

How to Validate Mobile Crowdsourcing
Design? Leveraging Data Integration in
Prototype Testing

Abstract
Mobile crowdsourcing applications often run in dynamic
environments. Due to limited time and budget,
developers of mobile crowdsourcing applications
sometimes cannot completely test their prototypes in
real world situations. We describe a data integration
technique for developers to validate their design in
prototype testing. Our approach constructs the
intended context by combining real-time, historical and
simulated data. With correct context-aware design,
mobile crowdsourcing applications presenting
crowdsourcing questions in relevant context to users
are likely to obtain high response quality.

Author Keywords
Smartphones; ubiquitous computing; mobile
crowdsourcing; ambient intelligence; software testing
and debugging.

ACM Classification Keywords
H.5.m. Information interfaces and presentation (e.g.,
HCI): Miscellaneous;

Introduction
Mobile crowdsourcing applications usually operate
smartly in a specific context. Therefore, this kind of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than the author(s) must be
honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from
Permissions@acm.org.
Ubicomp/ISWC'16 Adjunct, September 12 - 16, 2016, Heidelberg, Germany
Copyright is held by the owner/author(s). Publication rights licensed to
ACM.
ACM 978-1-4503-4462-3/16/09…$15.00
DOI: http://dx.doi.org/10.1145/2968219.2968586

Chu Luo
Center for Ubiquitous Computing
University of Oulu
Oulu, Finland
chu.luo@ee.oulu.fi

Miikka Kuutila
M3S
University of Oulu
Oulu, Finland
miikka.kuutila@oulu.fi

Simon Klakegg
Denzil Ferreira
Huber Flores
Jorge Goncalves
Vassilis Kostakos
Center for Ubiquitous Computing
University of Oulu
Oulu, Finland
{firstname.lastname}@ee.oulu.fi

Mika Mäntylä
M3S
University of Oulu
Oulu, Finland
mika.mantyla@oulu.fi

context-aware applications requires elaborate quality
control for truthful responses. Prototype testing is
proven to be an effective way in validation of software
design [2]. However, this task can be extremely
challenging [12] for mobile context-aware applications.
First, since mobile context-awareness often involves
multiple devices, various data sources, a large amount
of data and complex algorithms, it is difficult for
developers to conduct static testing by reading the
source code. Second, due to limited time and
resources, developers may have no chance to
completely test these systems in real world situations
(e.g., specific time, locations, device models or users)
where these systems should operate. For example,
mobile apps may collect and process diverse types of
data (e.g., location, application usage or emotions)
from hardware sensors, software or the Experience
Sampling Method (ESM) [7] for a long period of time
[13].
To enable the testing of mobile context-aware
applications, researchers have proposed context
management tools, testing techniques (e.g., white-box
and black-box testing) and platforms [3,10,12]. Despite
numerous efforts in previous work, a systematic testing
framework supporting heterogeneous data sources
across multiple devices is still lacked.
This paper first outlines the challenges identified from
the state of art. To validate mobile crowdsourcing
applications, we then present and discuss the approach
that uses data integration in prototype testing. The
integrated testing data comprises a combination of
real-time, historical and simulated data to construct the
intended context where these systems should operate.
Our aim is to ensure that mobile crowdsourcing
applications recognise their context correctly through
effective and efficient prototype testing. Thus,

presenting crowdsourcing tasks in relevant context to
users can improve the response quality.

Related Work
To test mobile applications, the simplest way is to let
users write reviews for a testing version. Besides,
developers can also test their systems using specialised
tools. For example, Monkey [1] is a black-box testing
tool within Android SDK. It can generate user events or
system events on devices or emulators. Monkey
monitors application responses to look for crashes,
unhandled exceptions and unresponsiveness. Similarly,
Android Studio provides Monkeyrunner [9] for higher
test automation. Developers can specify commands and
events using its API. Monkeyrunner can present and
store the testing results as screenshots.
However, the testing of context-aware systems
normally requires real context. In most cases (e.g.,
longitudinal environment monitoring), developers may
not manage to test their systems in real context. Prior
work attempted to alleviate this problem from many
aspects. ContextViewer [3] is a context management
tool that visualises and preprocesses historical
contextual data from mobile devices. Developers can
select relevant contextual information using
ContextViewer to replay context with other tools.
ContextSimulator [4] is an example of context replay
tools to test mobile context-aware systems. It can fetch
and replay data at a certain speed from a mobile
context-aware middleware, AWARE [5], designed for
Android. It allows developers to specify an existing
database with historical contextual data. However, a
limitation is that it does not support a query for
multiple rows of data at the same time from the target
application. Similarly, MobiPlay [10] is a remote testing
tool that records and replays data for Android

applications. These applications run on a server, while
MobiPlay on mobile devices acts as a client showing the
GUI of the target application. Other context replay tools
with similar features include RERAN [6]. A weakness of
RERAN is that it cannot record or replay GPS and
microphone data.
In addition, collaboration and communication within
mobile devices has been trending in modern context-
aware systems. For example, Riboni and Bettini [11]
constructed a situation of smartwatch and smartphone
to evaluate an activity recognition technique based on
ontological and statistical Reasoning. However, testing
techniques for mobile cross-device context-aware
scenarios are quite scant, although a number of studies
have investigated the testing of cross-device UI
interactions.
Overall, the testing of mobile crowdsourcing
applications requires more advanced features in
existing tools and techniques.

Challenges in Mobile Context-Aware Testing
Although existing techniques and tools are able to help
developers to conduct necessary testing in most cases,
several issues remain in the testing of mobile
crowdsourcing applications:

1. Participant recruitment. This concerns
applications whose results may vary among different
groups of users, such as people with different
personalities. Testing these applications requires
representative samples according to demographic
features. Due to limited budget and time, the sample
size of users is often small unless the target application
is sufficiently appealing to attract volunteers.

2. Timeliness of historical data. Historical
contextual data often contains a large sample size of

users. It can also reduce the cost of participant
recruitment. However, historical contextual data may
lack some important data sources since new hardware
sensors are increasingly emerging on mobile devices.

3. Uncommon context. Several kinds of contextual
data, such as app crashes, are too rare for a dataset to
include. In addition, hardware sensors, such as GPS,
may be unavailable at some moments which are critical
to test the system robustness.

4. Device heterogeneity. Mobile devices usually
have different hardware, operating systems and
features. Testing on all possible mobile devices is
expensive and impractical. If the target system involves
communication within devices, the possible combination
and permutation will make testing on real devices even
more impractical.

Leveraging the Combination of Real-Time,
Historical and Simulated Data
To validate the design of mobile crowdsourcing
applications, developers typically build prototypes and
conduct prototype testing. Thus, we propose a data
integration approach for developers to construct
intended context in prototype testing. Figure 1 depicts
the testing flow from data integration to testing
environments. For data integration, the testing tool
should be able to:

§ capture real-time data;

§ fetch and replay historical contextual data;

§ simulate data.

Figure 2 compares these three data sources with regard
to cost and realism. The criteria used in deciding the
data source in prototype testing are quite

straightforward. Historical contextual data is a good
choice to reduce the development cost when it is
available. If the historical data cannot reshape the
intended context, developers have to choose real-time
data or simulated data. As the ideal way to reproduce
high fidelity context, real-time data can be obtained
directly from participants’ devices. For instance, the
testing tool obtains heart rates directly from a suitable
phone if there is no historical data. However, an
experiment with participants can be expensive and
inconvenient. To construct uncommon context,
developers may rely on data manipulation, which is
inexpensive. For example, the testing tool simulates a
crash information of a specific application to test the
target application because it is hard to witness a real
crash. The drawback of simulated data is that it may
contain distortion compared to the original context.

Figure 1: Data integration can assist developers to construct
intended context in prototype testing.

Figure 2: The comparison of data sources in data integration.

For a mobile crowdsourcing application, developers
often have to validate its design in different usage
scenarios. With suitable data integration, developers
can build the intended context of these scenarios to
conduct testing in relevant environments (i.e., physical
device and/or emulators). Furthermore, developers,
with the help of the testing tool, need to consider the
cases where certain types of data are missing. Rather
than crashing or generating erroneous results, robust
mobile crowdsourcing systems should be aware of
these cases.

Implementation Example
From literature, we can see that a number of
techniques and tools can realise the idea of data
integration. In this section, we take AWARE [5] and
ContextSimulator [4] as examples to implement such
an idea.
Real-Time Data Collection
Although Android SDK provides APIs for sensor data
collection, it requires numerous efforts for developers

to merge various sensors into one application. Instead,
AWARE works as a hub to manage all the sensors, as
shown in Figure 3. It can collect and store sensor data
from three categories:

1. Hardware including motion sensors (e.g.,
accelerometer), location sensors (e.g., location from
GPS or cellular tower), environmental sensors (e.g.,
barometer), and multimedia modules (e.g., microphone
and dual-cameras).

2. Software including operating system information
(e.g. cellular data usage) and application data (e.g.
application notifications).

3. Human input that users manually produce using
smartphone-based surveys and the Experience
Sampling Method [8].

Note that a crowdsourcing task is often completed
through human input. Developers can launch
crowdsourcing questions using AWARE’s ESM function.

Historical Data Record and Replay
Since AWARE can also store sensor data, we can reuse
such data as historical data in future replay. This
feature leads to the other tool, ContextSimulator.
Developers can fetch historical data by specifying an
AWARE database in ContextSimulator. To replay the
data, developers must set replay speed, the start
timestamp and device of data. Figure 4 shows the
example code to start replaying historical data in
ContextSimulator.

Figure 4: The example code provided by ContextSimulator to
replay data from an AWARE database.

Data Manipulation
To achieve data manipulation easily, we create a
dummy application based on AWARE. Developers can
generate simulated data by inputting values, such as
application crashes (Figure 5), into this dummy
application. Then this application automatically uploads
the data to its AWARE database. During testing,
developers can replay such data using
ContextSimulator, as illustrated in the previous section.

Figure 5: The function to create and save application crash
information.

Figure 3: The AWARE interface on
a smartphone.

Conclusion and Future Work
We present a data integration technique for developers
to validate their design in prototype testing. This
approach can construct the intended context by
combining real-time, historical and simulated data.
With high confidence in context-awareness, mobile
crowdsourcing systems can present crowdsourcing
questions in relevant context to users which improves
response quality. In future work, we plan to build a
middleware as a testing tool for this approach. It will
work on Android mobile devices and emulators.

Acknowledgements
This work is partially funded by the Academy of Finland
(Grants 276786-AWARE, 285062-iCYCLE, 286386-
CPDSS, 285459-iSCIENCE), European Commission
(Grants PCIG11-GA-2012-322138, 645706-GRAGE, and
6AIKA-A71143-AKAI) and University of Oulu (Grants
ITEE-2016-SA-13, and ITEE-2016-SA-20).

References
1. Application Exerciser Monkey. Retrieved

17/12/2014 from
http://developer.android.com/tools/help/monkey.h
tml

2. Larry Bernstein. Foreword: Importance of software
prototyping. Journal of Systems Integration 6, 1-2:
9-14. http://dx.doi.org/10.1007/BF02262748.

3. Szymon Bobek, Sebastian Dziadzio, Paweł Jaciów,
Mateusz Ślażyński and Grzegorz J. Nalepa. 2015.
Understanding Context with ContextViewer – Tool
for Visualization and Initial Preprocessing of Mobile
Sensors Data. Springer International Publishing.

4. ContextSimulator. Retrieved 18/05/2016 from
http://glados.kis.agh.edu.pl/doku.php?id=pub:soft
ware:contextsimulator:start

5. Denzil Ferreira, Vassilis Kostakos and Anind K. Dey.
2015. AWARE: mobile context instrumentation
framework. Frontiers in ICT 2, 6: 1-9.

6. Lorenzo Gomez, Iulian Neamtiu, Tanzirul Azim and
Todd Millstein. 2013. RERAN: Timing- and touch-
sensitive record and replay for Android.
International Conference on Software Engineering
(ICSE): 72-81.

7. Reed Larson and Mihaly Csikszentmihalyi. 1983.
The Experience Sampling Method. In Flow and the
Foundations of Positive Psychology (eds.). Wiley
Jossey-Bass, San Francisco, 15, 41-56.

8. Reed Larson and Mihaly Csikszentmihalyi. 2014.
The Experience Sampling Method. Springer
Netherlands.

9. monkeyrunner | Android Developers. Retrieved
03/05/2016 from
http://developer.android.com/tools/help/monkeyru
nner_concepts.html

10. Zhengrui Qin, Yutao Tang, Ed Novak and Qun Li.
2016. MobiPlay: A Remote Execution Based
Record-and-replay Tool for Mobile Applications. In
Proceedings of the 38th International Conference
on Software Engineering, ACM, 571-582.

11. Daniele Riboni and Claudio Bettini. 2009. Context-
Aware Activity Recognition through a Combination
of Ontological and Statistical Reasoning. Springer
Berlin Heidelberg.

12. Ralf Tonjes, Eike S. Reetz, Marten Fischer and
Daniel Kuemper. 2015. Automated Testing of
Context-Aware Applications. Vehicular Technology
Conference (VTC Fall): 1-5.

13. Niels van Berkel, Chu Luo, Denzil Ferreira, Jorge
Goncalves and Vassilis Kostakos. 2015. The Curse
of Quantified-Self: An Endless Quest for Answers.
In Adjunct Proceedings of International Joint
Conference on Pervasive and Ubiquitous Computing
Adjunct, 973-978.
http://dx.doi.org/10.1145/2800835.2800946.

