
 

 

Kupiainen, E., Mäntylä M. V., Itkonen J., "Using Metrics in Agile and Lean Software Development - 

A Systematic Literature Review of Industrial Studies", Information and Software Technology, 

2015 

 

 

 

This is a pre-print. For final publisher’s version see http://dx.doi.org/10.1016/j.infsof.2015.02.005 

http://dx.doi.org/10.1016/j.infsof.2015.02.005


Using Metrics in Agile and Lean Software Development
– A Systematic Literature Review of Industrial Studies

Eetu Kupiainena, Mika V. Mäntyläa,b,∗, Juha Itkonena

aDepartment of Computer Science and Engineering, Aalto University, Finland
bDepartment of Information Processing Science, University of Oulu, Finland

Abstract

Context: Software industry has widely adopted Agile software development
methods. Agile literature proposes a few key metrics but little is known of the
actual metrics use in Agile teams.
Objective: The objective of this paper is to increase knowledge of the reasons
for and effects of using metrics in industrial Agile development. We focus on
the metrics that Agile teams use, rather than the ones used from outside by
software engineering researchers. In addition, we analyse the influence of the
used metrics.
Method: This paper presents a systematic literature review (SLR) on using
metrics in industrial Agile software development. We identified 774 papers,
which we reduced to 30 primary studies through our paper selection process.
Results: The results indicate that the reasons for and the effects of using
metrics are focused on the following areas: sprint planning, progress tracking,
software quality measurement, fixing software process problems, and motivating
people. Additionally, we show that although Agile teams use many metrics
suggested in the Agile literature, they also use many custom metrics. Finally, the
most influential metrics in the primary studies are Velocity and Effort estimate.
Conclusion: The use of metrics in Agile software development is similar to
Traditional software development. Projects and sprints need to be planned
and tracked. Quality needs to be measured. Problems in the process need to
be identified and fixed. Future work should focus on metrics that had high
importance but low prevalence in our study, as they can offer the largest impact
to the software industry.

Keywords: Agile, Lean, metrics, measurement, systematic literature review,
software engineering

∗Corresponding author
Email addresses: eetu.kupiainen@gmail.com (Eetu Kupiainen), mika.mantyla@oulu.fi

(Mika V. Mäntylä), juha.itkonen@aalto.fi (Juha Itkonen)

Preprint submitted to Information and Software Technology February 10, 2015



1. Introduction

Agile software development methods, such as Scrum [32], Extreme Program-
ming [2], Lean Software Development [27], and Kanban [1], are already the most
common software development approaches in industry [31]. In Agile methods,
the focus is in lightweight working practices, constant deliveries, and customer
collaboration over long planning periods, heavy documentation, and inflexible
development phases [3].

Software metrics have been studied for decades and several literature reviews
have been published. For example, Kitchenham [19] performs a mapping of
the most cited software metrics papers and summarises recent review papers.
However, according to the authors’ best knowledge, there are no systematic
literature reviews on the reasons for and effects of using metrics in the Agile
software development context.

Agile methods follow certain pre-given metrics and a set of rigorous prac-
tices. Examples of Agile metrics are burn-down-charts, test-pass rates, and
sustainable pace. These metrics, however, seem to differ from the Traditional
measurement programs. For example, a team’s velocity is used in XP to as-
sign a sustainable amount of work to the team and plan the iteration contents
accordingly, whereas traditional planning would set the team a productivity
goal as given and track team performance against that goal. In Agile mindset,
estimating is applied as a way to predict how much the team can get done to
guide sprint planning—not as a target that should be achieved as closely as pos-
sible. Agile emphasises measuring progress in terms of working software over
measuring intermediate work products (documents) and strives for making the
measurement simple and immediate. Overall, Agile creates two types of con-
flicts to Traditional measurement approaches. First, the traditional approach
of tracking progress against a pre-made plan and measurable goals [36] conflicts
with the Agile value of embracing the change. Second, the standard quality
measurement approaches, such as [15], propose a rather comprehensive set of
metrics, which does not align well with the Agile principle of simplicity.

To exemplify this contrast between Agile and Traditional, we list the main
differences in measurement in Traditional and Agile contexts:

• Traditional: controlling, outsider viewpoint, tracking deliverables, setting
measurable goals, following a plan, large programs [36, 10]

• Agile: team in control, customer focus, simplicity, following a trend, fast
feedback, responding to change [1, 33, 3]

While Agile and Lean development organizations seem to have well reasoned
needs for metrics, the overall picture is not clear on what metrics Agile teams
are using in practice, for what purpose, and with what effects. Empirical met-
ric research in the context of Agile methods remains scarce, and in this study
we aim at laying out the current state of practice of software metrics in indus-
trial Agile software development based on the empirical literature. We make
a systematic literature review (SLR) to investigate what metrics are used in

2



industrial projects. We further analyse the reported motivations, i.e., benefits
of applying the metrics, as well as the effects of using metrics in Agile teams.
In addition, the importance of the metrics is analysed to create understanding
of the characteristics of high influence metrics in Agile and Lean contexts. We
study Agile and Lean together, as comparison between them indicates that Ag-
ile and Lean share the same goals and rely on similar principles [25]. Therefore,
in this study we view Lean as a special case of Agile software development,
although some individuals would claim that it is the other way around.

Based on these goals we state the the following research questions:

• Research Question 1: What metrics are used in industrial Lean and
Agile software development?

• Research Question 2: What are the reasons for and effects of using
metrics in industrial Lean and Agile software development?

• Research Question 3: What metrics have high influence in industrial
Lean and Agile software development?

In this SLR study we focus on research and experience reports that report
empirical findings on real uses of metrics in Agile context. We only select papers
in which the context is properly described to understand if a development team
or software company is using the described metrics. We exclude cases where
metrics are used purely for research or comparison purposes, i.e., metrics that
are not used to support the software development work. We also require that
the motivation, effects, or importance of the metrics is somehow addressed in
the selected primary studies.

Previously, we have published the initial results of our SLR as a 7-page work-
shop paper [22]. The previous paper only presented the initial results of RQ2.
In this work, the analysis of RQ2 has progressed resulting in better and more
detailed results. Additionally, this work presents two new research questions
RQ1 and RQ3. Finally, the discussion that helps the reader to interpret the
results has been greatly extended.

This article is structured as follows. Section 2 provides background infor-
mation about related concepts regarding this study. Section 3 describes how
the systematic literature review was conducted. Section 4 reports the results of
the study. Section 5 discusses the findings and how they map to prior research.
Section 6 concludes the study.

2. Background and Related Work

In this section, we describe the background related to Agile software de-
velopment and software measurement research, and introduce the key concepts
used in this study. First, we introduce the Agile software development approach
and its relationship to Lean software development. Then, we review the benefits
of software measurement in general and give a brief overview of existing review
studies on software metrics.

3



2.1. Agile software development
Agile software development has emerged to provide an alternative to plan-

driven and often heavyweight methods. Agile methods share common values
and principles [3]. Agile methods value individuals and interactions, working
software, customer collaboration, and responding to change over processes, doc-
umentation, contracts, and plans. Agile development emphasises short devel-
opment cycles, frequent deliveries, continuous face-to-face communication, and
learning. Popular Agile development methods include Scrum [32] and Extreme
Programming [2]. Lean Software Development (LeanSD)[27] and Kanban [1]
share the similar values and principles with Agile methods.

Scrum [32] method is characterised by daily team meetings and develop-
ment sprints. On a high level, the development is constructed from multiple
subsequent sprints, where an increment of the software is developed. Sprints
are planned by selecting items from a backlog and estimating the effort needed
to complete each item selected for the sprint. During sprints, the team groups
up every day for a daily scrum meeting, where the status of the tasks is tracked.
At the end of the sprint, a sprint review and demo is organized. Learning is
emphasized in every sprint with a sprint retrospective meeting.

Extreme Programming (XP) [2] emphasizes a set of principles and prac-
tices to the extreme. For example, automated unit testing, pair programming,
and continuously refactoring the code base are made very rigorous practices to
enable agile ways of working. Changes in business requirements can then be
flexibly developed. Communication is efficiently handled with collocated teams,
unit tests, pair-programming, and having a customer continuously available to
provide information on business requirements.

LeanSD and Kanban can be seen as approaches where traditional Lean man-
ufacturing [38] philosophies, principles, and tools are applied to software devel-
opment. As such, it is not easy to separate Agile and Lean methods. A com-
parison of Agile and Lean principles, for example, has revealed them to be very
similar [25].

“Lean development further expands the theoretical foundations
of Agile software development by applying well-known and accepted
Lean principles to software development. But it goes further by
providing thinking tools to help translate Lean principles into agile
practices that are appropriate for individual domains.” [27]

The modified lean principles used in LeanSD are:

1. Eliminate Waste

2. Amplify Learning

3. Decide as Late as Possible

4. Deliver as Fast as Possible

5. Empower the Team

6. Build Integrity In

7. See the Whole

4



Kanban is neither a software development lifecycle methodology nor a project
management approach. Instead, Kanban can be applied to incrementally change
and improve some underlying, existing process [1]. It is an evolutionary process
model that allows each Kanban implementation to be different, suited for each
context. On the other hand, LeanSD describes Kanban as part of one of its
tools: “Pull Systems”[27]. Kanban, too, defines certain principles; for example,
Kanban systems are always pull systems. Work is pulled to development only
when there is capacity, compared with some other systems where work is pushed
to development.

In this study, we scope our focus on Agile software development, but as
the differentiation between Agile, Lean, and Kanban in software development
methodologies is not clear or even meaningless in our case, we include in this
research all cases where the applied method is described as being either Agile,
LeanSD, Kanban, or some combination of these.

2.2. Software measurement
Metrics use has been motivated in the prior work by several authors giving

possible reasons and effects of using metrics, in the traditional software engineer-
ing context, that might also be applicable to Agile software development: “If
you cannot measure it, you cannot improve it. . . ” is perhaps the most popular
metrics motivation, originally given by Lord Kelvin, a mathematical physicist
and engineer. According to Fenton and Pfleeger [10], we use metrics every day
to understand, control and improve what we do and how we do it. Furthermore,
Jones [17] states, based on the knowledge base of thousands of software projects,
that the top-performing software companies, such as IBM and Microsoft, exten-
sively use metrics in their business, while the lower-performing teams do not.
Buse and Zimmermann [6] surveyed the information needs of software managers
and developers at Microsoft and found that the most used information is related
to quality, e.g., automated failure and bug reports, which are used by roughly
75% of the respondents. Common needs for metrics are related to support-
ing communication and decision making. Summarizing Pulford et al. [28] and
Grady [12] gives us the following motivations for metrics use:

• Project planning and estimation

• Project management and tracking

• Understanding quality and business objectives

• Improved software development communication, processes, and tools

In addition to the software engineering literature motivating the use of met-
rics in software development in general, there are existing review articles on
software metrics studies. There are a few mapping studies on software met-
rics, and Kitchenham [19] reports that there is a large body of research related
to software metrics. Kitchenham [19] summarises four recent survey studies
on software metrics. For example, two papers review fault prediction metrics

5



[7, 30], Purao and Vaishnavi [29] reviewed object-oriented product metrics, and
Bellini et al. [4] presented a systematic review focusing on how the concepts and
research in software measurement have been developed, as well as the implica-
tions of the research trends for research and practice.

There are many benefits to software metrics, such as being able to predict
and improve many aspects of software projects and, in general, make better
decisions. However, it is important to study the metrics, their use, and their
benefits in context, because failure to understand the context will limit the un-
derstanding and the usefulness of the results in varying industrial contexts [19].
Also Radjenović et al. [30] concludes that more studies are needed in large indus-
trial contexts to find metrics that are relevant to the industry and to understand
which metrics should be used in a given context. Yet, none of the reviews of
metrics literature of the previous paragraph focused on Agile methods or even
classified the existing studies based on the software development approach.

The goal of this study is to research the metrics that are applied in the Lean
and Agile software development contexts, based on empirical research. We also
aim at understanding the reasons and effects of metric use, and at characterising
the important metrics in these contexts.

3. Research Method

A systematic literature review (SLR) was chosen as a research method be-
cause the study is more about trying to understand a problem than trying to
find a solution to it. Also, there was already existing literature that could be
synthesised. An SLR is a research method originating from the field of medicine
[18]. There are three main reasons for conducting an SLR [21]. First, to aggre-
gate and synthesise existing knowledge regarding a research topic. Second, to
identify gaps in earlier research. Third, to provide background information to
start investigating a new research topic. Moreover, an SLR provides a repeat-
able research method which, when applied properly, should provide sufficient
detail to be replicated by other researchers. Furthermore, the detailed docu-
mentation of the performed steps within the SLR enables in-depth evaluation
of the conducted study.

An SLR is a trustworthy research method for multiple purposes. In this
study, an SLR is used to perform a comprehensive study of empirical research on
using metrics in Agile software development. Both quantitative and qualitative
analysis methods are used to understand which metrics are used, why, what are
the effects of metric use, and to characterise the importance of metrics in Agile
context.

The guidelines provided by Kitchenham [18] were used as a basis to develop
the SLR protocol. Additionally, [9] and [20] were used to further understand the
challenges and opportunities of SLRs. The protocol was developed iteratively,
performing first a small pilot study and iterating the details of the protocol
in weekly meetings among the researchers. In addition, the validity of both

6



Table 1: Paper selection funnel

Stage Amount of papers

Stage 1 774
Stage 2 163
Stage 3 30

the study selection and data extraction procedures was evaluated as described
below.

In the following subsections, we describe the search including the primary
study selection process, pilot study, data extraction procedures, data analysis,
and data synthesis.

3.1. Search and selection process
The strategy for finding primary studies was the following:

• Stage 1: Automated search

• Stage 2: Selection based on title and abstract

• Stage 3: Selection based on full text. Data extraction and quality assess-
ment.

Table 1 shows the selection funnel in terms of the number of papers after each
stage. Scopus database 1 was used to find the primary studies with automated
search. Keywords include popular Agile development methods and synonyms
for the word “metric”. The search was improved incrementally in three phases
because some key papers and XP conferences were not found initially. The
search strings, hits, and dates can be found in Appendix A.

The selection of the primary studies was based on the following inclusion
criteria: papers that present empirical findings on the industrial use and expe-
riences of metrics in an Agile context. Papers were excluded based on multiple
criteria, mainly due to not conforming to requirements regarding empirical find-
ings, Agility, and industrial context. The full criteria are listed in Appendix B.

In stage 1, Scopus was used as the only search engine, as it contained the
most relevant databases IEEE and ACM. Also, it was able to find Agile and
XP conference papers. Only the XP Conference 2013 was searched manually
because it could not be found through Scopus.

In stage 2, papers were included and excluded based on their title and ab-
stract. As the quality of abstracts can be poor in computer science [18], full
texts were also skimmed through in case of unclear abstracts. Unclear cases

1http://www.scopus.com

7



were discussed among the researchers in weekly meetings, and an exclusion rule
was documented if necessary.

The validity of the selection process was analysed by performing the selection
for a random sample of 26 papers also by the second author. The level of
agreement was “substantial” with Kappa 0.67 [23].

Stage 3 included multiple activities in one workflow. This included the selec-
tion by full text, data coding, and quality assessment. Once again, if there were
unclear papers, they were discussed in the meetings. Also, the selection of 7 pa-
pers was conducted by the second author with an “almost perfect” agreement,
Kappa 1.0 [23].

3.2. Pilot study
We conducted a pilot study after the first database searches to refine the

aim of the research and get familiar with the research method. Moreover, it was
possible to modify the method and tools before applying them to the full set of
primary studies.

Fifteen papers were selected for the pilot; 5 by relevance, 5 by number of
citations, and 5 by random selection. Based on the pilot study, a few improve-
ments to the SLR protocol were made. First, the selection by title and selection
by abstract steps were joined together to improve the reliability of the first se-
lection round. Second, the quality assessment checklist was decided based on
the pilot results. Finally, the pilot resulted in changes in citation management
tools.

3.3. Data extraction
The data extraction was performed by reading the complete text of all the se-

lected (final selection based on full text) papers and coding the relevant excerpts.
Integrated coding was selected as data extraction strategy [8]. Integrated coding
includes having a start list of codes as well as creating new codes if necessary
(ground-up). It provided the focus for research questions but flexibility regard-
ing findings. Deductive coding would have been too restrictive, and inductive
coding might have caused too much bias. Integrated coding made it possible to
create a sample list of code categories:

• Why is the metric used?

• What is the effect of metric use?

• Metric

• Importance of the metric

• Context

The coding started by reading the full text and marking relevant quotes with
a temporary code. After reading the full text, the first author checked each quote
and coded again with an appropriate code based on the built understanding.

8



In weekly meetings, all authors iteratively built a rule set for collecting metrics
and discussed borderline cases. The final rule set was as follows:

• Collect metric if team or company uses it.

• Collect metric only if something is said about why it is used, what effects
it causes, or if it is described as important.

• Do not collect metrics that are only used for the comparison and selection
of development methods.

• Do not collect metrics that are primarily used to compare teams. (There
were cases where a researcher or management uses a metric to compare
teams. We wanted to find metrics a team could use.)

Atlas.ti2 version 7 was used to collect and synthesise the qualitative data.
The amount of coded quotes per code can be seen in Table 2. To evaluate the
repeatability of finding the same metrics, the second author coded the metrics
from three primary studies. The capture-recapture method [34] was then used,
which showed that 90% of metrics were found.

Table 2: The amount of found quotes

Code Amount of quotations

Why is the metric used? 151
What is the effect of metric use? 61

Metrics 102
Importance related to the metric 45

Context 158

A quality assessment form adopted from [9] was used to evaluate the quality
of each primary study. A detailed list of quality assessment questions can be
found in Appendix C. Additionally, a relevancy factor was added to the same
assessment to describe how useful a primary study was for this study. The
relevancy factor was evaluated subjectively by the researcher. The scale for the
factor is:

• 0 = does not contain any information regarding metrics and should already
be excluded

• 1 = only descriptions of metrics with no additional info

• 2 = some useful information related to metrics

• 3 = a good amount of relevant information regarding metrics and metric
use

2http://atlasti.com/product/features/

9



Figure 1: Example of qualitative analyses. Reasons and effects of using metrics category
“Progress tracking” was formed by organising descriptive codes (boxes in the figure) into a
group based on their similarity.

3.4. Data analysis and synthesis
The results of the initial coding of the metrics and other quotes were fur-

ther synthesised by similarity based categorisation. Metrics codes were grouped
based on similarity to enable the categorisation in Table 7 and Table 10. For ex-
ample, burndown is grouped under velocity and faults per iteration is grouped
under defect count. For the reasons and effects, the data synthesis followed
the steps recommended by Cruzes and Dyb̊a [8]. The process started by going
through all quotes within one code and describing each quote with a more de-
scriptive high level code. Then the high level codes were organised in groups
based on their similarity, see, e.g., Figure 1. These groups were then given
names, which are seen as categories in our results, for example, see Table 9.

4. Results

This section presents the results of the systematic literature review and pro-
vides the answers to the research questions. Section 4.1 describes the overview
of studies. Section 4.2 describes the results of the quality evaluation of the pri-
mary studies. Section 4.3 presents the found metrics (RQ1), categorises them

10



Figure 2: Number of papers per year

based on the entity that is measured, and compares them with metrics suggested
by the Agile literature. Section 4.4 describes the reasons for using metrics and
also describes the effects of metric use (RQ2). Originally, we tried to separate
the RQ2 into two separate sections. However, this resulted in a large amount
of repetitive text, as the primary studies often did not make a clear distinction
between the motivation for using the metrics (why) and the effects the met-
rics had. Finally, Section 4.5 describes important metrics (RQ3) by statements
from the primary studies as well as by the amount of evidence from the primary
studies.

4.1. Overview of studies
This section gives an overview of the primary studies. Table 3 shows the

distribution of the primary studies by publication channel. Table 4 lists the
primary studies by context factors. Figure 2 shows the number of papers per
year.

The study identified 30 primary studies with 36 cases in total. The primary
studies were published in 12 different journals, conferences, or workshops, see
Table 3. A large share of the primary studies (43%) was published in the Agile
Conference. The rest of the studies were published in a wide range of journals,
conferences, and workshops.

The primary studies and their context information can be seen in Table 4.
For collecting context, we tried to apply Petersen and Wohlin [26] as much as
possible. However, the information formed a sparse matrix. Therefore, the
summary of our context variables in Table 4 seems quite thin. Furthermore, the

11



Table 3: The publication distribution of the primary studies

Publication channel Type # %

Agile Conference Conference 9 43
HICCS Conference 3 14
ICSE SDG Workshop 2 10
XP Conference Conference 2 10
Agile Development Conference Conference 1 5
APSEC Conference 1 5
ASWEC Conference 1 5
ECIS Conference 1 5
Elektronika ir Elektrotechnika Journal 1 5
Empirical Software Engineering Journal 1 5
EUROMICRO Conference 1 5
ICSE Conference 1 5
IST Journal 1 5
IJPQM Journal 1 5
JSS Journal 1 5
PROFES Conference 1 5
Software - Prac. and Exp. Journal 1 5
WETSoM Workshop 1 5

industry domain was extracted from the primary studies as it was stated in the
papers. Because we do not have other knowledge of the reported cases in the
papers than what is written in the papers, it would have been very difficult to
match the case context to some specific pre-defined classification. Furthermore,
the research method classification is also based on how the method was described
in the primary studies. The empirical reports by the case participants that did
not describe a proper research method were classified as experience reports.

The earliest study is from 2002, and the rest of the studies are quite evenly
distributed from 2002 to 2013. Single-case was the most used research method
(60%), followed by experience report (23%), multi-case (10%), and survey (7%).

The Agile method for the studies was identified based on the assessment
of the researcher. A specific method was chosen if it seemed to be a primary
method in the case. Based on the results, Scrum was the most used Agile
method (35%) in the primary studies. XP was the second most used Agile
method (20%), while LeanSD (Lean Software Development) and Kanban were
used in 5% of the cases. In 33% of the cases, the used Agile method was
unclear, and this is marked by “NA” . We decided to include such cases as
often in practice a custom or hybrid agile process is used [37].

If it was unclear what Agile method was used, then “NA” was set as the
Agile method.

Telecom was the most represented domain (28%), enterprise information
systems was the second (19%), and web applications was the third (11%). Forty-

12



two percent of the cases were of other domains or without domain information.

Table 4: Overview of the primary studies

ID Year Resear. meth. Agile method Team size Domain

[S1] 2010 Survey NA NA NA
[S2] 2005 Experience r. MSF v4.03 NA NA
[S3] 2009 Multi-case NA/Scrum/

Scrum
2-10/2-7/4-8 ERP/Graphic de-

sign plug-in/Facility
management

[S4] 2013 Experience r. Scrum 25 teams Software for oil and
gas industry

[S5] 2005 Single-case XP 15 Enterprise informa-
tion system

[S6] 2002 Experience r. XP 50 Enterprise resource
solution for the
leasing industry

[S7] 2011 Survey Scrum 26 teams Desktop and SaaS
products

[S8] 2010 Experience r. Scrum 5-9 NA
[S9] 2006 Single-case XP 15-20 Broadband order sys-

tem
[S10] 2004 Multi-case XP/Scrum 4-18/6-9 b-2-b e-commerce so-

lutions/Criminal jus-
tice system develop-
ment

[S11] 2007 Single-case Scrum 500 Security services
[S12] 2010 Single-case Scrum NA E-commerce
[S13] 2011 Single-case LeanSD 5±2 Information and

communication soft-
ware development

[S14] 2012 Experience r. XP NA Web application de-
velopment

[S15] 2006 Multi-case NA/NA/
NA/NA

2-5/12-15/1-
10/6-7

NA/NA/NA/NA

[S16] 2012 Single-case Scrum 6-8 Web page develop-
ment

[S17] 2007 Single-case NA Comp. 160
devs

Various

[S18] 2010 Single-case LeanSD Dev site 600 Telecom
[S19] 2010 Single-case XP 6-7 Telecom
[S20] 2010 Single-case NA NA Telecom
[S21] 2011 Single-case Scrum Dev site 500 Telecom
[S22] 2012 Single-case NA NA Telecom

3Microsoft Solutions Framework v4.0

13



[S23] 2011 Experience r. Scrum / Kan-
ban

9 and 6 Casino games

[S24] 2011 Single-case Kanban 6-8 Telecom mainte-
nance

[S25] 2010 Single-case NA project size
100

Telecom

[S26] 2011 Single-case NA project size
200

Telecom

[S27] 2006 Single-case XP 15 Enterprise informa-
tion system

[S28] 2009 Single-case XP 15 Enterprise informa-
tion system

[S29] 2006 Experience r. NA NA Telecom
[S30] 2013 Single-case NA 5 Space mission control

software

4.2. Quality evaluation of the primary studies
The quality evaluation was done by the researcher after the data extraction

of each primary study. Each category was evaluated on a scale from 0 to 1. The
evaluation form was adopted from [9]. The detailed list of quality evaluation
questions can be found in Appendix C. Additionally, a relevancy factor was
assigned to each study describing its relevancy to this study. The scale for the
relevancy can be found in section 3.3.

The perceived quality of the studies varied a great deal (from 0 to 10). Even
though there were many low scoring studies, they were included since they still
provided valuable insight. For example, in some cases an experience report [S4]
provided more valuable data than a high scoring research paper [S25].

According to the quality evaluation, control group and reflexivity had the
lowest total scores, while values for research, context, and findings scored the
highest. Forty-three percent of the primary studies had a total score of 8, 9, or
10, and 37% of the primary studies had a total score of 1, 2, or 3.

4.3. RQ1: Metrics
RQ1 was What metrics are used in industrial Lean and Agile software de-

velopment? Here we look into the results of this RQ by listing, categorising,
and comparing the metrics. All the found metrics are listed by primary study in
Table 6. A total of 102 metrics were found in the primary studies. Definitions of
metrics can be found in Appendix D. Metrics were only collected if their reason
for use, effect of use, or importance was described.

Table 6 provides the raw results of RQ1 but – as it does not provide the
necessary high level overview – we also present the metrics under two differ-
ent categorisation. First, the metrics are presented with the categorisation by
Fenton and Pfleeger [10]. We use their categorisation because their work on
software metrics is very widely known in the software engineering community
(over 4,500 citations in Google Scholar). Second, we categorise and contrast the

14



Table 5: Quality evaluation of the primary studies

Study Res-
earch

Aim Con-
text

R.d-
esign

Sam-
pling

Ctrl.
grp

Data
coll.

Data
anal.

Re-
flex.

Find-
ings

Val-
ue

Tot-
al

Rele-
vancy

[S1] 1 1 1 1 1 0 1 1 1 1 1 10 2
[S2] 0 0 0 0 1 0 0 0 0 0 1 2 2
[S3] 1 1 0 1 0 0 0 0 0 0 0 3 2
[S4] 0 0 0 0 1 0 0 0 0 0 1 2 3
[S5] 1 1 1 1 1 0 1 1 0 1 1 9 3
[S6] 0 0 1 0 1 0 0 0 0 0 1 3 2
[S7] 0 0 0 0 0 1 1 1 0 1 1 5 2
[S8] 0 0 0 0 0 1 0 0 0 1 1 3 3
[S9] 1 1 1 1 0 0 1 1 1 1 0 8 2
[S10] 0 0 1 0 1 1 0 0 0 1 1 5 2
[S11] 0 0 1 0 0 0 0 0 0 1 1 3 3
[S12] 0 0 1 0 0 0 0 0 0 0 0 1 3
[S13] 0 0 0 0 0 1 0 0 0 1 1 3 3
[S14] 0 0 0 0 0 0 0 0 0 0 0 0 2
[S15] 1 1 0 1 1 1 1 1 0 1 1 9 2
[S16] 1 0 1 0 1 0 0 0 0 0 0 3 2
[S17] 1 1 1 1 1 0 1 0 0 1 1 8 3
[S18] 1 1 1 1 1 0 1 1 0 1 1 9 3
[S19] 1 1 1 1 1 0 1 1 1 1 1 10 2
[S20] 1 1 0 1 0 0 0 0 0 1 0 4 2
[S21] 1 1 1 1 1 0 1 1 1 1 1 10 2
[S22] 1 1 1 1 1 0 1 1 1 1 1 10 2
[S23] 0 0 1 0 0 1 0 0 0 1 1 4 2
[S24] 0 0 1 0 1 0 0 0 0 1 1 4 2
[S25] 1 1 1 1 1 0 1 1 1 1 1 10 3
[S26] 1 1 1 1 0 0 1 1 1 1 1 9 2
[S27] 1 1 1 1 1 0 1 1 0 1 1 9 2
[S28] 1 1 1 1 1 0 1 1 0 1 1 9 3
[S29] 0 0 0 0 0 0 0 0 0 0 1 1 3
[S30] 0 0 1 0 1 0 0 0 0 0 1 3 2
Total 16 15 20 15 18 6 14 13 7 21 24

15



SLR metrics to the metrics suggested in the original works on Agile methods,
i.e. Scrum [33], XP [2], Kanban [1], and LeanSD [27]. This comparison allows us
to see whether practitioners follow the metrics suggested in the Agile methods
or not.

The categorisation by Fenton and Pfleeger [10] has two dimensions: enti-
ties and attributes. The entities tell whether the metrics are related to either,
processes that are “collection of software related artifacts”, products that are
“artifacts, deliverables, or documents that result from a process activity”, or
resources that are “entities required by process activity”. The attributes dis-
tinguish between internal and external attributes. Internal attributes “can be
measured by examining the product, process, or resource on its own”, whereas
external attributes “can be measured only with respect to its environment”.

Table 7 shows that metrics were largely applied to products, test plans,
code, builds, features, requirements, and defects. Most of the entities in the
Products class were measured internally, except the products entity, which was
measured mostly externally. Furthermore, testing, implementation, and the
whole development cycle were measured mostly internally in the Processes class.
Only two metrics are related to measuring the Resources class.

In Table 7 the same metric can exist in different places depending on how it
is applied. Categorising the metrics according to Fenton and Pfleeger [10] is not
a trivial task, as metrics can be categorised into any of several classes depending
on the viewpoint. For example, defect count can be an internal process measure
of software testing, but at the same time the number of defects experienced
by the customer can be an external measure of the software product or even
customer satisfaction as the software is used by the customer. We categorised
the metrics based on their application in the original sources, although it may
make Table 7 look inconsistent.

Table 8 compares the SLR metrics with the ones suggested in the Agile
methods, i.e. the ones presenting Scrum [33], XP [2], Kanban [1] and LeanSD
[27]. The rightmost column in Table 8 describes the Agile method used in
the primary studies (’S’=Scrum, ’X’=XP, ’K’=Kanban, ’L’=LeanSD) . In some
primary studies, it was hard to identify a specific Agile method, thus ’NA’ is
used to describe those cases. The number before the primary study reference
defines the index of the metric in the list of metrics for the study in question in
Table 6.

Table 8 shows that he most popular metrics suggested by the Agile literature
are Effort estimate and Velocity. This indicates the need to track progress.
In addition, metrics related to quality and testing had some importance, as
measuring initial quality and the quantity of unit and acceptance tests had
some popularity. Actual development time (XP), load factor (XP), Due date
performance (Kanban), Issues and blocked work items (Kanban), and Flow
efficiency (Kanban) were not described in any primary studies. It is difficult to
say why these metrics had not been used at all. Perhaps they are not needed,
or the issues they measure are already covered by existing metrics, e.g. actual
development time can be in a practitioner’s view quite similar to velocity.

Table 8 shows that many metrics (39%) found in the primary studies were

16



Figure 3: Number of sources and metrics for the reasons for and effect of using metrics

not suggested in the original works on Agile methods. Thus, it appears that
practitioners add and invent new metrics according to their needs. Additionally,
agile literature cannot possibly suggest all metrics that could be compatible
with Agile values, for example, a Business value delivered metric focuses on
the customer whose satisfaction is a top priority in Agile software development.
However, the Agile literature studied in Table 8 does not suggest measures for
business value. Furthermore, Agile literature is missing some basic metrics of
software engineering such as the defect count. We could argue that since agile
emphasises progress as working code, then defect count metric is not needed as
by definition working code cannot include defects. However, many of the cases
still measured the defect count.

4.4. RQ2: Reasons and effects of using metrics
RQ2 was What are the reasons for and effects of using metrics in industrial

Lean and Agile software development?
We divided the reasons and effects of using metrics to five categories: Sprint

and Project Planning, Sprint and Project Progress Tracking, Understanding and
Improving Quality, Fixing Software Process Problems, and Motivating People.
These categories are described in Sections 4.4.1 to 4.4.5, respectively. Table 9
lists the primary studies that have contributed to each of the categories and
Figure 3 illustrates the number of papers and number of metrics in the different
catogries. We would like to highlight that a single metric can belong to several
categories depending on how it is used. Thus, the contents of our five categories
are heavily dependent on how using the metrics was described in the primary
studies.

4.4.1. Sprint and Project Planning

From the primary studies we found three types of planning activities: pri-
oritisation, scoping, and resourcing. Prioritization of tasks was one of the
main activities metrics were used for. At Objectnet, effort estimates were used
to prioritise the features for the next release and as basis for resourcing [S9].
Teams at Adobe Systems used effort estimates to prioritise activities based on

17



Table 6: RQ1: Metrics by the primary studies

ID Metrics

[S1] Business value delivered, customer satisfaction, defect count after testing, number of
test cases, running tested features

[S2] Velocity, Work in progress
[S3] Critical defects sent by customer, open defects, test failure rate, test success rate,

remaining task effort, team effectiveness
[S4] Technical debt board, build status, technical debt in effort
[S5] Burndown, check-ins per day, number of automated passing test steps, faults per

iteration
[S6] Velocity, story estimates
[S7] Burndown, story points, # of open defects, # of defects found in system test, defects

deferred, Net Promoter Score
[S8] Story points, task effort, velocity, operations’ velocity
[S9] Effort estimate
[S10] # of defects/velocity
[S11] Revenue per customer
[S12] Task’s expected end date, effort estimate, completed web pages, task done
[S13] Fix time of failed build, story flow percentage, percentage of stories prepared for

sprint, velocity of elaborating features, velocity of implementing features
[S14] Build status, test coverage, test growth ratio, violations of static code analysis, # of

unit tests
[S15] Effort estimate
[S16] Sprint burndown, release burndown, cost performance index, schedule performance

index, planned velocity
[S17] Common tempo time, number of bounce backs, cycle time, work in progress, customer

satisfaction (Kano analysis), effort estimate kits
[S18] Lead time, processing time, queue time
[S19] Change requests per requirement, fault slips, implemented vs wasted requirements,

maintenance effort, lead time
[S20] Number of requests from customers, inventory of requirements over time
[S21] Rate of requirements per phase, variance in handovers, requirement’s cost types
[S22] # of requirements per phase, lead time
[S23] Average velocity / work in progress, cycle time, pseudo velocity
[S24] Lead time, work in progress
[S25] Defect trend indicator, # of defects in backlog, predicted # of defects
[S26] Throughput, queue
[S27] Burndown, check-ins per day, number of automated passing test steps, number of

new and open defects
[S28] Burndown, number of automated passing test steps, check-ins per day
[S29] Story estimate, story complete percentage
[S30] Progress as working code

18



Table 7: Metric categorisation based on [10]

Entities Attributes

Products Internal External
Products Running tested features [S1], build status

[S4, S14]
Customer satisfaction [S1,
S3, S7, S17, S19, S20],
progress as working code
[S30]

Test plans Number of test cases [S1]
Code Technical debt in categories [S4], technical

debt in effort [S4], violations of static code
analysis [S14]

Features task’s expected end date [S12], task done
[S12], effort estimate [S7, S8, S8, S9, S12,
S15, S15, S15, S15, S17, S29], story com-
plete percentage [S29]

Business value delivered [S1]

Require-
ments

Requirement’s cost types [S21], Percentage
of stories prepared for sprint [S13]

Defects Defect trend indicator [S25],
predicted number of defects
[S25]

Processes
Testing defect count [S1, S3, S5, S7 ,S7, S10, S25,

S27], test success rate [S3], test failure rate
[S3], defects deferred [S7], test coverage
[S14], test growth ratio [S14]

Number of bounce backs
[S17], fault slips [S19]

Implementa-
tion

Velocity [S1, S2, S3, S5, S6, S8, S8, S10,
S13, S16, S16, S16, S23, S27, S28], num-
ber of unit tests [S1, S5, S14, S27, S28],
completed web pages [S12], cost perfor-
mance index [S16], schedule performance
index [S16], planned velocity [S16], com-
mon tempo time [S17], check-ins per day
[S5, S27, S28], fix time of failed build [S13]

Story flow percentage [S13]

Requirements
engineering

velocity of elaborating features [S13]

Whole de-
velopment
cycle

cycle time [S17, S23], lead time [S18, S19,
S22, S24], processing time [S18], queue
time [S18], maintenance effort [S19], work
in progress [S2, S17, S20, S21, S22, S23,
S24], variance in handovers [S21], through-
put [S26], queue [S26], implemented vs
wasted requirements [S19]

Resources
Team Team effectiveness [S3]
Customer Revenue per customer [S11]

19



Table 8: Metrics from the Agile literature compared to the metrics found in this study (Num-
ber prior to study reference is the index in the list of metrics for the study in question in Ta-
ble 6; The characters refer to the methodologies; S=Scrum, X=XP, L=LeanSD, K=Kanban,
NA=unclear)

Metrics suggested Method SLR Sources

Effort estimate Scrum,
XP,
LeanSD

S: 2[S7], 1[S8], 2[S8], 3[S12]. X: 1[S9]. NA: 1[S15], 6[S17],
1[S29].

Velocity (Includes to-
tal work remaining
from Scrum and ef-
fort left from Scrum
and XP.)

Scrum,
XP,
LeanSD

S: 3[S8], 2[S10], 4[S8], 1[S16], 2[S16], 5[S16], 1[S23]. X: 1[S6],
1[S5], 1[S27], 1[S28]. K:4[S23]. L: 5[S13]. NA:1[S2], 5[S3].

Written and passed
unit tests

XP,
LeanSD

S: 3[S5], 3[S27], 2[S28], 5[S14]. NA: 5[S1].

Actual development
time

XP

Load factor XP

Work in progress Kanban S:1[S21]. K:2[S23], 2[S24]. NA:4[S17], 2[S20], 1[S22].

Lead time Kanban X:5[S19]. K: 1[S24]. L:1[S18]. NA:2[S22].

Due date perfor-
mance

Kanban

Throughput Kanban NA:1[S26].

Issues and blocked
work items

Kanban

Flow effiency Kanban

Initial quality Kanban,
LeanSD

S: 3[S7], 4[S7]. X:4[S5], 1[S10], 4[S27]. NA:3[S1], 2[S3],
2[S25].

Failure load Kanban NA:2[S17].

Cycle time LeanSD K:3[S23]. NA:3[S17].

Value Stream Maps
(Work time, wait
time)

LeanSD L:2[S18], 3[S18].

Number of written
and passed accep-
tance tests per itera-
tion

LeanSD NA:4[S1], 3[S3], 4[S3].

Metrics not sug-
gested in Agile
methods, but used in
the primary studies

S: 1[S4], 2[S4], 3[S4], 4[S7], 5[S7], 1[S11], 1[S12], 3[S12],
4[S12], 3[S16], 4[S16], 2[S21], 3[S21]. X: 2[S5], 2[S27], 3[S28],
1[S14], 2[S14], 3[S14], 4[S14], 1[S19], 2[S19], 3[S19], 4[S19]. L:
1[S13], 2[S13], 3[S13], 4[S13]. NA:1[S1], 2[S1], 3[S1], 1[S3],
6[S3], 1[S17], 5[S17], 1[S20], 1[S25], 3[S25], 2[S26], 2[S29],
1[S30].

20



Table 9: Reasons and effect of using metrics by sources

Categories Sources and the metrics

Sprint and Project
Planning

Velocity [S2, S16, S23], Effort Estimate [S6, S8, S9, S12, S29],
Value to customer [S8, S11, S17], Lead time [S23, S24], Task
done/undone [S12], Task’s expected done date [S12], Predicted
N of defects [S25], Skills needed [S17]

Sprint and Project
Progress Tracking

Completed work (web-pages [S12], task kits [S17]), N of auto-
mated passing tests [S5, S27, S28], Burn-down [S5, S7, S16, S27,
S28], Check-ins [S5, S27, S28], Defects [S25, S27], Defect trends
[S25], Story percent complete [S29], Cost types [S21], Rate of re-
quirements per phase [S21], Variance in handovers [S21], Techni-
cal debt board [S4], Cycle time[S23], Common tempo time [S17],
Work in Progress[S2], Story flow percentage[S13], Team effective-
ness [S3], Inventory of requirements over time [S20], Effort esti-
mate [S8, S23], N of requirements per phase [S22]

Understanding and
Improving Quality

N of change requests[S19, S22], Maintenance effort[S19], Net Pro-
moter Score[S7], Defects[S5, S7, S10], Defect deferred [S7], Critical
defects sent by customers [S3] Burn-down [S28], Check-ins[S28],
N of automated passing tests [S5, S28], Build status, N of unit
tests [S14], Test coverage [S14], Test growth ratio [S14], Violation
of static code analysis [S14], Technical debt board [S4], Work in
progress [S17], Story percent complete [S29], Cycle time[S17]

Fixing Software
Process Problems

Lead time [S18, S26], Processing time [S18], Queue time [S18,
S26], Cost types [S21], Rate of requirements per phase [S21], Vari-
ance in handovers [S21], N of requirements per phase [S22], Story
flow percentage[S13], Defect trend [S25], Cost performance index
[S16], Schedule performance index [S16], Story percent complete
[S29], Work in Progress [S2, S17], Inventory of requirements over
time [S20], Velocity [S8, S10], Burndown [S28], percentage of sto-
ries prepared for sprint [S13], N of bounce backs [S17], N of au-
tomated passing tests [S27], Burn-down [S27], Check-ins [S27],
Defects [S27], N of work items [S20, S22], Fix times of failed build
[S13], Violation of static code analysis [S14]

Motivating People Defects [S3], Defect trend [S25] Fix times of failed build [S13],
Build status [S4, S14], Violation of static code analysis [S14], Tech-
nical debt board [S4], N of automated passing tests [S5], Work in
Progress [S17], Velocity [S6]

21



relative value and relative effort [S8]. At Timberline Inc, they used Kano anal-
ysis as a ’voice of customer’ so that prioritisation decisions could be based on
facts instead of political power [S17]. Product owners at WMS Gaming used
lead time to schedule high priority features and plan demo dates with customers
[S23]. Similarly, at Verisign Managed Security Services, they used the revenue
per customer metric to allow higher valued features to be prioritised higher in
the backlog [S11].

Scoping. Metrics were used to estimate the size and number of features that
could be taken under development. Velocity was used to improve effort estimates
for the next planning session, which helped to estimate the scope of the next
iteration [S16]. The Scrum master and product owner at a Korean e-commerce
company used estimates to check if the planned scope would be possible to
complete during the next iteration [S12]. At WMS Gaming, they used pseudo-
velocity and average velocity to plan their releases [S23]. Additionally, the
Velocity / 2 metric was used as a scoping tool for a release [S23]. The team
had enough work not to sit idle, but there was still enough time to fix high
priority defects. In Ericsson’s product maintenance team, lead time was used
to understand whether all planned corrections could be completed before the
release date [S24]. At Avaya Communications, they used story estimates to
predict the iteration where a feature would be completed [S29].

Furthermore, velocity was used to define a minimum delivery level for the
iteration where “must have” requirements are assigned, and a stretch goal where
lower priority requirements are assigned [S2]. At a Korean e-commerce company,
they marked tasks done and undone, which made it possible to move undone
tasks to the next iteration [S12]. The expected date of task completion metric
was used so that other team members could plan their own work and avoid
idle time [S12]. For example, a developer could know when she could start
implementation because the designer had informed her of the expected date of
completion for the design

Resourcing. Metrics were used for resourcing decisions and development
flexibility. At Timberline Inc, they broke down requirements into smaller pieces
that were estimated in effort to understand what skills are needed to complete
the work [S17]. At ThoughtWorks, stories were used to break down new func-
tionality, and effort estimates of the stories were summed to understand the
needed resources [S6]. At Ericsson, the predicted number of defects was used
to plan the removal of defects [S25]. If the removal of defects were not well
planned, it could cause delays for the release and thus increase costs for the
project.

4.4.2. Sprint and Project Progress Tracking

Another prominent reason for metric use in the primary studies was progress
tracking. The reasons for using metrics in progress tracking are divided into
project progress, increasing visibility, achieving goals, and balancing workflow.

Project progress. Metrics were used to monitor the progress of the project.
The completed web pages metric was used as a measure of progress at a Korean
e-commerce company. The number of automated passing test steps was used as a

22



measure of progress in terms of completed work at Mamdas [S5]. At Timberline
Inc, breaking down tasks to ’kits’ between two to five days enabled progress
monitoring [S17]. A set of metrics (burndown, check-ins per day, number of
automated passing test steps, number of new and open defects) was developed to
manage risks and provide timely progress monitoring [S27]. Developers at Avaya
Communications used the story percent complete metric to give an assessment
of progress [S29]. However, a team at NASA Ames Reserch Center did not want
to spend resources on estimating features, and instead they focused their efforts
on developing software [S30]. Every six weeks they demonstrated their progress
to the customer with working code.

Metrics were also used to give a higher level of understanding about progress.
The release burndown showed project trends and could be used to predict the
completion date [S16]. Also, the release burndown could reflect addition or
removal of stories. At Ericsson, cost types, rate of requirements over phases, and
variance in handovers were used to provide overview of progress [S21]. Metrics
(burndown, check-ins per day, number of automated passing test steps) were
used to communicate progress to upper management [S5], ensure good progress
to external observers, and ensure that key risks were under control [S5,S27,S28].

Increasing visibility. Metrics were used to simplify complex aspects of
software development and increase visibility for all stakeholders. Cost types,
rate of requirements over phases, and variance in handovers were used to increase
the transparency of end-to-end flow in a complex system [S21]. Similarly at
Petrobras, the technical debt board was used to make technical debt issues
visible and easier to manage [S4]. To replace individual perception with facts,
burndown, check-ins per day, number of automated passing test steps, number
of open and new defects metrics were used [S27].

Furthermore, metrics were used to keep the team informed. At Ericsson, the
defect trend indicator was used to monitor the defect backlog and spread the in-
formation to project members [S25]. At WMS Gaming, a cycle time metric was
used to let the team track their performance [S23]. At Avaya Communications,
story percent complete metrics were generated automatically when tests were
run and thus kept everyone on the same page and eliminated schedule surprises
[S29]. Additionally, the metric results were required to be reported periodically.

Achieving goals. Metrics were used to understand whether project goals
could be achieved and to cut down the scope of an iteration or to add more re-
sources if it did not seem that all tasks could be completed at the current pace.
At Timberline Inc, there was a need for a simple indicator that would quickly
tell whether a project was under control [S17]. They used common tempo time
to understand if the project was on target for delivery. Furthermore, if common
tempo time indicated too much planned work, then the tasks would be cut or
more resources would be added [S17]. Similarly, employees were trained with
multiple skills, e.g., customer support did testing and documentation, engineers
were taught how to input their material into the system, so in case of an im-
balanced workload the work could be reorganised to achieve a more balanced
workflow. At Microsoft Corporation, they monitored work in progress to predict
lead time, which in turn would predict a project schedule [S2]. At Adobe Sys-

23



tems, sprint burndown was used to tell the team if they were on track regarding
the sprint commitments [S7]. Similarly at Mamdas, component level burndown
was used to notice that a component was behind schedule, so resources were
added and scope was reduced for the release [S5]. Burndown was also used to
mitigate the risk of developers spending too much time perfecting features rather
than finishing all the tasks of the iteration [S28]. Furthermore, at a Slovenian
publishing company, the release burndown made the correlation clear between
work remaining and the team’s progress in reducing it, and when the release
burndown showed that work remaining was not decreasing fast enough, so the
scope of the release was decreased [S16]. Story flow percentage was used so that
a developer could finish a story in a steady flow [S13]. A story implementation
flow metric describes how efficiently a developer has been able to complete a
story compared with the estimate. Similarly, if team effectiveness was not high
enough to complete tasks, resources from other teams can be used [S3]. Other
actions that were suggested in case of low team effectiveness were the reduction
of tasks and working overtime.

Balancing workflow. Metrics were used to balance workflow to prevent
overloading people. At Ericsson, inventory of requirements over time was used
to identify large handovers of requirements that would cause overloading situ-
ations to employees [S20]. The aim was to have a steady flow of requirements.
Similarly at Citrix Online, the operations department was overloaded so they
decided to start evaluating incoming work with Ops story points to level the
workload [S8]. Moreover, people should be respected by having a balanced
workload to avoid overload situations [S22]. This could be achieved by mea-
suring the number of requirements per phase, which would reveal the peaks of
the workload. Timberline Inc tried to pace work according to customer demand
[S17]. However, too much work was pushed to development, which caused many
problems, including developers feeling overworked. They started using common
tempo time to make sure there would be balance of workflow.

At Ericsson, variance in handovers was used to guarantee that requirements
would flow evenly [S21]. Mamdas was measuring check-ins per day metric, which
measured how often code was committed to the main trunk [S5]. The point was
to keep people from committing only at the end of the iteration, and instead
verify that work was spread evenly across iterations. At WMS Gaming, they
had problems with large tasks blocking other work, so they set a rule that only
tasks of a certain size (8 story points) could be taken for development [S23].

4.4.3. Understanding and Improving Quality

This section describes how metrics were used to understand the quality of
the product both before and after release. This section is divided into three
parts. The first two describe how quality was understood through metrics and
how it was improved. The last part describes how metrics were used to ensure
that the product is tested thoroughly, which is a key part in getting information
of software quality.

Understand the level of quality. Metrics were used to understand the
level of quality after the release. The number of change requests from the

24



customer was used as an indicator of customer satisfaction [S19]. Maintenance
effort was used as an indicator of overall quality of the released product [S19].
Number of maintenance requests was used as an indicator of built-in quality
[S22].

Metrics were also used to understand the level of quality before the release.
At Adobe Systems, they measured pre-release quality with Net Promoter Score
which was measured from pre-release customer surveys [S7]. Net Promoter
Score measures how willing a customer is to recommend the product to another
potential customer. They also measured defects found in the system test that
was used to measure the quality of software delivered to the system test process.
Additionally, they measured defects deferred, which was used to predict the
quality customers would experience. Defects deferred were defined as the defects
that are known but are not fixed for a release, usually due to time constraints.
At Mamdas, faults per iteration were used to measure the quality of the product
[S5]. At Escrow.com, number of defects was used to delay a release when too
many defects were noticed in a QA cycle [S10].

Increase quality. Metrics were used to increase the level of quality. Gov-
ernance mechanisms, which included a set of metrics (burndown, check-ins per
day, and number of automated passing test steps), were used to increase prod-
uct quality [S28]. At T-Systems International, the quality manager used a set
of metrics (build status, number of unit tests, test coverage, test growth ratio,
violations of static code analysis) to improve the internal software quality of the
project [S14]. Build status was measured to prevent defects reaching production
environment. Similarly, the violations of static code analysis metric was used
to prevent critical violations. Furthermore, critical defects sent by customers
were tracked and fixed to prevent losing customers [S3]. Finally, technical debt
board was used to reduce technical debt [S4].

Ensure the level of testing. Metrics were used to make sure the product
was tested thoroughly. At T-Systems International, test coverage was used to
evaluate how well the code was tested [S14]. However, in Brown-field (legacy)
projects it was better to measure test-growth-ratio since there might not be
many tests in the existing code base. At Timberline Inc, work in progress was
measured so it could be minimised [S17]. A large amount of work in progress
would contain many unidentified defects, which would be discovered eventually.
At Mamdas, using number of automated passing test steps decreased the risk
that the product would be unthoroughly tested [S5]. Similarly, the number of
automated passing test steps was used to make sure regression tests were ran
and passed every iteration. Finally, the story percent complete metric supported
test driven development by requiring unit tests to be written for progress track-
ing [S29]. Metrics were also used to react to test information. At Timberline
Inc, monitoring cycle times revealed high time consumption on manual testing
[S17]. The cause was an unmotivated person who was then moved to writing
automated test scripts, which he preferred over manual testing. When the num-
ber of written and passed unit tests was not increasing, an alarm was raised at
Mamdas [S28]. The issue was discussed in a reflection meeting in which they un-
derstood that too much work was being put into a single tester writing the tests,

25



and once she was doing work for another project, no tests were written. The
team then started to learn to write the tests themselves, and later, a dedicated
tester was assigned to write the tests.

4.4.4. Fixing Software Process Problems

In several studies, software metrics helped to understand and fix problems
in software engineering processes.

At Ericsson, Value Stream Maps (VSM) were used to spot waste in several
spots of the development process [S18]. First, lead time, processing time, and
queue time metrics were used to identify waste – a requirement would wait for a
long time before a full specification [S18]. A solution idea was created where a
quick high level proposal would be sent to the customer without the need for an
in-depth specification. The customer could then use the high level proposal to
evaluate whether they wanted to pursue that requirement further. Second, long
processing times for the solution proposal phase indicated a waste of motion
where requirements are clarified between the marketing and the development
unit. The solution idea was to increase close collaboration between the market-
ing unit and the development unit, at least for the more complex requirements.
Third, there was time wasted of waiting in the design phase, which could be
improved by starting real work only when the purchase order was received, not
when requests were received. Fourth, lead time, processing time, and queue
time metrics were used to identify the waste of waiting in testing phases [S18].
The improvement suggestion was to provide an earlier beta version and to make
testing phases parallel. Many of the improvement ideas came from meetings
where VSM were used as a base for discussion.

More examples from Ericsson showed that cost types, rate of requirements
over phases, and variance in handovers were used to identify bottlenecks [S21].
They noticed that focusing on deadlines caused many requirements to be trans-
ferred to the system test phase close to the deadline. The improvement sug-
gestion was to focus more on continuous delivery instead of focusing on market
driven deadlines. Furthermore, Kanban was suggested as a development method
to accomplish the continuous delivery capabilities. Another case study from Er-
icsson revealed that cumulative number of work items over time metric was
used to identify bottlenecks in the development process [S22]. Throughput and
queue time metrics were used to identify a bottleneck in the network integration
test phase, which led to using other testing practices in future projects [S26].
Similarly, measuring story flow percentage allowed the identification of waste
related to context shifts at Systematic [S13].

Metrics were used to identify problems and find improvement opportunities.
Defect trend indicator was used to provide the project manager an ISO/IEC
15939:2007 compatible indicator for problems with the defect backlog [S25].
Basically, the indicator shows whether the defect backlog increases, stays the
same or decreases in the coming week. The project manager could then use the
information to take necessary actions to avoid possible problems. At a Slovenian
publishing company, schedule performance index and cost performance index
were used to monitor for deviances in the progress of the project and providing

26



early signs if something goes wrong [S16]. Developers at Avaya had issues with
the 80/20 rule according to which the last 20% of iteration content takes 80% of
the time [S29]. With the metrics that their T3 tool provided (e.g story percent
complete) they were able to see the early symptoms of various problems that can
cause delays, and thus react early. Additionally, monitoring work in progress
was used to identify blocked work items and the development phase where the
blockage occurred [S2].

Inventory of requirements over time was used to identify problems in the
development process [S20]. One improvement suggestion was to change from a
push to a pull approach so that the team could adjust the workload to enable
a more continuous delivery. Another improvement suggestion was to add in-
termediate release versions so that integration and testing would happen more
often and problems could be identified earlier than close to the actual release.
A similar solution was applied at Timberline Inc., where inventory of work in
progress (with respect to requirements) was kept low, which meant that design,
implementation, and testing could start earlier and problems in requirements
would get caught sooner [S17].

Citrix Online started measuring velocity for their operations department as
well [S8]. This led to development departments trying to decrease their prod-
ucts’ operations story points to enable faster releases. The reduction in story
points was made possible by creating hot deployment strategies and providing
better documentation.

At an Israel Air Force IT department, Mamdas, they were using burndown
to follow their progress [28]. However, when they noticed that work remaining
was not decreasing according to remaining resources they had to make changes.
In their iteration summary meeting, they decided to pursue senior engineers
to help them create optimal development environments and continuous build
systems. Also, they decided to evaluate customer requests in more detail to
avoid over polishing features.

A team working on automating workflows in a criminal justice system noticed
that their velocity estimations were inaccurate, which led to work items being
divided into smaller pieces to improve the accuracy of the estimates [S10]. The
division of work items meant that the team needed to perform more analysis of
the features during planning.

When the story implementation flow metric showed a drop and project man-
agers complained about clarifications about features from the customer were
late, a root cause analysis meeting was held [S13]. Also, after starting to use
the implementation flow metric new policies were stated to keep the flow high:
the percentage of stories prepared for sprint must be 100%, and implementation
flow must be at least 60%. Moreover, both of the metrics need to be reported
monthly. Root cause analysis was also conducted at Timberline Inc. to decrease
the number of bounce backs [S17].

The reasons for the values of metrics (burndown, check-ins per day, number
of automated passing test steps, number of new and open defects) were discussed
in an iteration summary meeting because it can be hard to analyse metrics
without understanding the context [S27]. Similarly at Ericsson, the number of

27



work items per phase was used to ask a development unit about the values of the
metric, and the development unit confirmed that people felt overloaded, as the
metric suggested [S20]. Furthermore in another case at Ericsson, if the number
of work items was outside the control limits one could discuss the workload with
the developers [S22].

At Systematic, after analysing long fix times for broken builds the team
added automatic static code analysis checks to code check-in to catch defects ear-
lier [S13]. Similarly at T-Systems International, quality managers could change
the coding style guide and code standards based on the results of violations to
static code analysis metric [S14].

4.4.5. Motivating People

This section describes the motivating effects that the metrics had on people.
Metrics were used to motivate people to react faster to problems. The num-

ber of defects was shown in monitors in hallways which motivated developers
to fix the defects [S3]. Similarly, total reported defects, test failure rate, and
test success rate were also shown throughout the organisation, which motivated
people to avoid problems and fix the problems fast. At Systematic, they mea-
sured fix time of broken build and showed the time next to the coffee machine.
It provoked discussion about the causes of long fix times, and eventually the de-
velopers fixed the builds faster [S13]. The metric was later declared mandatory
for all projects. Also, the reasons for long fix times were investigated. Similarly
at Petrobras, build status was visible just minutes after commits, which helped
to create a culture where developers react with high priority to broken builds
[S4]. This helped keeping the main branch to be closer to a deployable state
at all times. Build status was used to motivate people to fix the build as fast
as possible [S4]. Moreover, violations of static code analysis caused develop-
ers to immediately fix the issue, because the violations could cause a broken
build status [S14]. Additionally, developers could get faster feedback on their
work. Furthermore, developers could have more confidence in performing ma-
jor refactorings with the safety net the violations of static code analysis metric
provided.

Metrics were used to change employees’ behavior. At Petrobras, they used
a technical debt board to discuss technical debt issues in their projects. In the
meetings, team members agreed which technical debt issues they would focus
on solving until the next meeting [S4]. Additionally, team members sought
help from the architecture team to reduce technical debt, e.g., by implement-
ing automatic deployment systems and improving source code unit testability.
At Mamdas, measuring the number of automated passing test steps changed
the team’s behaviour to write more unit tests [S5]. Metrics were also used to
prevent harmful behaviour such as cherry picking features that were most inter-
esting to the team [S17]. Measuring work in progress (WIP) and setting WIP
limits prevented cherry picking by enforcing working on only two features at a
time, and preventing them from working on lower priority but more interesting
features. Finally, at Ericsson a defect trend indicator created crisis awareness
and motivated the developers to take actions to avoid possible problems [S25].

28



There can also be negative effects of using metrics. Using a velocity metric
had negative effects such as cutting corners in implementing features to main-
tain velocity with the cost of quality [S6]. For example, the managers excused
the developers from writing tests, and the testers cut on the thoroughness of the
testing in hopes to maintain the velocity. Similarly, [S14] also hints at dysfunc-
tional use of metrics, for example developers causing a broken build if broken
build is used as a KPI (Key Performance Indicator).

4.5. RQ3: High influence metrics
RQ3 was What metrics have high influence in industrial Lean and Agile

software development? In this section, we highlight the most influential met-
rics found in our study. We understand that influence is subjective and highly
dependent on the specific circumstances. Thus, our list should be taken as de-
scriptive and not as prescriptive. We analyse the high influence metrics from
both qualitative and quantitative perspective. Our qualitative approach subjec-
tively measures the perceived importance of each metric based on the reported
experiences in the primary studies. We have summarised the results of the
qualitative analysis by assessing the perceived importance of each metric from
1 (low) to 3 (high); see Table 10 and Figure 4. The assessment is based on
the statements in the articles. Metrics were considered important if the author
of the primary study or case employees praised the metric. Also, metrics were
considered important if there were signs of continuous use of the metric. Fur-
thermore, if metrics had positive correlation to important output measures such
as project success, they were considered important. The qualitative influence
evaluation is presented in more detail in section 4.5.1.

Our quantitative approach to high influence metrics is more straightforward.
It measures the amount of evidence for using a certain metric by frequency of
occurrences in the primary studies. Basically, the amount of evidence is the
number of sources that have reported using a certain metric. However, metrics
that were only mentioned by name without any reasons for use, effects of use,
or importance were not counted. Thus, we considered that simply naming a
metric was not enough to provide evidence of its use.

The results of the analysis of high influence metrics are summarised in Ta-
ble 10. Both the frequency of occurrences and the qualitative perceived impor-
tance are presented, and the table is ordered by the sum of ranks divided by
two. This means that, as Velocity is ranked number one in both occurrences
and perceived importance, it receives a value of one (1+1)/2. Cycle time is
ranked as 9th and 24th, so the sum of ranks divided by two is 16.5, making it
the lowest ranked metric.

4.5.1. Qualitative Approach—Perceived importance of metrics

In this section we describe the qualitative reasoning that was reported in the
primary studies regarding the perceived importance of the metrics.

Progress as working code was considered as one of the cornerstones of Agile
[S30]. Story flow percentage and velocity of elaborating features were considered

29



as key metrics for monitoring projects [S13]. A minimum of 60% for story flow
was identified as a key limit. Similarly, velocity for elaborating features should
be as fast as velocity of implementing features. They reported that using both
aforementioned metrics “drive behaviors to let teams go twice as fast as they
could before”.

The story percent complete metric was considered valuable since it embraces
test driven development—no progress is made before a test is written [S29].
Also, the story percent complete metric was considered more accurate than the
previously used metric; however, that metric was not mentioned. The story
percent complete metric gave a normalised measure of progress compared to
developer comments about progress. The metric leveraged the existing unit
testing framework and thus required only minimal overhead to track progress.
Furthermore, team members seemed to be extremely happy about using the
story percent complete metric.

Practitioners at Ericsson valued the transparency and the overview of progress
that the metrics (cost types, rate of requirements over phases, and variance in
handovers) were able to provide to the complex product development with par-
allel activities [S21].

Effort estimates were considered important in release planning, especially in
terms of prioritisation [S9]. According to a survey [S7], top performing teams at
Adobe Systems estimated backlog items with relative effort estimates. Similarly,
pseudo-velocity, which was used by a Kanban team, was considered essential for
release planning [S23]. Moreover, burndown was valuable in meeting sprint
commitments [S7]. Furthermore, managers said burndown was important in
making decisions and managing multiple teams [S5]. However, developers did
not consider burndown important [S5]. According to a survey [S1], project
success had a significant positive relationship with the following metrics: team
velocity, business value delivered, running tested features, defect count after
testing, and number of test cases. However, there were no detailed descriptions
of these metrics.

In another case at Ericsson, VSMs were used to visualise problem areas and
facilitate discussion for possible improvements [S18]. Practitioners valued how
the maps were easy to understand. Metrics that were used to build VSMs were
lead time, processing time, and queue time. Similarly, technical debt board,
which visualised the status of technical debt, was considered important because
it gave a high level understanding about the problems [S4]. The board was then
used to plan actions to remove the technical debt.

Net Promoter Score, which measures the probability of a customer recom-
mending the product to another potential customer, was said to be “one of
the purest measures of success” [S7]. Similarly, projects that were said to be
definitely successful measured customer satisfaction often or always. Also, the
more often customer satisfaction was measured, the more likely it was that the
project would have good code quality, and the project would succeed. Similarly,
the defects deferred metric was seen as a good predictor of post-release quality
because it correlated with issues found by the customers [S7].

Defect prediction metrics predicted number of defects in backlog and defect

30



Figure 4: High influence metrics based on number of occurrences and perceived importance
factor

trend indicator were seen important to decision making, and their use continued
after the pilot period [S26]. The key attributes of the metrics were sufficient
accuracy and ease of use.

The following metrics were considered very useful in an Agile context: num-
ber of unit tests, test coverage, test-growth ratio, and build status [S14]. The
benefit of the number of unit tests was not well described except that it provided
“first insights”. Test coverage provided information on how well the code was
tested. Test-growth ratio was useful in projects where an old codebase was used
as a basis for new features. Finally, fixing broken builds prevented defects from
reaching customers.

4.5.2. Quantitative approach—Frequency of metrics occurrences

Velocity and effort estimate metrics were the most described metrics, with
15 and 12 occurrences. Additionally, work in progress metric occurred 6 times,
and lead time was mentioned in 4 sources. Thus, following project progress and
ensuring its smoothness were highly important in our sources. Furthermore,

31



Table 10: High influence metrics based on number of occurrences and perceived importance
factor

Metric Number of
occurrences

Importance
factor

Sum of ranks
/ 2

Velocity [S1, S2, S3, S5, S6, S8, S8, S10,
S13, S16, S16, S16, S23, S27, S28]

15 3 1

Effort estimate [S3, S7, S8, S8, S9, S12,
S15, S15, S15, S15, S17, S29]

12 3 1.5

Customer satisfaction [S1, S3, S7, S17,
S19, S20]

6 3 2.5

Defect count [S1, S3, S5, S7 ,S7, S10,
S25, S27]

8 2 5

Technical debt [S4, S4] 2 3 5
Build status [S4, S14] 2 3 5
Progress as working code [S30] 1 3 6.5
Lead time [S18, S19, S22, S24] 4 2 7
Story flow percentage [S13] 1 2 9.5
Velocity of elaborating features [S13] 1 2 9.5
Story percent complete [S29] 1 2 9.5
Number of test cases [S1] 1 2 9.5
Queue time [S18] 1 2 9.5
Processing time [S18] 1 2 9.5
Defect trend indicator [S25] 1 2 9.5
Work in progress [S17, S20, S21, S22,
S23, S24]

6 1 10

Number of unit tests [S1, S5, S14, S27,
S28]

5 1 11

Cost types [S21] 1 1 14
Variance in handovers [S21] 1 1 14
Deferred defects [S7] 1 1 14
Predicted number of defects in backlog
[S25]

1 1 14

Test coverage [S14] 1 1 14
Test-growth ratio [S14] 1 1 14
Check-ins per day [S5, S27, S28] 3 NA 16
Cycle time [S17, S23] 2 NA 16.5

32



our sources also revealed that tracking quality was important. Defect count,
customer satisfaction, number of unit tests, and technical debt occurred 8, 6, 5,
and 2 times, respectively.

5. Discussion

This chapter discusses findings based on the results. The findings are com-
pared with existing knowledge, and further implications are explored. Finally,
the limitations of the study are discussed.

5.1. Focus of metrics in Agile development
Research Question 1: What metrics are used in industrial Lean and Agile

software development?
Based on the results of this study, in Agile development, the targets of mea-

surement are the product and the process, but not the people. This implies that
measuring resources is not important or can be detrimental to performance, as
discussed in section 5.2. One explanation is that Agile development assumes
a capable team, the members of which can improve themselves without met-
rics. Boehm and Turner [5] acknowledge that Agile projects require people with
higher methodological skills than Plan-driven projects. Also, Agile methods are
more suitable to smaller products and teams, while Plan-driven methods are
better for larger products and teams [5]. Based on the results of this study
and prior work, we hypothesise that measuring people becomes more important
when the product and team are large.

Another observation from the metric categorisation in Table 7 is that docu-
mentation, such as design specifications, is not measured. Instead, the focus is
on the actual product and features, which aligns with the first Agile principle:
“Our highest priority is to satisfy the customer through early and continuous
delivery of valuable software.” [3].

Based on the metric categorisation by Fenton and Pfleeger [10] in Table 7,
the following processes are measured the most: implementation, testing, and the
whole development cycle. Requirements engineering, specification and design
are seldom measured in Agile development beyond the measures included in ’the
whole development cycle’. One possibility is that the aforementioned processes
are not considered important in Agile development. Another possibility is that
they are completely tied within “implementation” or “the whole development
cycle” so that there is no need for separate measures. According to this study,
industrial Agile teams use metrics suggested by Agile literature, but they also
use custom metrics. Based on the metric comparison in Table 8, it seems that
Agile teams are mostly using the metrics suggested by Agile literature. Although
Kanban and LeanSD metrics were not extensively used, but that is likely due
to low number of cases using Kanban or LeanSD. There were also many metrics
that were not suggested in Agile literature. This implies that industrial Agile
teams tend to add custom metrics on top of the metrics suggested by Agile
literature.

33



5.2. On the Effects of and Reasons for Metric Use
Research Question 2: What are the reasons for and effects of using met-

rics in industrial Lean and Agile software development?
The categories for the reasons and effects of using metrics in Agile soft-

ware development are Sprint and Project Planning, Sprint and Project Progress
Tracking, Understanding and Improving Quality, Fixing Software Process Prob-
lems, and Motivating People.

When we look into individual metrics, we can see that many metrics are
used for many different purposes. For example, metrics of defects are used in
all categories. Even in Sprint and Project Planning, defect metrics are used
as companies wish to predict the number of future defects in resource planning
[S25]. Of course, some metrics are more prominent in certain phases. For
example, Effort Estimate is used in planning and tracking, but not in others.
Overall, based on this study it is difficult to give precise instruction of what
metrics should be used for what purpose. Rather, the value of this research
lies in improving understanding what practitioners typically try to achieve with
metrics in Agile software development, see Table 9.

Next, we compare the effects and reasons found by this study to the reasons
and effects found by other researchers, see Table 11.

Table 11: Comparison of reasons and effects of using metrics to prior research

This paper Prior research

Planning Project estimation [13], Improved project planning
[28]

Progress tracking Progress monitoring [13], Improved project commu-
nication [28], Management of projects [28]

Understand and
improve quality

Evaluation of work products [13], Measurement is
necessary for quality control and assurance [39]

Identify and fix pro-
cess problems

Process improvement through failure analysis [13],
Cost-effective improvement programmes [28], Pro-
cess improvement [14]

Motivate people Measurement changes behavior [11, 14]
Not found Experimental validation of best practices [13], Align-

ment of software development to business objectives
[28], Measurement is important for prediction, We
want to predict products and processes at the stages
of the software life-cycle [39], The software devel-
opment process should be designed by measurable
objectives, which leads to a precise definition of soft-
ware quality attributes [39]

According to Jones [17], software productivity and quality are measured
accurately by the most successful software companies. In this study, there was a
great deal of evidence for the use of velocity, which could be seen as a measure of

34



productivity. Sutherland et al. [35] define velocity as a measure of productivity,
but point out that it does not give a very accurate picture, since velocity does
not capture business value very well. Quality was measured with defect counts
and customer satisfaction metrics.

Jones [17] argues that successful software companies plan and estimate soft-
ware projects accurately. Based on the results of this study , see section 4.4.1,
there was a lot of emphasis on the planning and estimation of software projects.
The equivalence between the results of this study and Jones’ implies that in-
dustrial Agile teams are doing the right things to be successful.

In literature, there are also reasons for using metrics that we did not find
in this study, see Table 11. First, “Experimental validation of best practices”
[13] means using metrics to decide if a practice is worth using or not. This type
of reasons was not in the scope of this study. This study was more focused to
find metrics that would bring immediate benefits for the team. Second, “The
software development process should be designed by measurable objectives, which
leads to a precise definition of software quality attributes.” [39]. Instead of
defining precise quality attributes, Agile teams tend to measure the end prod-
uct quality with customer based metrics (section 4.4.3) rather than rely on
Traditional quality models, such as ISO/IEC 25010 [15]. Third, “Measurement
is important for prediction. We want to predict products and processes at the
stages of the software life-cycle.” [39]. In this study, prediction was mostly
focused to predicting post-release quality by using pre-release quality metrics,
see section 4.4.3. We hypothesise that prediction is less used in Agile software
development due to the uncertainty of development. Furthermore, accurate
predictions would be very hard to achieve.

Regarding the effects of metric use in this study, a quote from Jones [17]
can be analysed: “The goal of applied software measurement is to give software
managers and professionals a set of useful, tangible data points for sizing, esti-
mating, managing, and controlling software projects with rigor and precision”.
Those statements are then mapped to the found effects of metric use. “Sizing
and estimating” could be seen as actions about “Planning”, “Managing and
controlling” could be seen as actions on “Progress tracking”.

This study shows that the use of metrics can motivate people and change
the way people behave. Based on the results in section 4.4.5, metrics can have
an effect on fixing time various issues such as defects, builds, and static analysis
violations. Additionally, metrics helped people focus on reducing technical debt,
e.g. implementing automatic deployment systems, increasing the number of
unit tests, and preventing cherry picking of low priority but more interesting
features. Naturally, it should be pointed out that metrics alone did not change
the individuals’ behaviour in these cases. Rather, the change in behaviour was
due to paying attention to certain issues, e.g. build fixing time, and then using
a metric as part of the process of increasing attention. Prior work by Goldratt
[11] summarises the effect metrics can have on people nicely: “Tell me how you
measure me, and I will tell you how I will behave”.

This study shows that the use of metrics can have negative effects and drive
dysfunctional behaviour, see section 4.4.5. Based on this, we hypothesise that

35



Agile methods do not provide any special protection from the dysfunctional
use of metrics even when using the core metrics of Agile development, e.g.,
velocity [S6]. However, there was not a lot of evidence for this, although one
case showed strong evidence and another hinted at negative effects of metric
use [S14]. Yet it is presumable that dysfunctional use of metrics would rarely
be reported, as there is a publication bias of reporting only positive results. In
prior work, Hartmann and Dymond [14] discuss similar experiences of improper
metrics that waste resources and skew team behaviour in counter-productive
ways. Similarly, Grady [12] has experienced problems with metrics and people,
so he has written a software metrics etiquette, advising among other things,
against measuring individuals and against using metrics against the people who
are reporting the data.

Finally, based on the results of this study, industrial Agile teams use situa-
tive metrics. Situative metrics are created and used based on a need, a solution
to a problem. At a company called Systematic, they had issues with the long
fix times of broken builds. They started measuring fix time of broken build
and showed the time next to the coffee machine. It provoked discussion on the
reasons for long fix times, and eventually the developers fixed the builds faster
[S13]. Similarly, they had issues with preparations for sprints. They started
measuring percentage of stories prepared for sprint, supported by a checklist.
At Petrobras, they had problems with customers related to rework and delays.
They started measuring technical debt with a technical debt board that visu-
alised the state of different technical debt categories in their projects. This
helped create awareness and address various technical debt issues [S4]. In prior
work Hartmann and Dymond [14], identified short-term context driven ’diagnos-
tics’. These diagnostics seem to be the same as the situative metrics described
in this study. Based on the results of this study and prior work, we hypothesise
that shor-term context driven diagnostics or situative metrics could be more
unique to Agile development.

5.3. High influence metrics
Research Question 3: What metrics have high influence in industrial Lean

and Agile software development?

5.3.1. Characteristics of high influence metrics

In this study, we identified the high influence metrics by analysing qualita-
tively the perceived importance of the reported metrics and quantitatively the
number of occurrences, see section 4.5.2. We identified some common charac-
teristics of high influence metrics that deserve to be pointed out. First, ease of
use and ability to utilise existing tools were identified as the aspects of metrics
that were perceived to be important. Second, based on the effects of metric use,
it seems that the ability to provoke discussion is a characteristic of important
metrics. Value Stream Maps and number of bounce backs initiated root cause
analysis meetings [S3, S17]. Moreover, metrics were analysed in a reflection
meeting where a problem and an improvement were identified [S28]. Third, the

36



ability to provide visibility of problems was perceived a useful characteristic.
Technical debt board provided visibility on technical debt issues and helped
create discussion to decrease technical debt [S4]. Hartmann and Dymond [14]
also list as one of their Agile metric heuristics that metrics should provide fuel
for meaningful conversation.

5.3.2. Frequently occurring metrics

In this study, we identified that the most often occurring metrics in lit-
erature were velocity, effort estimate, defect count, and customer satisfaction.
This result suggests that industrial Agile teams value planning (effort estimate),
progress tracking (velocity), pre-release quality (defect count), and post-release
quality (customer satisfaction).

It is important to note that the results of this study bring forward two
quality metrics among the top four high influence metrics in industrial Agile
development. As shown in Table 10, the defect counts and customer satisfaction
are commonly reported metrics, even though they are not directly recommended
by the well known Agile or Lean methods. This result supports our earlier
finding that Agile methods lack direct quality metrics, which was identified
as a potential shortcoming of the methods [16]. This study reveals that such
metrics as defect counts and customer satisfaction are commonly implemented
by industry, and thus, perceived to be important.

Hartmann and Dymond [14] emphasise that value creation should be the
primary measure of progress, which was also seen in this study [S30]. Hartmann
and Dymond [14] also propose having one key metric to measure business value,
preferably in agreement with the business unit. They give examples for the key
metric: Return of Investment (ROI), Net Present Value (NPV), and Internal
Rate of Return (IRR). However, those were not seen in this study. One reason
for the absence of the aforementioned metrics in this study could be the focus of
this study to the metrics of software teams instead of the metrics of the whole
organisation. Furthermore, Hartmann and Dymond [14] do not provide any
specific Agile metrics but rather describe how Agile metrics should be chosen
and how they should be introduced to the organisation.

5.4. Mapping metric use to Agile principles
To evaluate the agility of the found metrics and their use, the results are

mapped to the principles of Agile software development [3] categorised by Patel
et al. [24], see Table 12. For each paragraph the categorisation by Patel et al.
is used.

Communication and Collaboration was reflected by metrics providing a ba-
sis for discussion. Value Stream Maps and number of bounce backs initiated
root cause analysis meetings [S3,S17]. Moreover, metrics were analysed in a
reflection meeting where a problem and an improvement were identified [S28].
Furthermore, technical debt board provided visibility of technical debt issues
and helped to start discussion to decrease technical debt [S4].

Team involvement was reflected in metrics that motivated teams to act and
improve, see section 4.4.5. Also, to promote sustainable development, metrics

37



Table 12: Agile principles and software metrics. Numbers in the parenthesis() refer to the
agile principles [3]

Theme [24] Agile Principles [3] Findings

Communication
and Collabo-
ration

Business people and developers must work
together daily throughout the project (4).
The most efficient and effective method
of, conveying information to and within a
development,team is face-to-face conversa-
tion (6).

Metrics provided a basis for
discussion and increased vis-
ibility.

Team involve-
ment

Build projects around motivated individu-
als. Give them the environment and sup-
port they need, and trust them to get the
job done (5). Agile processes promote sus-
tainable development. The sponsors, de-
velopers, and users should be able to main-
tain a constant pace indefinitely (8).

Metrics motivated people to
act, promoted sustainability
development, and trust.

Reflection At regular intervals, the team reflects on
how to become more effective, then tunes
and adjusts its behavior accordingly (12).

Metrics helped to generate
improvement ideas and spot
problems.

Frequent de-
livery of work-
ing software

Our highest priority is to satisfy the cus-
tomer through early and continuous deliv-
ery of valuable software (1). Deliver work-
ing software frequently, from a couple of
weeks to a couple of months, with a prefer-
ence to the shorter timescale (3). Working
software is the primary measure of progress
(7).

Some cases measured
progress with working
software but in some task
completion was measured
instead. Working software
was measured with customer
satisfaction, feedback, and
customer defect reports.

Managing
Changing
Requirements

Welcome changing requirements, even late
in development. Agile processes harness
change for the customer’s competitive ad-
vantage(2).

Metrics often helped in
Sprint planning

Design Continuous attention to technical excel-
lence and good design enhances agility
(9). Simplicity–the art of maximising the
amount of work not done–is essential (10).
The best architectures, requirements, and
designs emerge from self-organising teams
(11).

Measures of technical debt,
build status, violations of
statistical code analysis, and
for enforcing test first de-
velopment promoted design
quality.

38



were targeted to balance the flow of work, see section 4.4.2. Furthermore, people
were not measured (Table 7), which indicates trust.

Reflection was directly visible in metrics that were used to identify problems
and generate ideas for improvement, see section 4.4.4.

Frequent delivery of working software was directly identified in one of the
studies, where the team measured progress by demonstrating the product to
the customer [S30]. Additionally, there were cases where, e.g., completed web-
pages [S12] were the primary progress measure. Also, many metrics focused
on progress tracking and timely completion of project goals, see section 4.4.2.
However, some other measures from section 4.4.2 show that instead of working
code Agile teams followed completed tasks and velocity metrics.

An integral part of the concept of working software is measuring post-release
quality, see section 4.4.3. This was measured by customer satisfaction, feedback,
and customer defect reports. It was also common to use pre-release data to pre-
dict post-release quality. Agile developers tend to measure end product quality
with customer based metrics instead of with Traditional quality models, such
as ISO/IEC 25010 [15].

Managing Changing Requirements was seen in the metrics that support pri-
oritisation of features, see section 4.4.1 This allowed the rapid development of
features important to the customer’s business at a given time. Also, metrics
like technical debt board provided a better codebase for further development.

Design was directly seen in focus for measuring technical debt, static anal-
ysis violations, and using metrics to enforce writing tests before actual code,
see section 4.4.3. Additionally, the status of the build was continuously mon-
itored, see section 4.4.3. However, the use of velocity metric had a negative
effect on technical quality, see section 4.4.5. Many metrics focused on making
sure that the right features were selected for implementation, see section 4.4.1,
thus avoiding unnecessary work. Moreover, metrics were used to identify waste
(processes where no value is added to the product), see section 4.4.4.

There were also metrics, or their use, that were not Agile in nature, such as
maintaining velocity by cutting corners in quality instead of dropping features
from that iteration [S6]. Also, adding people to a project to reach a certain
date [S5, S17] does not seem that Agile compared to removing tasks. Further-
more, Brook’s law suggests “adding manpower to a late software project makes
it later” due to the lack of knowledge and training time required for new people.
Moreover, the use of number of defects to delay a release [S10] is against Agile
thinking, as one should rather decrease scope to avoid such a situation. Further-
more, developers at Avaya used effort estimates to predict the iteration where
a feature would be completed [S29], which contradicts the idea of completing a
feature within an iteration.

Some Agile metrics that work well for an Agile team, such as tracking
progress by automated tests [S28] or measuring the status of the build [S14],
can turn against the Agile principles if used as an external controlling mecha-
nism. The fifth Agile principle requires trust in the team, but if the metrics are
enforced outside of the team, e.g., from upper management, there is a risk that
the metrics turn into control mechanisms and the benefits for the team itself

39



suffer.

5.5. Limitations
The large shares of specific application domains in the primary documents

are a threat to external validity. Seven out of 30 studies were from the enterprise
information systems domain, and especially strong was also the share of ten tele-
com industry studies, out of which eight were from the same company, Ericsson.
Also, Israeli Air Force was the case organisation in three studies. Thus, there is
a chance that the results of this study only represent the situation in particular
companies. Another threat to external validity is the chosen research method,
SLR. There is a great deal of industrial metric use in Agile teams that is not
reported in scientific literature. So choosing another research method, e.g., a
survey targeted at companies practicing Agile methods, could have produced
different results. We chose to do an SLR instead of a survey, as we thought it
would be better to do the SLR first and then continue with the survey.

The threats to the reliability of this research mainly include issues related
to the reliability of primary study selection and data extraction. The main
threat to reliability was having a first author performing the study selection
and data extraction. This threat was mitigated by analysing the reliability of
both study selection and data extraction as described in section 3. Additionally,
the first author was supported by the second and third author in daily/weekly
meetings where problematic cases regarding data extraction and study selection
were discussed. Nevertheless, it is possible that researcher bias could have had
an effect on the results.

Due to iterative nature of the coding process, it was challenging to make
sure that all previously coded primary documents would get the same treatment
whenever new codes were discovered. In addition, the researchers’ coding ’sense’
developed over time, so it is possible that data extraction accuracy improved
in the course of the analysis. These risks were mitigated by conducting a pilot
study to improve the coding scheme, get familiar with the research method, and
refine the method and tools.

Some data are not explained in much detail in the primary studies, which
could have caused incorrect interpretations. For example, sometimes it was
hard to understand which metrics an author was referring to when a “why” was
described. Moreover, we sometimes had to assume that when author described
the reasons for using a tool, he would actually be talking about the metrics the
tool shows.

Deciding which Agile method was used in the cases was difficult. On the
other hand, it is quite natural that cases use many aspects from multiple Agile
methods.

Finally, this study could have been improved by studying the reference list
of the primary studies as suggested in the EBSE guidelines by Kitchenham and
Charters [21]. By performing full scale snowballing to the primary studies would
have increased the reliability of the findings. However in this study, we chose the
database search approach, as we thought we would be unlikely to find studies

40



that explored precisely our research questions. The data showed that we were,
right as we extracted the information of using metrics mainly from case studies
of Agile software development.

6. Conclusions

This study provides researchers and practitioners an overview of the use of
software metrics in industrial Agile context. This study makes three contribu-
tions. First, this study categorises the metrics found in empirical Agile studies
and compares the found metrics with the metrics suggested by Agile literature.
The results show that Agile teams use many metrics suggested by the Agile
literature. In particular, Velocity and Effort estimate are highly popular in in-
dustrial Agile teams. However, Agile teams also use many metrics (40/102) not
suggested in Agile literature. In the future, software engineering researchers
should focus on popular industrial metrics if they wish to support industrial
software development. Another possibility for future work is to study technical
debt or build breaks, as those metrics were highly popular in the primary studies
even though they were not suggested by the Agile literature.

Second, this study sheds light into the reasons for and effects of using met-
rics in Agile software development. The use of metrics is done in the following
areas: Sprint and Project Planning, Sprint and Project Progress Tracking, Un-
derstanding and Improving Quality, Fixing Software Process Problems, and
Motivating People. We think these areas show that the reasons for using met-
rics are similar in both the Plan-driven and Agile world. Software engineers
want to plan and track their projects, they also care about the quality, they
want to improve their processes, and they need to influence the team they are
working with. Any of the topics identified as reasons for using metrics can be a
fruitful area for future research.

Third, this study identifies high influence metrics based on the number of
occurrences and statements found in the primary studies. The number of occur-
rences showed that Velocity, Effort estimate, and Defect count were the most
popular metrics. The qualitative analysis of metric importance showed that
Customer satisfaction, Technical debt, Build status, and Progress as working
code as highly important metrics. Focusing research efforts on metrics that have
a relatively low number of occurrences but are seen as important in the primary
studies is a good choice for future research, as the industrial adaption of those
metrics is still low though they can possibly have a strong influence.

Finally, this research also discovered what we here name as the ”Ericsson
bias”. We found that 22% of our cases came from Ericsson, which is a large
international telecom company. In total 28% of our cases were from telecom
domain, which creates a risk for bias. Ericsson is a well-known research partner
for empirical software engineering researchers around the globe, but software
engineering researchers are suggested to partner also with other companies and
domains to mitigate this problem in the future.

41



Acknowledgment

This work has been partially funded by EU FP7 Grant 318082 - UQASAR
(http://www.uqasar.eu/). The authors thank the individuals of the UQASAR
project and the participants and reviewers of WeTSOM2014 workshop, who
provided comments on the earlier version of this paper.

References

[1] D. J. Anderson. Kanban. Blue Hole Press, 2010.

[2] K. Beck and C. Andres. Extreme programming explained: embrace change.
Addison-Wesley Professional, 2004.

[3] K. Beck, M. Beedle, A. van Bennekum, A. Cockburn, W. Cunningham,
M. Fowler, J. Grenning, J Highsmith, A. Hunt, R. Jeffries, J. Kern, B. Mar-
ick, R. C. Martin, S. Mellor, K. Schwaber, J. Sutherland, and D. Thomas.
Manifesto for agile software development, 2007.

[4] Carlo Gabriel Porto Bellini, Rita De CASsia De Faria Pereira, and
JoAO Luiz Becker. Measurement in software engineering: From the
roadmap to the crossroads. International Journal of Software Engineer-
ing and Knowledge Engineering, 18(01):37–64, 2008.

[5] B. Boehm and R. Turner. Using risk to balance agile and plan-driven
methods. Computer, 36(6):57–66, 2003.

[6] Raymond PL Buse and Thomas Zimmermann. Information needs for soft-
ware development analytics. In Proceedings of the 2012 International Con-
ference on Software Engineering, pages 987–996. IEEE Press, 2012.

[7] C. Catal and B. Diri. A systematic review of software fault prediction
studies. Expert Systems with Applications, 36(4):7346–7354, 2009.

[8] D. S. Cruzes and T. Dyb̊a. Recommended steps for thematic synthesis in
software engineering. In Empirical Software Engineering and Measurement
(ESEM), 2011 International Symposium on, pages 275–284, 2011.

[9] T. Dyb̊a and T. Dingsøyr. Empirical studies of agile software development:
A systematic review. Information and Software Technology, 50(9):833 –
859, 2008.

[10] N. E. Fenton and S. L. Pfleeger. Software metrics: a rigorous and practical
approach. PWS Publishing Co., 1998.

[11] E.M. Goldratt. The Haystack Syndrome: Sifting Information Out of the
Data Ocean. North River Press Publishing Corporation, 2006.

42



[12] R. B. Grady. Practical software metrics for project management and process
improvement. Prentice-Hall, Inc., 1992.

[13] R. B. Grady. Successfully applying software metrics. Computer, 27(9):
18–25, Sept 1994.

[14] D. Hartmann and R. Dymond. Appropriate agile measurement: using
metrics and diagnostics to deliver business value. In Agile Conference,
2006, pages 6 pp.–134, July 2006.

[15] ISO/IEC. Systems and software engineering — Systems and software Qual-
ity Requirements and Evaluation (SQuaRE) — System and software quality
models. Number ISO/IEC 25010:2011. ISO/IEC, 2011.

[16] J. Itkonen, K. Rautiainen, and C. Lassenius. Towards understanding qual-
ity assurance in agile software development. In Proceedings of the Interna-
tional Conference on Agility, pages 201–207, 2005.

[17] C. Jones. Applied software measurement: global analysis of productivity
and quality, volume 3. Mcgraw-hill New York, 2008.

[18] B. Kitchenham. Procedures for performing systematic reviews. Keele, UK,
Keele University, 33:2004, 2004.

[19] B. Kitchenham. What’s up with software metrics? - a preliminary mapping
study. Journal of Systems and Software, 83(1):37–51, January 2010.

[20] B. Kitchenham and P. Brereton. A systematic review of systematic re-
view process research in software engineering. Information and Software
Technology, 55(12):2049–2075, 2013.

[21] B. Kitchenham and S. Charters. Guidelines for performing
systematic literature reviews in software engineering. Techni-
cal report, EBSE Technical Report EBSE-2007-01, 2007. URL
https://www.cs.auckland.ac.nz/~norsaremah/2007%20Guidelines%

20for%20performing%20SLR%20in%20SE%20v2.3.pdf.

[22] E. Kupiainen, M. V. Mäntylä, and J. Itkonen. Why are industrial agile
teams using metrics and how do they use them? In Proceedings of the 5th
International Workshop on Emerging Trends in Software Metrics, pages
23–29. ACM, 2014.

[23] J. R. Landis and G. G. Koch. The measurement of observer agreement for
categorical data. Biometrics, 33(1):159–174, 1977.

[24] C. Patel, M. Lycett, R. Macredie, and S. de Cesare. Perceptions of agility
and collaboration in software development practice. In System Sciences,
2006. HICSS ’06. Proceedings of the 39th Annual Hawaii International
Conference on, volume 1, pages 10c–10c, 2006.

43

https://www.cs.auckland.ac.nz/~norsaremah/2007%20Guidelines%20for%20performing%20SLR%20in%20SE%20v2.3.pdf
https://www.cs.auckland.ac.nz/~norsaremah/2007%20Guidelines%20for%20performing%20SLR%20in%20SE%20v2.3.pdf


[25] K. Petersen. Is lean agile and agile lean? In Ali H. Dogru and Veli Bicer,
editors, Modern Software Engineering Concepts and Practices: Advanced
Approaches. Hershey.

[26] Kai Petersen and Claes Wohlin. Context in industrial software engineer-
ing research. In Proceedings of the 2009 3rd International Symposium on
Empirical Software Engineering and Measurement, pages 401–404. IEEE
Computer Society, 2009.

[27] M. Poppendieck and T. Poppendieck. Lean software development: An agile
toolkit. Addison-Wesley Professional, 2003.

[28] K. Pulford, A. Kuntzmann-Combelles, and S. Shirlaw. A quantitative ap-
proach to software management: the AMI handbook. Addison-Wesley Long-
man Publishing Co., Inc., 1995.

[29] S. Purao and V. Vaishnavi. Product metrics for object-oriented systems.
ACM Computing Surveys (CSUR), 35(2):191–221, 2003.

[30] Danijel Radjenović, Marjan Heričko, Richard Torkar, and Aleš Živkovič.
Software fault prediction metrics: A systematic literature review. Informa-
tion and Software Technology, 55(8):1397–1418, 2013.

[31] P. Rodŕıguez, J. Markkula, M. Oivo, and K. Turula. Survey on agile and
lean usage in finnish software industry. In Proceedings of the ACM-IEEE
International Symposium on Empirical Software Engineering and Measure-
ment, ESEM ’12, pages 139–148, New York, NY, USA, 2012. ACM.

[32] K. Schwaber and M. Beedle. Agile software development with Scrum, vol-
ume 1. Prentice Hall Upper Saddle River, 2002.

[33] K. Schwaber and J. Sutherland. The scrum guide. Scrum. org, July, 2013.

[34] G. A. F. Seber. The Estimation of Animal Abundance and Related Param-
eters. Blackburn Press, 2002.

[35] J. Sutherland, G. Schoonheim, and M. Rijk. Fully distributed scrum: Repli-
cating local productivity and quality with offshore teams. In System Sci-
ences, 2009. HICSS ’09. 42nd Hawaii International Conference on, pages
1–8, Jan 2009.

[36] CMMI Product Team. CMMI for development, version 1.3. Technical
Report CMU/SEI-2010-TR-033, Software Engineering Institute, Carnegie
Mellon University, Pittsburgh, Pennsylvania, USA, 2010. URL http://

resources.sei.cmu.edu/library/asset-view.cfm?AssetID=9661.

[37] VersionOne. 7th annual state of agile survey.
http://www.versionone.com/pdf/7th-Annual-State-of-Agile-Development-
Survey.pdf, 2012.

44

http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=9661
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=9661


[38] J. P. Womack, D.T. Jones, and D. Roos. The machine that changed the
world: The story of lean production. Simon and Schuster, 2007.

[39] H. Zuse. A Framework of Software Measurement. Walter de Gruyter, 1998.

45



Primary studies

[S1] N. Abbas, A. M. Gravell, and G. B. Wills. The impact of organization,
project and governance variables on software quality and project success. In
Proceedings - 2010 Agile Conference, AGILE 2010, pages 77–86, Orlando,
FL, 2010

[S2] D. J. Anderson. Stretching agile to fit cmmi level 3-the story of creating msf
for cmmi R© process improvement at microsoft corporation. In Agile Confer-
ence, 2005. Proceedings, pages 193–201. IEEE, 2005

[S3] T. H. Cheng, S. Jansen, and M. Remmers. Controlling and monitoring agile
software development in three dutch product software companies. In Pro-
ceedings of the 2009 ICSE Workshop on Software Development Governance,
SDG 2009, pages 29–35, Vancouver, BC, 2009

[S4] P. S. M. dos Santos, A. Varella, C. Ribeiro Dantas, and D. Borges. Visualizing
and managing technical debt in agile development: An experience report. In
Agile Processes in Software Engineering and Extreme Programming, volume
149 of Lecture Notes in Business Information Processing, pages 121–134, 2013

[S5] Y. Dubinsky, D. Talby, O. Hazzan, and A. Keren. Agile metrics at the israeli
air force. In Proceedings - AGILE Confernce 2005, volume 2005, pages 12–19,
Denver, CO, 2005

[S6] A. Elssamadisy and G. Schalliol. Recognizing and responding to ”bad smells”
in extreme programming. In Proceedings - International Conference on Soft-
ware Engineering, pages 617–622, Orlando, FL, 2002

[S7] P. Green. Measuring the impact of scrum on product development at adobe
systems. In Proceedings of the Annual Hawaii International Conference on
System Sciences, Koloa, Kauai, HI, 2011

[S8] D. R. Greening. Enterprise scrum: Scaling scrum to the executive level.
In Proceedings of the Annual Hawaii International Conference on System
Sciences, Koloa, Kauai, HI, 2010

[S9] N. C. Haugen. An empirical study of using planning poker for user story
estimation. In Proceedings - AGILE Conference, 2006, volume 2006, pages
23–31, Minneapolis, MN, 2006

[S10] P. Hodgetts. Refactoring the development process: Experiences with the in-
cremental adoption of agile practices. In Proceedings of the Agile Development
Conference, ADC 2004, pages 106–113, Salt Lake City, UT, 2004

46



[S11] P. Hodgkins and L. Hohmann. Agile program management: Lessons learned
from the verisign managed security services team. In Proceedings - AGILE
2007, pages 194–199, Washington, DC, 2007

[S12] N. Hong, J. Yoo, and S. Cha. Customization of scrum methodology for
outsourced e-commerce projects. In Proceedings - Asia-Pacific Software En-
gineering Conference, APSEC, pages 310–315, Sydney, NSW, 2010

[S13] C. R. Jakobsen and T. Poppendieck. Lean as a scrum troubleshooter. In
Proceedings - 2011 Agile Conference, Agile 2011, pages 168–174, Salt Lake
City, UT, 2011

[S14] A. Janus, R. Dumke, A. Schmietendorf, and J. Jager. The 3c approach for
agile quality assurance. In Emerging Trends in Software Metrics (WETSoM),
2012 3rd International Workshop on, pages 9–13, 2012

[S15] S. Keaveney and K. Conboy. Cost estimation in agile development projects.
In Proceedings of the 14th European Conference on Information Systems,
ECIS 2006, Goteborg, 2006

[S16] V. Mahnic and N. Zabkar. Measuring progress of scrum-based software
projects. Electronics and Electrical Engineering, 18(8):73–76, 2012

[S17] P. Middleton, P. S. Taylor, A. Flaxel, and A. Cookson. Lean principles
and techniques for improving the quality and productivity of software de-
velopment projects: A case study. International Journal of Productivity and
Quality Management, 2(4):387–403, 2007

[S18] S. Mujtaba, R. Feldt, and K. Petersen. Waste and lead time reduction in
a software product customization process with value stream maps. In Pro-
ceedings of the Australian Software Engineering Conference, ASWEC, pages
139–148, Auckland, 2010

[S19] K. Petersen and C. Wohlin. The effect of moving from a plan-driven to an in-
cremental software development approach with agile practices: An industrial
case study. Empirical Software Engineering, 15(6):654–693, 2010

[S20] K. Petersen and C. Wohlin. Software process improvement through the lean
measurement (spi-leam) method. Journal of Systems and Software, 83(7):
1275–1287, 2010

[S21] K. Petersen and C. Wohlin. Measuring the flow in lean software development.
Software - Practice and Experience, 41(9):975–996, 2011

[S22] K. Petersen. A palette of lean indicators to detect waste in software mainte-
nance: A case study. Lecture Notes in Business Information Processing, 111
LNBIP:108–122, 2012

47



[S23] R. Polk. Agile & kanban in coordination. In Proceedings - 2011 Agile Con-
ference, Agile 2011, pages 263–268, Salt Lake City, UT, 2011

[S24] M. Seikola, H. M. Loisa, and A. Jagos. Kanban implementation in a telecom
product maintenance. In Proceedings - 37th EUROMICRO Conference on
Software Engineering and Advanced Applications, SEAA 2011, pages 321–
329, Oulu, 2011

[S25] M. Staron, W. Meding, and B. Söderqvist. A method for forecasting defect
backlog in large streamline software development projects and its industrial
evaluation. Information and Software Technology, 52(10):1069–1079, 2010

[S26] M. Staron and W. Meding. Monitoring bottlenecks in agile and lean software
development projects - a method and its industrial use. Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics), 6759 LNCS:3–16, 2011

[S27] D. Talby, O. Hazzan, Y. Dubinsky, and A. Keren. Reflections on reflection
in agile software development. In Proceedings - AGILE Conference, 2006,
volume 2006, pages 100–110, Minneapolis, MN, 2006

[S28] D. Talby and Y. Dubinsky. Governance of an agile software project. In Pro-
ceedings of the 2009 ICSE Workshop on Software Development Governance,
SDG 2009, pages 40–45, Vancouver, BC, 2009

[S29] V. Trapa and S. Rao. T3 - tool for monitoring agile development. In Proceed-
ings - AGILE Conference, 2006, volume 2006, pages 243–248, Minneapolis,
MN, 2006

[S30] J. Trimble and C. Webster. From traditional, to lean, to agile development:
Finding the optimal software engineering cycle. In Proceedings of the An-
nual Hawaii International Conference on System Sciences, pages 4826–4833,
Wailea, Maui, HI, 2013

48



Appendix A. Search strings

The database searches were performed in following three consecutive searches.
The reason for the three consecutive searches was that we found that the first
search, which was limited to “computer science” subject area did not include
certain central conference proceedings. We extended the same key word search
to cover more generic “engineering” subject area in the second search. The third
search was another extension of the same search make sure that potentially rel-
evant papers classified under the “business” subject area were included.

The first search (September 19th, 2013):

TITLE-ABS-KEY(software AND (agile OR lean OR ”crystal method” OR
”crystal clear” OR dsdm OR ”dynamic systems development method” OR fdd
OR ”feature driven development” OR ”agile unified process” OR ”agile mod-
eling” OR scrumban OR kanban OR scrum OR ”extreme programming” OR
xp) AND (measur* OR metric OR diagnostic OR monitor*)) AND (LIMIT-
TO(SUBJAREA, ”COMP”)) AND (LIMIT-TO(LANGUAGE, ”English”))

resulted to 512 hits.

The second search (November 7th, 2013):

TITLE-ABS-KEY(software AND (agile OR lean OR ”crystal method” OR
”crystal clear” OR dsdm OR ”dynamic systems development method” OR fdd
OR ”feature driven development” OR ”agile unified process” OR ”agile mod-
eling” OR scrumban OR kanban OR scrum OR ”extreme programming” OR
xp) AND (measur* OR metric OR diagnostic OR monitor*)) AND (LIMIT-
TO(LANGUAGE, ”English”)) AND (LIMIT-TO(SUBJAREA, ”ENGI”)) AND
(EXCLUDE (SUBJAREA, ”COMP”) OR EXCLUDE(SUBJAREA, ”PHYS”)
OR EXCLUDE(SUBJAREA,”MATE”) OR EXCLUDE (SUBJAREA, ”BUSI”)
OR EXCLUDE(SUBJAREA, ”MATH”) OR EXCLUDE(SUBJAREA, ”ENVI”)
OR EXCLUDE (SUBJAREA, ”EART”) OR EXCLUDE(SUBJAREA, ”DECI”)
OREXCLUDE (SUBJAREA, ”ENER”))

resulted to 220 hits.

The third search (December 10th, 2013):

49



TITLE-ABS-KEY(software AND (agile OR lean OR ”crystal method” OR
”crystal clear” OR dsdm OR ”dynamic systems development method” OR fdd
OR ”feature driven development” OR ”agile unified process” OR ”agile mod-
eling” OR scrumban OR kanban OR scrum OR ”extreme programming” OR
xp) AND (measur* OR metric OR diagnostic OR monitor*)) AND (LIMIT-
TO(LANGUAGE, ”English”)) AND (LIMIT-TO(SUBJAREA, ”BUSI”)) AND
(EXCLUDE (SUBJAREA, ”ENGI”) OR EXCLUDE(SUBJAREA, ”COMP”))

resulted to 42 hits.

Appendix B. Inclusion and exclusion criteria

Inclusion criteria

• Papers that present the use and experiences of metrics in an agile industry
setting.

Exclusion criteria

• Papers that do not contain empirical data from industry cases.

• Papers that are not in English.

• Papers that do not have agile context. There is evidence of clearly non-
agile practices or there is no agile method named. For example, paper
mentions agile but case company has only three releases per year.

• Paper is only about one agile practice, which is not related to measuring.

• Papers that do not seem to have any data about metric usage. Similarly,
if there are only a few descriptions of metrics but no other info regarding
reasons or usage.

• Papers that have serious issues with grammar or vocabulary and therefore
it takes considerable effort to understand sentences.

• Papers where the setting is not clear or results cannot be separated by
setting, for example surveys where there is data both from academia and
industry.

• Papers where the metrics are only used for the research. For example,
author measures which agile practices correlate with success.

50



Appendix C. Quality assessment questions

Based on the quality evaluation form by Dyb̊a and Dingsøyr [9].

1. Is this a research paper?

2. Is there are a clear statement of the aims of the research?

3. Is there an adequate description of the context in which the research was
carried out?

4. Was the research design appropriate to address the aims of the research?

5. Was the recruitment strategy appropriate to the aims of the research?

6. Was there a control group with which to compare treatments?

7. Was the data collected in a way that addressed the research issue?

8. Was the data analysis sufficiently rigorous?

9. Has the relationship between researcher and participants been considered
adequately?

10. Is there a clear statement of findings?

11. Is the study of value for research or practice?

Appendix D. Definions of metrics

Table D.13: Definitions of found metrics

Primary
study

Metric Definition

[S10] # of defects Issues found from quality assurance cycle including
differences from expected behavior.

[S7] # of defects found in
system test

Number of defects found in system test phase.

[S25] # of defects in back-
log

All known and unresolved defects in the project.

[S7] # of open defects Number of open defects on the current release per
day.

[S22] # of requirements
per phase

Number of requirements (work items/features) per
phase.

[S14] # of unit tests Number of unit tests.
[S23] Average velocity Not clearly defined in primary study.
[S4, S14] Build status Build broken or not.
[S5, S27,
S28]

Burndown Remaining human resource days versus the remaining
work days.

[S7] Burndown Not defined in primary study.
[S1] Business value deliv-

ered
Not defined in primary study. Probably means deliv-
ered features per timeframe.

51



[S19] Change requests per
requirement

Amount of change requests from customer per re-
quirement.

[S5, S27,
S28]

Check-ins per day Number of commits (code, automated test, specifica-
tion) per day.

[S17] Common tempo time Net working days available per number of (work)
units required.

[S12] Completed web
pages

Completed web pages.

[S16] Cost performance in-
dex

Not defined in primary study.

[S3] Critical defects sent
by customer

No detailed definition in primary study.

[S1] Customer satisfac-
tion

Not defined in primary study.

[S17] Customer satisfac-
tion (Kano analysis)

Not clearly defined in primary study.

[S17] Cycle time Not defined in primary study.
[S23] Cycle time Time it takes for x size story to be completed.
[S1] Defect count after

testing
Not defined in primary study. Probably means
amount of defects after first round of testing.

[S25] Defect trend indica-
tor

Indicates if amount of defects in the coming week will
increase, stay the same or decrease from this week.

[S7] Defects deferred Not defined in primary study. Probably means the
amount of defects that are known but are not fixed
for the release.

[S9] Effort estimate Estimated effort per story in ideal pair days.
[S12] Effort estimate Not clearly defined in primary study.
[S15, S15,
S15, S15]

Effort estimate Not defined in primary study.

[S17] Effort estimate kits Tasks are broken down into kits of two to five staff-
days of work.

[S19] Fault slips Amount of issues that should have been found already
in the previous phase.

[S5] Faults per iteration Faults per iteration.
[S13] Fix time of failed

build
Fix time of failed build.

[S19] Implemented vs
wasted requirements

Ratio of implemented requirements and wasted re-
quirements. Not all requirements are always imple-
mented but some work is put into them, e.g., in the
form of technical specification.

[S20] Inventory of require-
ments over time

Amount of requirements (features/work items) in spe-
cific work phase over time.

[S18] Lead time The average time it takes for one request to go
through the entire process from start to finish.

[S19, S22] Lead time Time it takes for requirement to go through a sub-
process or the whole process.

[S24] Lead time Not clearly defined in primary study.
[S19] Maintenance effort Costs related to fixing issues that have been found

and reported by customers.

52



[S7] Net Promoter Score Not defined in primary study. Probably measures
how likely customers will recommend the product to
another customer.

[S5, S27,
S28]

Number of auto-
mated passing test
steps

Number of automated passing test steps.

[S17] Number of bounce
backs

Not defined in primary study. Probably the amount
of defects that should have not occurred anymore if
a root cause would have been fixed earlier.

[S27] Number of new and
open defects

Number of new and open defects.

[S20] Number of requests
from customers

Not defined in primary study.

[S1] Number of test cases Not defined in primary study.
[S3] Open defects Not defined in primary study.
[S8] Operations’ velocity Not defined in primary study. Probably Operations

department’s completed story points per time unit.
[S13] Percentage of stories

prepared for sprint
Percentage of stories prepared for sprint.

[S16] Planned velocity Not clearly defined in primary study.
[S25] predicted # of de-

fects
Predicted number of defects in backlog in the coming
week.

[S18] Processing time The time the request is being worked on by one person
or a team.

[S30] Progress as working
code

Product is demonstrated to the customer who then
gives feedback.

[S23] Pseudo velocity Not clearly defined in primary study.
[S26] Queue Number of units remaining to be developed/processed

by a given phase or activity.
[S18] Queue time The average time between sub-processes that the re-

quest sits around waiting.
[S21] Rate of requirements

per phase
Rate of requirements flow from a phase to next phase.

[S16] Release burndown Amount of work remaining till the release.
[S3] Remaining task ef-

fort
Not defined in primary study.

[S21] Requirement’s cost
types

Cost distribution of a requirement.

[S11] Revenue per cus-
tomer

Amount of revenue from customer per feature.

[S1] Running tested fea-
tures

Not defined in primary study. Probably means
amount of features delivered to customer that are
passing unit tests.

[S16] Schedule perfor-
mance index

Not defined in primary study.

[S16] Sprint burndown Amount of work remaining till the end of sprint.
[S29] Story complete per-

centage
Not clearly defined in primary study.

[S29] Story estimate Estimated days to complete the story.
[S6] Story estimates Estimated time to develop a story.

53



[S13] Story flow percentage Estimated implemention time per actual implemen-
tion time * 100.

[S7] Story points Not defined in primary study.
[S8] Story points Estimated effort to complete the story in programmer

days.
[S12] Task done Task done.
[S8] Task effort Estimated effort to complete the task in programmer

hours.
[S12] Task’s expected end

date
Date when a task is estimated to be finished.

[S3] Team effectiveness Not defined in primary study.
[S4] Technical debt board Shows the status of each technical debt category per

team.
[S4] Technical debt in ef-

fort
Technical debt in amount of hours it would take to
fix all the issues increasing technical debt calculated
by third party tool called Sonar.

[S14] Test coverage How much Source Code executed during Test Execu-
tion.

[S3] Test failure rate Not defined in primary study.
[S14] Test growth ratio Difference of amount of tests per difference of amount

of Source Code.
[S3] Test success rate Not defined in primary study.
[S26] Throughput Number of units processed by a given phase or activ-

ity per time.
[S21] Variance in han-

dovers
Changes in amount of handed over requirements.

[S2] Velocity Amount of developed scenarios per developer per
week.

[S6] Velocity Not defined in primary study.
[S8] Velocity Not defined in primary study.
[S10] Velocity Feature points developed per iteration.
[S13] Velocity of elaborat-

ing features
Not clearly defined in primary study. Probably the
time it takes to clarify a feature from customer into
requirements that can be implemented.

[S13] Velocity of imple-
menting features

Not clearly defined in primary study. Probably the
time it takes to implement a feature.

[S14] Violations of static
code analysis

Amount of violations to static code analysis rules
from tools like Findbugs, PMD and Checkstyle.

[S17] Work in progress Amount of features or feature level integrations team
is working on.

[S23] Work in progress Amount of stories per work phase.
[S24] Work in progress Amount of work items per phase.

54


	1 Introduction
	2 Background and Related Work
	2.1 Agile software development
	2.2 Software measurement

	3 Research Method
	3.1 Search and selection process
	3.2 Pilot study
	3.3 Data extraction
	3.4 Data analysis and synthesis

	4 Results
	4.1 Overview of studies
	4.2 Quality evaluation of the primary studies
	4.3 RQ1: Metrics
	4.4 RQ2: Reasons and effects of using metrics 
	4.4.1 Sprint and Project Planning
	4.4.2 Sprint and Project Progress Tracking
	4.4.3 Understanding and Improving Quality
	4.4.4 Fixing Software Process Problems
	4.4.5 Motivating People

	4.5 RQ3: High influence metrics
	4.5.1 Qualitative Approach—Perceived importance of metrics
	4.5.2 Quantitative approach—Frequency of metrics occurrences


	5 Discussion
	5.1 Focus of metrics in Agile development
	5.2 On the Effects of and Reasons for Metric Use
	5.3 High influence metrics
	5.3.1 Characteristics of high influence metrics
	5.3.2 Frequently occurring metrics

	5.4 Mapping metric use to Agile principles
	5.5 Limitations

	6 Conclusions
	References
	Appendix A Search strings
	Appendix B Inclusion and exclusion criteria
	Appendix C Quality assessment questions
	Appendix D Definions of metrics



