale
multi-site organization: A case study. In
P. Abrahamsson, M. Marchesi, and F. Maurer, editors,
Agile Processes in Software Engineering and Extreme
Programming, volume 31 of Lecture Notes in Business
Information Processing, pages 73–82. Springer Berlin
Heidelberg, 2009.

[23] J. Landis and G. Koch. The measurement of observer
agreement for categorical data. Biometrics,
33(1):159–174, 1977.

[24] V. Mahnic and N. Zabkar. Measuring progress of
scrum-based software projects. Electronics and
Electrical Engineering, 18(8):73–76, 2012.

[25] P. Middleton, P. Taylor, A. Flaxel, and A. Cookson.
Lean principles and techniques for improving the
quality and productivity of software development
projects: A case study. International Journal of
Productivity and Quality Management, 2(4):387–403,
2007.

[26] S. Mujtaba, R. Feldt, and K. Petersen. Waste and lead
time reduction in a software product customization
process with value stream maps. In Proceedings of the
Australian Software Engineering Conference, ASWEC,
pages 139–148, Auckland, 2010.

[27] C. Patel, M. Lycett, R. Macredie, and S. de Cesare.
Perceptions of agility and collaboration in software
development practice. In System Sciences, 2006.
HICSS ’06. Proceedings of the 39th Annual Hawaii
International Conference on, volume 1, pages 10c–10c,
2006.

[28] K. Petersen. A palette of lean indicators to detect
waste in software maintenance: A case study. Lecture
Notes in Business Information Processing, 111
LNBIP:108–122, 2012.

[29] K. Petersen and C. Wohlin. The effect of moving from
a plan-driven to an incremental software development
approach with agile practices: An industrial case
study. Empirical Software Engineering, 15(6):654–693,
2010.

[30] K. Petersen and C. Wohlin. Software process
improvement through the lean measurement
(spi-leam) method. Journal of Systems and Software,
83(7):1275–1287, 2010. cited By (since 1996)6.

[31] K. Petersen and C. Wohlin. Measuring the flow in lean
software development. Software - Practice and
Experience, 41(9):975–996, 2011.

[32] R. Polk. Agile & kanban in coordination. In
Proceedings - 2011 Agile Conference, Agile 2011, pages
263–268, Salt Lake City, UT, 2011.

[33] S. Purao and V. Vaishnavi. Product metrics for
object-oriented systems. ACM Computing Surveys
(CSUR), 35(2):191–221, 2003.

[34] G. Seber. The Estimation of Animal Abundance and
Related Parameters. Blackburn Press, 2002.

[35] M. Seikola, H.-M. Loisa, and A. Jagos. Kanban
implementation in a telecom product maintenance. In
Proceedings - 37th EUROMICRO Conference on

Software Engineering and Advanced Applications,
SEAA 2011, pages 321–329, Oulu, 2011.

[36] B. Shen and D. Ju. On the measurement of agility in
software process. Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics),
4470 LNCS:25–36, 2007.

[37] M. Staron and W. Meding. Monitoring bottlenecks in
agile and lean software development projects - a
method and its industrial use. Lecture Notes in
Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in
Bioinformatics), 6759 LNCS:3–16, 2011.

[38] M. Staron, W. Meding, and B. Söderqvist. A method
for forecasting defect backlog in large streamline
software development projects and its industrial
evaluation. Information and Software Technology,
52(10):1069–1079, 2010.

[39] D. Talby and Y. Dubinsky. Governance of an agile
software project. In Proceedings of the 2009 ICSE
Workshop on Software Development Governance, SDG
2009, pages 40–45, Vancouver, BC, 2009.

[40] D. Talby, O. Hazzan, Y. Dubinsky, and A. Keren.
Reflections on reflection in agile software development.
In Proceedings - AGILE Conference, 2006, volume
2006, pages 100–110, Minneapolis, MN, 2006.

[41] V. Trapa and S. Rao. T3 - tool for monitoring agile
development. In Proceedings - AGILE Conference,
2006, volume 2006, pages 243–248, Minneapolis, MN,
2006.

[42] J. Trimble and C. Webster. From traditional, to lean,
to agile development: Finding the optimal software
engineering cycle. In Proceedings of the Annual Hawaii
International Conference on System Sciences, pages
4826–4833, Wailea, Maui, HI, 2013.

[43] D. Tudor and G. Walter. Using an agile approach in a
large, traditional organization. In Proceedings -
AGILE Conference, 2006, volume 2006, pages
367–373, Minneapolis, MN, 2006.

APPENDIX
A. SEARCH STRINGS

The first search string was:
TITLE-ABS-KEY(software AND (agile OR lean OR ”crys-

tal method” OR ”crystal clear” OR dsdm OR ”dynamic sys-
tems development method” OR fdd OR ”feature driven de-
velopment” OR ”agile unified process” OR ”agile modeling”
OR scrumban OR kanban OR scrum OR ”extreme program-
ming” OR xp) AND (measur* OR metric OR diagnostic
OR monitor*)) AND (LIMIT-TO(SUBJAREA, ”COMP”))
AND (LIMIT-TO(LANGUAGE, ”English”))

It found 512 hits 19 September 2013.
The second search string was:
TITLE-ABS-KEY(software AND (agile OR lean OR ”crys-

tal method” OR ”crystal clear” OR dsdm OR ”dynamic sys-
tems development method” OR fdd OR ”feature driven de-

velopment” OR ”agile unified process” OR ”agile modeling”
OR scrumban OR kanban OR scrum OR ”extreme program-
ming” OR xp) AND (measur* OR metric OR diagnostic
OR monitor*)) AND (LIMIT-TO(LANGUAGE, ”English”))
AND (LIMIT-TO(SUBJAREA, ”ENGI”)) AND (EXCLUDE
(SUBJAREA, ”COMP”) OR EXCLUDE(SUBJAREA,
”PHYS”) OR EXCLUDE(SUBJAREA,”MATE”) OR EX-
CLUDE (SUBJAREA, ”BUSI”) OR EXCLUDE(SUB-
JAREA, ”MATH”) OR EXCLUDE(SUBJAREA, ”ENVI”)
OR EXCLUDE (SUBJAREA, ”EART”) OR EXCLUDE
(SUBJAREA, ”DECI”) OREXCLUDE (SUBJAREA,
”ENER”))

It found 220 hits 7 November 2013.
The third search string was:
TITLE-ABS-KEY(software AND (agile OR lean OR ”crys-

tal method” OR ”crystal clear” OR dsdm OR ”dynamic sys-
tems development method” OR fdd OR ”feature driven de-
velopment” OR ”agile unified process” OR ”agile modeling”
OR scrumban OR kanban OR scrum OR ”extreme program-
ming” OR xp) AND (measur* OR metric OR diagnostic OR
monitor*)) AND (LIMIT-TO(LANGUAGE, ”English”))
AND (LIMIT-TO(SUBJAREA, ”BUSI”)) AND (EXCLUDE
(SUBJAREA, ”ENGI”) OR EXCLUDE(SUBJAREA,
”COMP”))

It found 42 hits 10 December 2013.

B. INCLUSION AND EXCLUSION CRITE-
RIA

Inclusion criteria

• Papers that present the use and experiences of metrics
in an agile industry setting.

Exclusion criteria

• Papers that don’t contain empirical data from industry
cases.

• Papers that are not in English.

• Papers that don’t have agile context. There is evidence
of clearly non-agile practices or there is no agile method
named. For example, paper mentions agile but case
company has only three releases per year.

• Paper is only about one agile practice, which is not
related to measuring.

• Papers that don’t seem to have any data about metric
usage. Similarly, if there are only a few descriptions of
metrics but no other info regarding reasons or usage.

• Papers that have serious issues with grammar or vo-
cabulary and therefore it takes considerable effort to
understand sentences.

• Papers where the setting is not clear or results can-
not be separated by setting, for example surveys where
there is data both from academia and industry.

• Papers where the metrics are only used for the research.
For example author measures which agile practices cor-
relate with success.

