
Subjective evaluation of software evolvability using
code smells: An empirical study

Mika V. Mäntylä & Casper Lassenius

Published online: 27 May 2006
Springer Science + Business Media, LLC 2006
Editors: Mark Harman, Bogdan Korel, Panos Linos, Audris Mockus and Martin Shepperd

Abstract This paper presents the results of an empirical study on the subjective
evaluation of code smells that identify poorly evolvable structures in software. We
propose use of the term software evolvability to describe the ease of further
developing a piece of software and outline the research area based on four different
viewpoints. Furthermore, we describe the differences between human evaluations
and automatic program analysis based on software evolvability metrics. The
empirical component is based on a case study in a Finnish software product
company, in which we studied two topics. First, we looked at the effect of the
evaluator when subjectively evaluating the existence of smells in code modules. We
found that the use of smells for code evaluation purposes can be difficult due to
conflicting perceptions of different evaluators. However, the demographics of the
evaluators partly explain the variation. Second, we applied selected source code
metrics for identifying four smells and compared these results to the subjective
evaluations. The metrics based on automatic program analysis and the human-based
smell evaluations did not fully correlate. Based upon our results, we suggest that
organizations should make decisions regarding software evolvability improvement
based on a combination of subjective evaluations and code metrics. Due to the
limitations of the study we also recognize the need for conducting more refined
studies and experiments in the area of software evolvability.

Keywords Code smells . Subjective evaluation . Perceived evaluation .

Maintainability . Evolvability . Code metrics . Software metrics . Human factors

1. Introduction

Many software-related tools, processes, methodologies and techniques claim to
improve or assess software quality. Yet, software quality, as quality in general, is

Empir Software Eng (2006) 11: 395–431
DOI 10.1007/s10664-006-9002-8

M. V. Mäntylä (*) :C. Lassenius
Helsinki University of Technology, Helsinki, Finland
e-mail: mika.mantyla@tkk.fi

C. Lassenius
e-mail: casper.lassenius@tkk.fi

largely dependent on one’s point of view (Garvin 1984; Kitchenham and Pfleeger,
1996). From a developer’s viewpoint the ease of modifying and further developing
the software is clearly one of the most important quality dimensions. Traditionally
one would call this viewpoint to quality software maintainability.

In order to be able to improve software maintainability, its current state and
possible improvement efforts must be made measurable. However, assessing main-
tainability is a difficult task. Widely studied object-oriented metrics (Briand et al.,
1997, 1999; Chidamber and Kemerer, 1994; Harrison et al., 1998; Henderson-Sellers,
1996; Hitz and Montazeri, 1996; Lorenz and Kidd, 1994) offer a way to assess
software maintainability. Although some studies report successes in measuring
maintainability with metrics (Bansiya and David, 2002; Chidamber et al., 1998;
Coleman et al., 1994; Li and Henry 1993; Subramanyam and Krishnan, 2003), there
are people, especially in the agile community (Beck et al., 2001), who are critical to
using metrics for maintainability assessment, since they feel that metrics fail to
account for the breadth of issues that humans consider when evaluating code.

We have noticed—by studying several small and medium-sized Finnish software
product companies—that design and source code metrics are not widely utilized in
practice. Despite this, in our experience, also small companies suffer from harmful
effects of software evolution (Lehman, 1980) that cause system quality degenera-
tion. Fighting against the effects of software evolution is especially important in the
software product business, where products evolve in sequential releases. Cusumano
and Selby (Cusumano and Selby, 1995) describe how Microsoft uses 20% of its
development effort to re-develop the code base of its products. Cusumano and
Yoffie (Cusumano and Yoffie, 1998) report how Netscape’s inability to refactor the
code base hindered their software development, and how Microsoft’s redesign
efforts in the Internet Explorer 3.0 project later paid off.

The agile community, which emphasizes individuals and interactions over tools
and processes, has come up with a term called code smell (Fowler and Beck, 2000)
to help software developers recognise problematic code. These code smells are
general descriptions of bad code that are supposed to help software developers
decide when the code needs refactoring. In most cases, the goal of code refactoring
is to make the software easier to understand and/or extend. Fowler and Beck
(Fowler and Beck, 2000) claim that exact criteria cannot be given to determine
when a software needs refactoring. In their words, when it comes to making
refactoring decisions: Bno set of metrics rivals informed human intuition.’’ This
opinion is in conflict with the idea that the level of software maintainability can be
determined with source code or design metrics. A counterexample to Fowler and
Beck is provided by Grady (Grady, 1994), who reports that in some HP divisions
there were tight threshold limits that a program was not allowed to exceed, e.g., a
Fortran program’s cyclomatic complexity (McCabe, 1976) should not exceed 15.
This threshold was determined based on data from previous software projects.
Also, the idea of measuring software maintainability with metrics (Coleman et al.,
1994, 1995) seems to be conflicting with the idea of assessing maintainability
using vaguely defined qualitative criteria, such as the code smells of Fowler and
Beck.

To our knowledge, others have not published studies in which the code smells
suggested by the agile community would have been used as a basis for subjective
code evaluation. Development-level anti-patterns (Brown et al., 1998), which have
some overlap with code smells, also seem to be lacking research.

396 Empir Software Eng (2006) 11: 395–431

This paper describes our initial efforts in empirically studying the use of the code
smells. In this paper we look at the uniformity of smell evaluations, the effect of the
evaluators’ demographics on the evaluations, and compare the smell evaluations
against selected source code metrics. Despite the very tentative nature of our
findings, we hope that they help stimulate more empirical research aiming at
critically evaluating, validating and improving our understanding of subjective
indicators of software maintainability.

The rest of the paper is structured in the following way: Section 2 provides the
theoretical background. Section 3 describes the research methods and objectives. In
Sections 4 and 5 we present the results of the study. Section 6 provides the
discussion of the results and addresses the limitations of the study. Finally, Section 7
presents the conclusions of this study and suggestions for future work.

2. Theoretical Background

This section provides the background to our work. First, we argue in favour of using
the term software evolvability instead of the term software maintenance. Section 2.2
introduces four viewpoints to software evolvability, and Section 2.3 focuses on one
of these viewpoints, i.e., software evolvability evaluation. Finally, Section 2.4 focuses
on the prior work on human-based software evolvability evaluation.

2.1. Software Evolvability

In this paper we use the term software evolvability to denote Bthe ease of further
developing a software element.’’ Traditionally, the term software maintainability has
been used to represent this quality attribute, and IEEE (IEEE, 1990) has defined
software maintainability as follows: the ease with which a software system or
component can be modified to correct faults, improve performance or other attributes,
or to adapt to a changed environment. Additionally, Pigoski (Pigoski, 1996) quotes
several sources that contain almost similar definitions for the term software
maintainability.

Our definition of software evolvability is more restrictive than the definition of
software maintainability, which typically includes the ease of fault correction
(corrective maintenance) and adaptation (adaptive maintenance). The term
software evolvability has a close match with the term perfective software
maintenance, which according to the IEEE standard glossary of software engineer-
ing terminology (IEEE, 1990) is defined as: software maintenance performed to
improve the performance, maintainability, or other attributes of a computer program.

Historically, software maintainability has a strong link to the maintenance phase
of the software lifecycle. However, the term software maintenance poorly describes
what typically happens after initial software deployment. The word maintainability
is derived from the verb Bmaintain,’’ which according to Merriam-Webster’s
dictionary1 can be defined as: BTo keep in an existing state (as of repair, efficiency,
or validity); To preserve from failure or decline (maintain machinery).’’ Thus, the
word maintainability refers to our ability to keep software in an existing state or to

1 http://www.m-w.com/

Empir Software Eng (2006) 11: 395–431 397

http://www.m-w.com/

preserve it from decline. The problem with this definition is that software is not
consumed or worn down by use. However, most software systems, and software
products in particular, are subject to lots of changes after their initial deployment. A
large part of these changes are extensions to the existing system (sometimes referred
to as perfective maintenance). Whereas the term maintenance may have been
representative and useful in the 1970s, it fits poorly with modern iterative
development processes and the constant evolution of contemporary software
systems.

We think that the term software evolution better describes what happens after the
initial software deployment/release, an idea also supported by Sommerville (pp. 660,
2001). Rajlich and Bennett (2000) propose an improvement to the traditional
develop and maintain model by presenting a life cycle model that also describes the
phases after the software has been released. In Rajlich’s and Bennett’s model,
software evolution is also seen as an important phase in the software lifecycle.

The term software maintenance also offers a poor match with the development
and release of software products. In software system development, where typically a
custom-made system is delivered to a single client, the maintenance phase can be
clearly identified after the software has been delivered to the customer. In software
product development, the development is evolutionary and there are several
deliveries to different customers. In the software product business there is a
constant need to further develop the product because of the continuous competition
for customers, i.e., a company will add new features to their product to attract new
customers. Therefore, we do not think that the term software maintenance is
appropriate in the software product context to describe all the modifications made
to a software product after it has been initially shipped.

Since using the term software maintenance or the verb maintain to refer to the
modifications made to the software offer a poor match with the real world
phenomena, we have chosen to use the term software evolvability rather than the
traditional term software maintainability to describe the ease of developing a
software element further. The term software evolvability could be substituted with
perfective software maintainability, but for the reasons listed in this section, we have
opted not to do this.

2.2. Viewpoints to Software Evolvability

We have identified four viewpoints to software evolvability, as shown in Table 1.
Firstly, we may study factors that affect software evolvability, e.g., why a piece of
software has become poorly evolvable. The list of those factors is likely to be extensive,
covering issues from the programming language used and the motivation of the devel-
opers to the business goals and the organization of the developing company. Some
work in this area has been done by Oman et al. (1991),2 who listed different factors
affecting software evolvability. Lehman (Lehman, 1980) has proposed laws that
affect software evolution, some of which also affect software evolvability.

Secondly, we can look at how evolvable a piece of software is at the moment.
Evolvability can be evaluated by looking at the software element itself, as well as its

2 Unfortunately we have not been able to obtain a copy of the report. A brief summary can be found
in (Pigoski, 1996) on page 288.

398 Empir Software Eng (2006) 11: 395–431

documentation. Software evolvability is likely to be dependent on the evaluator. For
example, the evolvability of a software element can be high to the original
developer, but at the same time a new developer who lacks proper knowledge of
e.g., the used development paradigm can experience great difficulties. Another way
to evaluate the evolvability is through automatic program analysis. We discuss
evolvability evaluation in more detail in Section 2.3.

Thirdly, we can study the improvement of software evolvability. This improve-
ment is often referred to by terms such as restructuring, refactoring, or re-
engineering. In some cases, even rewriting is used to improve evolvability. If we
look at the definitions of software restructuring (Arnold, 1989) and software
refactoring (Fowler, 2000), we can see that they both essentially mean modification
to the internal software structure to make the software easier to understand and
modify. Re-engineering (Chikofsky and Cross, 1990) on the other hand means the
examination and alteration of software to reconstitute and implement it in a new form.
Generally re-engineering is used to refer to big system alterations, whereas
refactoring and restructuring mean small changes in the code. Often improvement
of software evolvability is not studied in isolation. In many re-engineering case
studies improvement in the software evolvability is only one of several goals.

Fourthly, we can study the effect of the current state of software evolvability
concerning some other attributes like development efficiency or the number of
errors introduced by source code modification. This is perhaps the most widely
studied viewpoint to software evolvability. Several well-constructed studies (Bandi
et al., 2003; Li and Henry, 1993; Rombach, 1987) show that using source code
metrics for evolvability evaluation can predict the future development effort. Those
studies act as motivators for this work.

Table 1 summarises the four viewpoints to software evolvability. The table also
provides a general research question that each viewpoint tries to address. The focus
of this paper is on the evaluation of software evolvability.

2.3. Approaches to Software Evolvability Evaluation

In this section we discuss methods for evaluating software evolvability. We identify
two fundamentally different evaluation approaches: subjective evaluation per-
formed by humans, and objective metric-based evaluation performed dominantly
by program analysis tools. Differences between human evaluation and program
analysis are highlighted to conclude the section.

The IEEE standard for software maintenance (IEEE, 1998) includes a general
process framework for performing software maintenance. In the framework,
quality—including software evolvability—is evaluated subjectively by humans in
process control points that consist of review, inspection, and verification tasks, and
objectively by measures that consist, e.g., of code size and complexity, and error

Table 1 Viewpoints to software evolvability

Affecting factors : Which factors can explain the current level of evolvability?

Evaluation: How can we evaluate software evolvability?

Improvement: How can we improve software evolvability?

Effect: What difference does evolvability make (e.g., in terms of development effort)?

Empir Software Eng (2006) 11: 395–431 399

rates. Thus, the standard recognizes the value of subjective human-based evaluation
and objective metric-based evaluation, but still leaves most practical issues open.

Widely studied source code or design metrics (Briand et al., 1997, 1999;
Chidamber and Kemerer, 1994; Halstead, 1977; Harrison et al., 1998; Henderson-
Sellers, 1996; Hitz and Montazeri, 1996; Lorenz and Kidd, 1994; McCabe, 1976;
Succi et al., 2005), which can be gathered using program analysis, have traditionally
played a big role in evaluating software evolvability. Code metrics have been used
and created to form a set of metrics that are able to measure evolvability (Bansiya
and David, 2002; Chidamber et al., 1998; Szulewski and Budlong, 1996). Code
metrics have been combined to create polynomial equations whose outcomes give a
single measure of evolvability (Coleman et al., 1994; Muthanna et al., 2000). Finally,
some researchers have reported success in using code metrics to predict mainte-
nance effort (Grady, 1994; Li and Henry, 1993). Naturally, the quantitative data
should always be interpreted by humans—a fact that undoubtedly introduces some
level of subjectivity—but regardless of this there are significant differences between
using subjective, qualitative evaluations and objective, quantitative metrics as the
basis for evolvability analysis.

Considerably less work has been done studying the use of subjective human
evaluation of software evolvability. This topic is interesting because ultimately it is
the developer who makes the decision whether software evolvability should be
improved or not. Human evaluations are always subjective and thus dependent on
the individual doing the assessment. Consequently, one can expect there to be
different, even conflicting opinions between the evaluators. This evaluator effect can
be reduced, e.g., by using evaluation criteria. Subjective human evaluations of
software evolvability using code smells can be compared to the judges’ evaluations
in figure skating or ski jumping competitions.

The differences between program analysis and human evaluations are shown in
Fig. 1. The figure suggests that program analysis offers a quantitative and objective
way to analyze software quality. Human evaluations on the other hand are always
more or less subjective, but they offer qualitative information about the software
which cannot easily be obtained by program analysis tools. Humans can also
consider aspects that are not included in the predefined metrics calculated by tools.

Fig. 1 Differences between automatic program analysis and human evaluations

400 Empir Software Eng (2006) 11: 395–431

Management might be in favour of using program analysis tools, since human
opinions could be unreliable. Developers, on the other hand, can think that metrics
are spurious and that you cannot assess the context of each software element by
using measurement.

2.4. Human-Based Software Evolvability Evaluation

As previously mentioned, several studies have established the link between software
evolvability and source code metrics. Recent studies, e.g., (Balazinska et al., 2000;
Ducasse et al., 1999; Kataoka et al., 2001; Simon et al., 2001; Tourwé and Mens,
2003) have focused on automatically detecting poor structures in software or using
historical data to detect spots where refactorings have been performed (Maruyama
and Shima, 1999). For more information on this type of work we point the reader to
(Mens and Tourwe, 2004). Many of the studies mentioned are actually more focused
on improvement of evolvability than on its evaluation. We have been able to find
only a limited number of studies in which subjective evolvability evaluations have
been studied or compared to automatic program analysis. In the following
subsections we introduce the relevant prior work discussing subjective evolvability
evaluation.

2.4.1 Subjective Evolvability Criteria

To make it easier for a software developer to decide whether a certain piece of
software needs refactoring (software evolvability improvement) or not, Fowler and
Beck (2000) propose a list of 22 bad code smells. Fowler and Beck introduce code
smells as a more concrete indication of the need for refactoring than Bsome vague
idea of programming aesthetics.’’ They also claim that no set of precise metrics can
be given to identify the need for refactoring. Thus, the code smells can be seen as a
compromise between precise source code metrics and totally unguided subjective
evaluation. In their experience, Fowler and Beck say that when it comes to making
refactoring decisions, no set of metrics rivals informed human intuition. The code
smells have been developed based on Fowler’s and Beck’s industrial experience in
several software projects that according to them varied from successful to nearly
catastrophic.

Some code smells represent two extremes of the same attribute. For example, the
size of a class could be an attribute. Too much of it leads to a smell called BLarge
Class’’ and too little to the BLazy Class’’ smell. The code smells are somewhat
vaguely defined. For example, the following is said about the Large Class smell:
BWhen a class is trying to do too much it often shows up as too many instance
variables,’’ B...common prefixes or suffixes for some subset of the variables in a class
suggest the opportunity for a component.’’, BAs with a class with too many instance
variables, a class with too much code is prime breeding ground for duplicated code,
chaos and death,’’ BIf you have five ten hundred line methods with lots of code in
common, you may be able to turn them into five ten line methods with another ten
two-line methods extracted from the original,’’ BIf your large class is a GUI class,
you may need to move data and behaviour to a separate domain object. This may
require keeping some duplicate data in both places and keeping the data in sync.’’

Empir Software Eng (2006) 11: 395–431 401

Structures similar to code smells are described by Brown et al. (1998), who
discuss software anti-patterns. These anti-patterns describe code problems on class
to architectural levels. Some of them are similar to code smells, e.g., God Class is
equal to a Large Class smell and Lava Flow is a synonym for Dead Code. However,
the scope of their work is quite wide as they also discuss problems in software
processes, badly behaving developers, and many other areas.

The widely recognized software development book BCode Complete’’ by
McConnell (2004) discusses the characteristics of high-quality routines and reasons
for creating a class. To summarize, we list the properties of high-quality routines,
reasons for creating a class, and classes to avoid as described by McConnell.

& High-quality routines: sufficient reason for existence, contains no code that
would benefit from extraction into routines of their own, descriptive names
following the naming conventions, high cohesion, low coupling, length that is
determined naturally, proper number and usage of parameters.

& Reasons for creating a class: model real-world objects, model abstract objects,
reduce complexity, isolate complexity, hide implementation details, limit effects
of changes, hide global data, streamline parameter passing, make central points
of control, facilitate reusable code, plan for family of programs.

& Avoid classes that: are too big (GodClasses), only contain data but no behaviour,
only contain behaviour but no data.

A comparison indicates that most of these ideas by McConnell can also be found
in the work of Fowler and Beck that introduced the idea of code smells.

The Air Force Operation Test and Evaluation Center (AFOTEC) pamphlet
(AFOTEC, 1996) provides a rich set of instructions for evaluating software
maintainability. According to the pamphlet, the evaluation is performed by five
evaluators that should have no relationship to the software to ensure they are
unbiased. As it is seldom humanly possible to evaluate an entire software system,
the evaluation is performed on selected source code samples that are representative
of the system. The evaluation is performed by agreeing or disagreeing, using a six-
point ordinal-scale, with statements that cover different aspects of software
maintainability, based on the source code and available documentation. Before
the actual evaluation, a calibration run is done to ensure that the evaluators have a
Buniform interpretation of how each statement applies to the system.’’ However, the
pamphlet particularly stresses that the evaluators should never be forced to change a
score they have given. Thus, the purpose is to achieve agreement through discussion
on the interpretation of the statements, while the answers are still allowed to vary
between evaluators. After the calibration, the team proceeds to the actual
evaluation. The statements are grouped into four categories: software documenta-
tion, module source listing, computer software unit, and implementation. Some
example statements include: Program initialisation is adequately described, Identifier
names are descriptive of their use, and Dataflow in this unit is logically organized. To
summarize, the AFOTEC pamphlet offers perhaps one of the most complete guides
to performing human-based software maintainability evaluations.

All the references discussed in this section provide examples of criteria that could
be used when making subjective evolvability evaluations on software. In addition,
the AFOTEC pamphlet offers a set of instructions and a process for performing
software evolvability evaluation with a team of evaluators.

402 Empir Software Eng (2006) 11: 395–431

2.4.2 Studies of Subjective Evolvability Evaluation

Shneiderman (1980, pp. 134–138) reports results from using peer reviews in software
code quality evaluation. They conducted three peer review sessions that each had
five professional programmers with a similar background and experience as the
participants. Each programmer provided one of their best programs which were
then evaluated by the four other participants. The review was performed by
answering 13 questions on a seven-point Likert scale. The questions varied from
blank line usage and the chosen algorithm to the ease of further development of the
program. The results showed that in half of the evaluations three out of four
programmers agreed on the subjective evaluations (answers differed by one at the
most). Still, in 43,1% of the evaluations the difference between all four evaluators
was two or less. The researchers tried to explain this by speculating that the subjects
misunderstood the questions or the scale. However, the research does not account
for factors such as differences in the developers’ opinions about the program design,
structure, and style that might also explain the results.

Kafura and Reddy (1987) studied the relationship between software complexity
metrics and software maintainability. Maintainability was measured using system
expert evaluations. However, no details are given on how these evaluations were
collected from the individuals and no data is provided of the evaluations. Therefore,
it is difficult to assess the study any further. Nevertheless, the researchers conclude
that the expert evaluations on maintainability were in conformity with the source
code metrics.

Shepperd (1990) validated the usefulness of information flow metrics on software
maintainability by collecting the opinions of the maintainers for 89 modules of
airspace software that totalled around 30,000 lines of code. Each maintainer of the
maintenance team was individually asked to classify each module from one to four
on an ordinal scale on the perceived difficulty of some hypothetical maintenance
task. In 73% of the individual classifications the differences per module were one or
less and thus the researchers concluded that there was a strong correspondence
between the individual ratings. However, as no detailed data is given it is difficult to
assess the study in more detail.

Oman et al. (Coleman et al., 1994, 1995; Oman and Hagemeister, 1994; Welker et
al., 1997) report on the construction of a maintainability index. In this work the
researchers used source code metrics to create polynomial regression models that
measured software maintainability. They calibrated the maintainability models
based on how well they correlated with the subjective evaluations of the software
maintainers. To do this the researchers acquired source code and the maintainers’
opinions on eight industrial software systems ranging from 1,000 to 10,000 lines of
code (Oman and Hagemeister, 1994). After calibration, they performed a validation
study where they again acquired opinions and the source code on six industrial
systems ranging from 1,000 to 8,000 lines of code. In the validation study they also
saw discrepancies where one engineer was more lenient and the other ones more
critical towards the systems they were evaluating. Although the study (Oman and
Hagemeister, 1994) does not directly indicate this, it seems that there was only the
opinion of a single individual per software system that was used in the initial
creation of the metric and the validation performed. Thus, this makes it difficult to
effectively study the differences in human maintainability evaluations. After
performing tests on several industrial systems, the researchers concluded that the

Empir Software Eng (2006) 11: 395–431 403

automatic assessment corresponds well to the subjective view of the experts (Welker
et al., 1997).

Kataoka et al. (2002) studied the usefulness of improving software quality with
refactoring and report on a comparison between human evaluation and software
metrics. According to the researchers, the subjective evaluation of an expert on the
effectiveness of refactorings correlated quite well with improvement in the coupling
metrics. The drawback in the study is that the data set consists of only five
refactoring cases and that only one developer evaluated the effectiveness of the
refactorings.

Four out of the five referred studies are not made with object-oriented languages,
which currently dominate the field of software development. The drawback in the
only study involving object-oriented software (Kataoka et al., 2002) is that the data
set consists of only five refactorings and that only one developer evaluated the
effectiveness of the refactorings. Although there are some studies on subjective
design/code quality evaluation and the evaluations have been compared with source
code metrics, we feel that there is still ample research space to be filled.

3. Research Methods and Objectives

This section introduces the research methods and objectives. Section 3.2 discusses
the research objectives and research questions. Section 3.2 focuses on the research
methodology and data analysis techniques used. Sections 3.3 and 3.4 introduce the
case company and the informants. Finally, Section 3.5 presents the smells that were
studied.

3.1. Research Objectives

Our research objective was to increase our understanding on subjective software
evolvability evaluation. Our study consisted of two parts. First, we were interested
in the possible variations in the subjective evaluations and the explaining factors
behind these variations. Second, we wanted to understand the relationship between
subjective software evolvability evaluations and source code metrics. Altogether, we
had three research questions:

1. Do software developers have a uniform opinion on the Bsmelliness’’ of the
source code?

2. Do the demographics of the developers affect the smell evaluations, and if so,
how?

3. Do the developers’ evaluations on code smells correlate with related source
code metrics?

The motivation for research questions one and two comes from Fowler and
Beck’s (2000) idea that no precise criteria for evaluating code smells can be given.
Since human judgement plays a significant role when evaluating smells, it is inter-
esting to see if the evaluations are uniform. The developers should have a common
view, otherwise the usability of code smells as indicators of software evolvability is
questionable. Research question 2 addresses the concern that the demographic
variables, such as experience, affect the smell evaluations given by a developer.

404 Empir Software Eng (2006) 11: 395–431

By answering the third research question, we aim at understanding whether the
smell evaluations on different modules correlate with the source code metrics for a
particular smell. This is essential, because if the human evaluations and source code
metrics provided by the program analysis do not correlate, it indicates that one of
them is failing to provide the correct results.

3.2. Research Methodology and Data Analysis

We answer the research questions based on the data provided by a survey in which
we asked industrial software developers to evaluate how much of each code smell
existed in a particular software module of a software product they are familiar with.
All informants were software developers in a Finnish software company, which we
will call BeachPark. Each informant answered the questions only regarding the
software modules he or she was familiar with. In addition to the survey, we also
gathered data through informal discussions with the case company.

We collected the data using a two-page web-based questionnaire. On the first
page, each respondent provided background information, including age, location,
role (developer or lead developer), education, work experience in the company, and
overall software development work experience. The respondents also indicated the
software modules they had primarily worked with.

In the second page of the survey, the respondents assessed the degree of various
code smells for the modules they selected as the modules they had primarily worked
with. We asked about 23 code smells, which were described with a definition and an
example, totalling about 35 words each. The assessments were made on a seven-
point Likert scale, with 1 indicating a total lack of the smell, and 7 indicating a major
presence of the smell in the evaluated code. The assessment was made for each
module-smell pair. The respondents could also select BI don’t know’’ or BI don’t
understand the smell description.’’ The BI don’t know’’ option was checked by
default to prevent wrong smell evaluations. The respondents also estimated how
well they knew each module they had selected. The scale was also from 1 to 7 where
1 meant BI know the module very poorly’’ and 7 meant BI know the module very
well.’’

We used the SPSSi program intended for statistical analysis to analyze the
answers. In addition to traditional values such as mean and standard deviation, we
also used the Mann–Whitney test to study differences in evaluations between the
various demographic groups, for example developers and lead-developers. This test
is characterized by Siegel (Siegel, 1956) as follows: BWhen at least ordinal
measurement has been achieved, the Mann–Whitney U test may be used to test
whether two independent groups have been drawn from the same population. This
is one of the most powerful of the nonparametric tests, and it is a most useful
alternative to the parametric t test when the researcher wishes to avoid the t test’s
assumptions, or when the measurement in the research is weaker than interval
scaling.’’

Furthermore, some of the data analysis decisions are explained in the Results
section. For example, the decisions why some analyses are performed only on
certain software modules and the discussion on the various source code metric
thresholds for the smells are covered in more detail in that section. We have made
this decision in order to enhance the readability of the paper, because separating,

Empir Software Eng (2006) 11: 395–431 405

e.g., the metric threshold discussion from the use of metrics would require the
reader to browse back and forth.

3.3. Case Company

BeachPark is a small Finnish software product development company developing
non-domain-specific products. At the time of the survey, the company employed 18
software developers. The company had developed two software products in the past
4–5 years and during that time some parts of the products had become complex and
thus were difficult to work with. The development language used in the products
was Delphi, which is an object-oriented extension of the Pascal programming
language. The software modules and their sizes are listed in Table 2 in lines of code
(LOC) which throughout this work means non-blank, non-commented lines of
source code. The module names beginning with an BA’’ or BB’’ represent product-
specific modules and the module names beginning with a BY’’ are shared between
the two products. The module sizes marked with an asterisk are estimates made by
the case company employees. However, when comparing the employee size
estimates to the actual size of the modules that we had access to, we noticed that
the employee size estimates tended to be a bit too high. Thus, the size estimates
must be considered only as indicators of the module size.

The research questions listed in Section 3.1 are answered based on the data
gathered from the modules listed in Table 2. Section 4.1 provides the results for
research question 1, based on modules A1, A2, B1, B3, Y1, Y2, and Y4. Section 4.2
provides the results for the second research question based on all the modules listed
in Table 2. Finally, the results for the third research question are based on only
three modules, A1, A2, and A3, since we did not have access to the source code for
the other modules.

3.4. Informants

Table 3 shows the age, role, education, work experience, and modules evaluated of
our 12 informants. In the table we can see that in general the developers of the

Table 2 The software modules

Name Size in LOC Age (years) Number of evaluators

A1 83 200 6–7 5

A2 28 654 2–3 6

A3 16 787 <1 1

B1 55 342 5 3

B2 Unknown 2–3 4

B3 54 780 5 4

Y1 80 000* 1–2 3

Y2 30 000* 1–2 3

Y3 20 000* 1–2 4

Y4 20 000* Unknown 3

Y5** Unknown Unknown 1

*Employee estimates.

**Currently obsolete.

406 Empir Software Eng (2006) 11: 395–431

company were quite young with a median age of 26.5 years. In this survey, there
were no informants that had recently joined the company. This is positive, because
answering the questionnaire required considerable knowledge of the software under
investigation. All informants were professionals, with several years of professional
programming experience. The education of the informants was distributed as
follows: two had a master’s degree, seven were currently studying for a master’s
degree, two had a bachelor’s degree, and one was studying for a bachelor’s degree.
There were four lead developers and eight regular developers. The division by
geographical location (the organization had software developers at two physical
locations) was somewhat unbalanced, as only three answers came from one location
while the other location generated nine answers.

We achieved a response rate of 67%—12 out of the 18 developers working for
the company participated in the survey. All in all we received 37 module-smell
evaluations from the 12 developers. Thus, the average number of modules evaluated
by each developer was about three, varying from 2 to 6. The number of evaluations
per module fluctuated from 1 to 6 and the average was 3.4.

3.5. Introducing the Smells under Study

In this section we introduce the 23 code smells that we surveyed. Twenty-two of the
code smells were introduced by Fowler and Beck (2000). Additionally, we included
a code smell for dead code, i.e., code that is never executed, as we felt it was
important but not included in the list by Fowler and Beck. In the rest of the paper
we will use a bold font when referring to the smells, e.g., Dead Code. We chose four
smells for automatic code analysis, namely Large Class, Long Method, Long
Parameter List, and Duplicate Code. We selected these because we thought their
operationalization would be quite straightforward, and because we had suitable
tools to measure them. A list of 23 code smells can be difficult to understand. Hence,

Table 3 Demographic data about the respondents (all numbers are in years)

Id Age Role Education Development

experience

in company

Development

experience

total

Modules evaluated

(knowledge of each

module 1 = lowest

and 7 = highest)

1 23 Developer Student M.Sc. 2.50 2.50 B3(5), B1(6), B2(3)

2 26 Developer B.Sc. 3.42 3.42 B3(6), B1(7)

3 37 Lead developer Student M.Sc. 7.00 7.00 Y5(6), Y1(5), Y2(7),

Y3(7), Y4(6)

4 25 Developer Student M.Sc. 2.58 2.58 A2(4), B2(3) A1(5)

5 27 Lead developer M.Sc. 2.50 6.42 Y1(7), A2(4), Y3(5),

Y4(6)

6 32 Lead developer M.Sc. 6.92 8.00 A3(7), A2(6), B3(5),

Y3(6), Y4(5), A1(7)

7 25 Developer Student M.Sc. 3.50 3.50 Y1(6), B3(5), B2(7)

8 25 Developer Student M.Sc. 3.00 3.00 A2(6), A1(5)

9 27 Developer Student M.Sc. 1.42 3.00 Y2(6), Y3(6)

10 31 Lead developer Student M.Sc. 4.83 4.83 A2(6), A1(7)

11 26 Developer Student B.Sc. 1.83 2.67 B1(6), B2(4), Y2(3)

12 40 Developer B.Sc. 1.50 10.00 A2(5), A1(5)

Empir Software Eng (2006) 11: 395–431 407

we grouped the smells into six categories. The taxonomy is an improved version of
our previous taxonomy that was presented in (Mäntylä et al., 2003). An alternative
grouping for the code smells can be found for example in (Wake, 2003).

The Bloater smells are: Long Method, Large Class, Primitive Obsession, Long
Parameter List, and Data Clumps. Bloater smells represent something that has
grown so large that it cannot be effectively handled. It seems likely that these smells
grow a little bit at a time. Hopefully nobody designs, e.g., lengthy methods.3

Primitive Obsession is actually more of a symptom that causes bloats than a bloat
itself. The same holds for Data Clumps. When a Primitive Obsession exists, there
are no small classes for small entities (e.g., phone numbers). Thus, the functionality
is added to some other class, which increases the class and method size in the
software. With Data Clumps there exists a set of primitives that always appear
together (e.g., three integers for RGB colours). Since these data items are not
encapsulated in a class this increases the sizes of methods and classes.

The Object-Orientation Abusers are: Switch Statements, Temporary Field,
Refused Bequest, and Alternative Classes with Different Interfaces. The common
denominator for the smells in the Object-Orientation Abuser category is that they
represent cases where the solution does not fully exploit the possibilities of object-
oriented design. For example, using a switch statement to detect type code, i.e.,
simulate a class hierarchy, might be considered acceptable or even good design in
procedural programming, but is something that should be avoided in object-oriented
programming. The situation where switch statements or type codes are needed
should be handled by creating subclasses. The Refused Bequest smell lacks proper
inheritance design, which is one of the key elements in object-oriented program-
ming. The Alternative Classes with Different Interfaces smell lacks a common
interface for closely related classes, so it can also be considered a certain type of
inheritance misuse. The Temporary Field smell means a case in which a variable is
in the class scope, when it should be in the method scope. This violates the
information hiding principle.

The Change Preventers are: Divergent Change, Shotgun Surgery, and Parallel
Inheritance Hierarchies. Change Preventers are smells that hinder changing or
further developing the software. These smells violate the rule suggested by Fowler
and Beck, which says that classes and possible changes should have a one-to-one
relationship. For example, changes to the database only affect one class, and
changes to calculation formulas only affect one other class. The Divergent Change
smell means that we have a single class that needs to be modified by many different
types of changes. With the Shotgun Surgery smell, the situation is the opposite–we
need to modify many classes when making a single change to a system, e.g., change
several classes when changing the database from one vendor’s to another’s. Parallel
Inheritance Hierarchies, which means a duplicated class hierarchy, was originally
placed in the OO-abusers. One could also place it inside the Dispensables, since
there is redundant logic that should be replaced. However, we have placed it here
because in Parallel Inheritance Hierarchies, classes and changes do not have one-to-
one relationship, e.g., with parallel hierarchies there is always more than one class
that requires changing.

3 A recent study (Robillard et al., 2004) of program modification tasks also showed that
programmers who performed their modifications inside few methods were less successful than the
ones who distributed their solutions to several methods.

408 Empir Software Eng (2006) 11: 395–431

The Dispensables are: Lazy class, Data class, Duplicate Code, Dead Code, and
Speculative Generality. The common thing for the Dispensable smells is that they all
represent something unnecessary that should be removed from the source code.
This group contains two types of smells, dispensable classes and dispensable code,
but since they violate the same principle, we look at them together. If a class is not
doing enough it needs to be removed or its responsibility needs to be increased. This
is the case with the Lazy class and the Data class smells. Code that is not used or is
redundant needs to be removed. This is the case with the Duplicate Code,
Speculative Generality and Dead Code smells.

The Couplers are: Feature Envy, Inappropriate Intimacy, Message Chains, and
Middle Man: This group has four coupling-related smells. One design principle that
has been around for decades is low coupling (Stevens et al., 1974). This group has
three smells that represent high coupling. The Middle Man smell on the other hand
represents a problem that might be created when trying to avoid high coupling with
constant delegation. A Middle Man is a class that is doing too much simple delegation
instead of really contributing to the application. The Feature Envy smell means a case
where one method is heavily coupled to other classes than the one that it is in. The
Inappropriate Intimacy smell means that two classes are coupled tightly to each
other. Message Chains is a smell where class A needs data from class D. To access this
data, class A needs to retrieve object C from object B, while A and B have a direct
reference. When class A gets object C it then asks C to get object D. When class A
finally has a reference to class D, A asks D for the data it needs. The problem here is
that A becomes unnecessarily coupled to classes B, C, and D, when it only needs some
piece of data from class D. The following example illustrates the Message Chains
smell: A.getB().getC().getD().getTheNeededData(). Of course, we could
make an argument that these smells should belong to the Object-Orientation abusers
group, but since they all focus strictly on coupling, we think it makes the taxonomy
more understandable if they are introduced in a group of their own.

Other smells that were studied, but could not be included in any of the groups are
Comments and Incomplete Library Class. The Comments smell indicates the misuse
of comments, i.e., when a programmer uses comments to explain some piece of code
instead of writing code that is simpler and more self-explaining. Incomplete Library
Class means that the application is using a third party library code that is not
completely adequate for the application. According to Fowler and Beck this smell can
be removed, for example, by introducing a local extension.

4. Results—Effect of Human Factors in Code Smell Evaluation

One key assumption of code smells is that there are no exact conditions, which
indicate when developers should improve the software design. Instead, individuals
should be able to make the decision primarily using their own intuition. As software
developers may have different predilections it is not evident that all developers see
the code smells equally.

4.1. Uniformity of the Smell Evaluations

In this section, we describe how uniform the smell evaluations were for the different
software modules. Naturally the modules that received the highest number of
evaluations are of the greatest interest. In Table 4 we can see the smell evaluations

Empir Software Eng (2006) 11: 395–431 409

Table 4 Smell evaluations of modules A1 and A2, scale 1–7 (a larger number indicates more of the smell)

Smell name Number of answers on a scale of 1 to 7

1 2 3 4 5 6 7

Module A1
Long Method 5

Large Class 1 3 1

Long Parameter List 1 2 1 1

Data Clumps 2 1

Duplicate Code 1 2 2

Dead Code 1 2 1 1

Speculative Generality 1 3

Feature Envy 1 2 1 1

Inappropriate Intimacy 2 1 1 1

Message Chains 1 3 1

Middle Man 2 2 1

Lazy Class 2 1 2

Data Class 2 1 1

Incomplete Library Class 2 2 1

Primitive Obsession 1 2 1 1

Switch Statement 1 1 2 1

Temp Field 2 2 1

Refused Bequest 1 3 1

Alternative Classes
with Different Interface

1 1 2 1

Parallel Inheritance Hierarchies 2 1 1 1

Divergent Change 1 1 2 1

Shotgun Surgery 2 1 1 1

Comments 1 1 2 1

Module A2
Long Method 2 1 3

Large Class 2 2 1 1

Long Parameter List 1 1 1 3

Data Clumps 2 2

Duplicate Code 3 1 1 1

Dead Code 4 1 1

Speculative Generality 2 1 1 1

Feature Envy 2 1 1 2

Inappropriate Intimacy 2 1 1 1 1

Message Chains 3 2 1

Middle Man 1 3 1 1

Lazy Class 2 3 1

Data Class 2 1 1 1

Incomplete Library Class 3 2 1

Primitive Obsession 1 3 1 1

Switch Statement 1 1 1 2 1

Temp Field 4 1 1

Refused Bequest 1 4 1

Alternative Classes
with Different Interface

1 2 2 1

Parallel Inheritance Hierarchies 2 1 2 1

Divergent Change 1 1 1 3

Shotgun Surgery 2 1 2 1

Comments 2 1 1 2

410 Empir Software Eng (2006) 11: 395–431

of modules A1 and A2 that had the largest number of evaluations. In the Long
Method smell evaluations for module A1 there is a perfect agreement in the
evaluations. However, this case is unique, since the other smell evaluations had
larger distributions. For example, there is a large distribution regarding the
existence of the Inappropriate Intimacy smell in both modules A1 and A2.

To summarise the data seen in Table 4, and to be able to compare it with other
modules, we have created Table 6, where we show the standard deviations of the smell
evaluations for modules A1, A2, B1, B3, Y1, Y3, and Y4. All these modules had three
or more evaluators and they are therefore selected for analysis. Modules B2 and Y2 also
had more than three evaluators, but they did not have three or more evaluators that had
specified their knowledge of the system as higher than four on the seven-point Likert
scale. This lack of knowledge of the modules also resulted in many unanswered
questions by the evaluators. Thus, we discarded modules B2 and Y2 from this analysis.
A summary of the knowledge levels of the evaluators is show in Table 5. In Table 6, we
have marked the smell evaluations with less than three evaluators with a dash (B-’’).

In Table 6 we can see that nearly 75% (17 out of 23) of the means distributions
are between 0.85 and 1.25. The smells Switch Statement, Inappropriate Intimacy, and
Message Chains have a higher distribution than the rest of the smells. Based on the
data we cannot offer a good explanation as to why these smells have a higher
distribution. The smells that have a very low distribution, less than 0.85, are Refused
Bequest, Parallel Inheritance Hierarchies, and Comments. The reason for the low
distribution was in some cases evident from the data. We discovered that the
evaluations on the smells Refused Bequest, Parallel Inheritance Hierarchies were all
very low, which caused the low distribution. For Comments on the other hand most
of the evaluations, nearly 70% in all the data, were either two or three on the
ordinal whereas only 5% of the respondents had given a one on the ordinal scale.

In the next section we try to explain the deviations in the smell evaluations by
studying how the informants made their evaluations and how their demographics
affected their evaluations.

4.2. Effect of Demographics

In this section we look at how demographic variables such as module knowledge,
role, and work experience affected the informants’ smell evaluations. To study the

Modules Number of answers per knowledge level

1 2 3 4 5 6 7

A1 3 2

A2 2 1 3

B1 2 1

B2 2 1 1

B3 3 1

Y1 1 1 1

Y2 1 1 1

Y3 1 2 1

Y4 1 2

Table 5 The knowledge level of the informants (a larger number indicates better knowledge)

Empir Software Eng (2006) 11: 395–431 411

differences in these background variables, we used the nonparametric Mann–
Whitney U test. Tables 7, 8 and 9 show the results of the Mann–Whitney U test, the
significance of U, and the number of evaluations of the compared groups.

First, we look at how the informants’ role in the organization affected the smell
evaluations. The informants consisted of eight developers and four lead developers.
However, the lead developers had evaluated a larger number of modules, which
meant that we got roughly an equal number of evaluations from regular developers
and lead developers. Table 7 shows the smells for which there were significant
(p < 0.05) differences between these two groups. The regular developers reported
higher degrees of Duplicate Code than the lead developers. The lead developers on
the other hand reported more Parallel Inheritance Hierarchies than the regular
developers (p < 0.01).

The knowledge of a module was measured subjectively by self assessment on a
seven-point Likert scale. To study how the knowledge of a module affected the

Table 6 The standard deviation of evaluations in different software modules

A1 A2 B1 B3 Y1 Y3 Y4 Mean

Long Method 0.000 0.983 2.309 1.708 0.577 0.816 1.000 1.056

Large Class 1.095 1.169 0.577 1.258 0.577 0.957 1.528 1.023

Long Parameter List 1.140 1.265 0.000 2.062 0.577 1.000 1.155 1.028

Data Clumps 0.577 1.155 0.577 1.528 – 0.577 0.707 0.854

Duplicate Code 1.342 1.265 1.528 1.291 1.155 0.500 1.155 1.176

Dead Code 1.140 1.602 0.577 1.708 0.577 1.000 1.155 1.108

Speculative Generality 1.000 1.304 0.577 0.500 1.528 0.500 0.577 0.855

Feature Envy 1.140 1.378 0.577 0.500 – 1.000 0.577 0.862

Inappropriate Intimacy 2.121 1.941 – 1.500 0.577 1.258 1.000 1.400

Message Chains 1.095 1.169 1.732 1.708 1.000 1.708 0.577 1.284

Middle Man 0.837 1.378 1.000 0.577 1.000 0.577 1.155 0.932

Lazy Class 1.000 0.753 0.000 0.500 1.528 0.500 2.309 0.941

Data Class 0.957 1.673 1.000 1.155 0.577 1.258 2.000 1.231

Incomplete Library Class 1.225 1.169 0.577 0.577 1.155 0.577 1.155 0.919

Primitive Obsession 1.643 1.506 0.577 0.957 – 0.577 0.577 0.973

Switch Statement 1.924 1.966 3.055 1.732 – 2.082 0.577 1.889

Temp Field 1.225 0.837 2.646 0.000 – 2.708 0.000 1.236

Refused Bequest 0.707 0.632 0.577 0.577 – 1.528 0.707 0.788

Alternative Classes with Different Interface 1.140 1.049 – 0.577 – – 1.155 0.980

Parallel Inheritance Hierarchies 1.304 1.211 – 0.500 – 0.577 0.577 0.834

Divergent Change 1.643 1.751 – 0.500 1.155 1.000 0.577 1.104

Shotgun Surgery 1.304 1.211 0.577 1.291 1.155 1.000 0.577 1.016

Comments 1.140 1.378 0.577 0.816 – 1.000 0.000 0.819

Table 7 Mann–Whitney U test results between developers and lead developers

Duplicate

code

Parallel inheritance

hierarchies

Number of evaluations of regular developers (n = 8) 20 17

Number of evaluations of lead developers (n = 4) 17 16

Mann–Whitney U 104.000 69.500

p-value (asym. sig., 2-tailed) 0.037 0.009

412 Empir Software Eng (2006) 11: 395–431

smell evaluations, we created two knowledge groups, one with a knowledge value
between 3 and 5 (low knowledge) and the other with knowledge values 6 and 7 (high
knowledge). There were no answers where the developer’s knowledge of a module
was under 3.

Table 8 shows the only smell, Lazy Class, for which the evaluations between the
high and low knowledge groups were significantly (p < 0.05) different. The high
knowledge group reported more Lazy Class smells than the low knowledge group.
Lazy Class is a class that is so small that it Bdoes not carry its own weight’’ and
therefore should be removed.

We also studied the effect of work experience on the smell evaluations. We tried
different groupings for the work experience variable. The one that provided the most
interesting results compared the two informants with the longest work experience in
the case company against the rest of the informants. These two informants had
worked in the company for seven years, whereas the most experienced of the other
informants had been with the company for a little less than five years and the rest of
the informants three and a half years or less. The two most experienced informants
were the only developers who had been working in the company for the entire lifetime
of the software products. The two most experienced informants had also provided 11
smell evaluations, which made the comparison to the rest of the informants sensible.

In Table 9 we can see the smells and the smell index (mean from all the smell
evaluations for a module by an informant) that had a significant (p < 0.05)
difference between the two most experienced developers and the rest. All the
significant differences in Table 9 mean that the two most experienced informants in
the company evaluated that there is considerably less smells compared to the
evaluations of the rest of the informants.

Finally, we studied the differences between the developers’ attitudes regarding
the degree of smells. We were able to compare five informants that all had
evaluated two particular modules, namely A1 and A2, and noticed that one
developer clearly had the most positive attitude towards the quality of the code. His

Table 8 Mann–Whitney U test results between high and low knowledge groups

Lazy class

Number of evaluations of low knowledge informants 16

Number of evaluations of high knowledge informants 20

Mann–Whitney U 84.000

p-value (asym. sig., 2-tailed) 0.008

Table 9 Mann–Whitney U test results between the most experienced developers and the rest

Smell

index

Large

class

Feature

envy

Data

clumps

Alternative class

with different

interface

Long

parameter

list

Number of evaluations of most

experienced developers (n = 2)

11 10 10 8 9 11

Number of evaluations of less

experienced developers (n = 10)

26 26 25 18 21 26

Mann–Whitney U 65.500 57.000 63.5000 12.000 43.000 85.000

p-value (asym. sig., 2-tailed) 0.010 0.008 0.020 0.002 0.015 0.039

Empir Software Eng (2006) 11: 395–431 413

smell index for module A1 was 2.68 and for A2 2.64. This developer gave
considerably lower smell evaluations for the two modules than the other four. On
the other hand, another developer saw considerably more smells in the two modules
than the rest. His smell index for the modules was 4.14 for A1 and 4.27 for A2. The
three informants that were in the middle with their smell evaluations had smell
indexes between 3.48 and 3.76 for A1 and between 3.13 and 3.76 for A2. Therefore,
it seems that the different attitudes of the developers can partly explain the
differences in their smell evaluations.

5. Results—Human Evaluation and Source Code Metrics

In this section, we compare the subjective smell evaluations with the source code
metrics. For each smell, we first discuss its appropriate metrics, decide the thresholds,
and then compare the measurement results to the evaluations. The source code/
design metrics for identifying each smell are selected based on the literature as well as
on our own understanding. The comparison is limited to only four smells and three
modules. The smells are Large Class, Long Method, Long Parameter List and
Duplicate Code. These were selected because they are quite easy to measure with
tools. The modules are A1, A2, and A3, which were the only ones whose source
code we were allowed to analyze.

We used an enhanced version of a tool called same4 to measure the number of
duplicate code lines. Technically, same does not measure duplicate code lines, since
it only investigates whether the lines are lexically identical after removal of
whitespaces. This means that same will not recognize all possible duplicated lines,
e.g., if the variables have different names, and thus gives somewhat conservative
results. To gather measures for the Large Class and Long Parameter List smells, we
used a tool called SDMetrics.5 Additional measures for the Large Class smell and all
measures for the Long Method smell were collected with a tool called Pascal
Analyzer version 3 by Peganza Corporation.

5.1. Large Class

The first question arising when working with the Large Class smell is: BWhat exactly
is a large class?’’ Fowler and Beck (2000) say that a large class can often be spotted
by looking at the number of instance variables. Therefore, the number of attributes
is used as one of our class size measures. The Large Class smell is also recognized as
an anti-pattern known as the Blob, Winnebago, and the God Class. The book that
describes this anti-pattern in detail (Brown et al., 1998, pp. 73–84) points out that
the number of methods and variables provide good measures for such anti-patterns.
The number of methods measure was also used in an object-oriented design quality
assessment by Bansiya and David (2002). Chidamber and Kemerer (1994) introduce
the sum of method complexities in a class as a metric called weighted methods per
class (WMC). Chidamber and Kemerer do not state how the complexity of a

4 http://sourceforge.net/projects/same
5 http://www.sdmetrics.com/

414 Empir Software Eng (2006) 11: 395–431

http://sourceforge.net/projects/same
http://www.sdmetrics.com/

method should be calculated, but purposefully leave it as an implementation
decision. In this work, we actually have measured three versions of the WMC
metric, although they are not presented as such in the measurement below
(Table 10). Firstly, each method is given a complexity of one, which results in the
already discussed methods per class metric. Secondly, we have chosen to use two
widely used metrics, lines of code (LOC) and cyclomatic complexity (CC) (McCabe,
1976) to represent method complexity. These two metrics result in a sum of lines of
code of methods per class and sum of cyclomatic complexity of methods per class,
respectively. Finally, we feel that class cohesion is a good measure for the Large
Class smell because large classes often try to do too many things, which indicates
low cohesion. Therefore, we have selected to measure lack of cohesion methods
(LCOM), which was introduced by Chidamber and Kemerer.

We also needed some thresholds for the Large Class smell. The anti-pattern book
(Brown et al., 1998) refers to BAntiPattern Session Notes’’ held by Michael Akroyd,
who, according to Brown et al. said that a class with more than 60 variables and
methods often indicates the presence of the Blob. Much tighter thresholds are
presented by Lorenz and Kidd (1994), who suggest a threshold of 3 for instance
variables in a model class, and 9 for a user interface (UI) class. They also suggest
that a model class should not have more than 20 methods and a UI class should have
a maximum of 40 methods. Most academic studies do not provide any thresholds for
class size. Based on the suggestions and the measurement we made, we selected
three limits for a number of Large Class variables and methods. For the number of
variables, we used limits of 10, 20, and 40 variables, and for the number of methods,
the limits were 30, 50, and 100. For the sum of the lines of code of methods per class
we selected three thresholds, 500, 1,000, and 2,000. According to the Java coding
standard (Sun Microsystems, 1999), files (Java has typically only one class per file)
with more than 2,000 lines are cumbersome. However, this coding standard is not
talking about lines of code, but lines of file in general, which includes comments,
code outside methods, e.g., import/include/uses statements, and introduction of
class variables. Therefore, we selected a lower threshold of 1,000 lines of code.
Based on our measurement with these two thresholds we decided that a lower
threshold of 500 lines of code was needed. We are not aware of any recommen-
dations for the sum of cyclomatic complexity of methods per class, but there are
thresholds for cyclomatic complexity per routine in structural programming.
McCabe suggested that with procedural programs the threshold of a program
cyclomatic complexity should be 10. In our data, the median number of methods
per class in module A1 was 13, in A2 it was 9, and in A3 it was 6. Because A1 had
more classes than A2 and A3, the overall median of the number of methods per
class was 11. Thus, a typical class in our data had roughly ten methods. We think
that a class can be considered too big if it has a typical number of methods (10)
that all have a cyclomatic complexity of ten. This results in a threshold of 100 for
the sum of cyclomatic complexity of methods per class. As our measurement
showed that there were a considerable amount of classes above the threshold of
100, we also selected larger thresholds of 200 and 400 for the sum of cyclomatic
complexity. The LCOM measure only has values above zero when a class is not
highly cohesive. Therefore, our first threshold is values greater than zero, which in
practice means one. As there were many classes above the threshold of one, we
also needed to set higher thresholds, but unfortunately for LCOM there exists no
threshold above one that we are aware of. Therefore we set the two thresholds to

Empir Software Eng (2006) 11: 395–431 415

percentiles of 80 and 90 for all the classes in modules A1, A2, and A3. This
resulted in thresholds of 10 and 15, respectively.

The metrics related to the class size of the different modules are collected in
Table 10 under the metric data section. The data shows that module A1 clearly has
the largest classes, measured by the number of variables. When measuring class size
with the number of methods, we can see that modules A1 and A3 have roughly the
same amount of large classes. Overall, it looks like module A2 has the smallest
number of large classes in both categories. Lines of code and cyclomatic complexity
yield identical results. A1 has the largest classes followed by A3 and finally A2 that
has the smallest classes. Surprisingly, the setting is reversed with the LCOM metric.
Based on the metric, A2 has the greatest number of non-cohesive classes followed
by A1, and A3 has the least of non-cohesive classes. Unfortunately, we cannot offer
an explanation for this result.

The reason why module A1 has many large classes when measured by the
number of variables is that there are many GUI classes. We can accept slightly
larger GUI classes than regular classes and we might be willing to accept that a GUI
class can be up to three times larger in terms of variables than a model class as
suggested by Lorenz and Kidd (1994). Still, we can see that module A1 has the
largest classes, because 23% of its classes have 40 or more variables, whereas in the
other two modules only 7.3 and 9.7% of the classes have ten or more variables.

Table 10 Large class measures

Metric data

Property Module

A1 A2 A3

Number of classes 126 82 31

Classes Q 10 variables 87 (69.0%) 6 (7.3%) 3 (9.7%)

Classes Q 20 variables 56 (44.4%) 1 (1.2%) 1 (3.2%)

Classes Q 40 variables 29 (23.0%) 1 (1.2%) 0 (0.0%)

Classes Q 30 methods 24 (19.0%) 8 (9.8%) 5 (16.1%)

Classes Q 50 methods 11 (8.7%) 3 (3.7%) 3 (9.7%)

Classes Q 100 methods 3 (2.4%) 0 (0.0%) 1 (3.2%)

Classes Q 500 LOC 32 (25.4%) 13 (15.9%) 5 (16.1%)

Classes Q 1,000 LOC 12 (9.5%) 4 (4.9%) 2 (6.5%)

Classes Q 2,000 LOC 6 (5.4%) 1 (1.2%) 1 (3.2%)

Classes Q 100 CC 34 (27.0%) 12 (14.6%) 5 (16.1%)

Classes Q 200 CC 16 (12.7%) 4 (4.9%) 3 (9.7%)

Classes Q 400 CC 9 (7.1%) 2 (2.4%) 2 (6.5%)

Classes Q 1 LCOM 84 (66.1%) 67 (81.7%) 12 (38.7%)

Classes Q 10 LCOM 21 (16.6%) 28 (34.1%) 4 (12.9%)

Classes Q 15 LCOM 8 (6.3%) 15 (18.3%) 1 (3.2%)

Human evaluations (a larger number indicates more of the smell)

N 5 6 1

Mean 5.20 5.17 2.00

SD 1.095 1.169 –

Median 5 5 2

416 Empir Software Eng (2006) 11: 395–431

Means and medians of the smell evaluations under the Human Evaluations
section in Table 10 show that modules A1 and A2 are evaluated to contain an equal
degree of the Large Class smell. If we compare this to the metric data in Table 10,
we can see that the human smell evaluation mean or median does not correlate with
the measured number of large classes. The LCOM metric suggests that A2 has more
large classes, when all other measures indicate that A1 has more large classes. When
we compared the five informants who had evaluated both module A1 and A2, we
saw that only one developer had made distinctions between these modules. This
developer evaluated in correlation with the majority of the metrics that module A1
contains more of the Large Class smell, although the difference on the ordinal scale
(1 – 7) was only one. We also studied how the developer who had given the sole
evaluation of module A3 had evaluated the other two modules. It appeared that this
developer had evaluated modules A1 and A2 with 4 on the seven-point Likert scale,
whereas module A3 had received only 2. The developer’s evaluations can be in
correlation with the metrics, if we study the A1 and A3 modules, but with A2 and
A3 the evaluations conflict with all but the LCOM code metric.

5.2. Long Method

The lines of code (LOC) metric seems very appropriate for measuring the Long
Method smell as it effectively measures the method length. However, whether a long
method is a problem cannot be simply determined by the lines of code metric
because it cannot measure the method’s complexity. For example, a long
initialization routine with no branches might not pose a problem to a system’s
evolvability. Therefore, we need to measure complexity as well, and we can do this
by using the cyclomatic complexity (CC) measure first introduced by McCabe.

An excellent summary covering the existing literature on routine length in terms
of lines of code can be found in (McConnell, 2004). According to McConnell,
modern programs consist of volumes of short routines with only a few longer ones,
but long routines still pose a problem. In McConnell’s survey, the recommendation
for routine length fluctuates from 50 lines up to 200 lines of code. Lorenz and Kidd
(1994) on the other hand suggest a much tighter limit, which is 18 for C++ code. Our
case company had recently introduced a coding standard setting a threshold for
function length at 40 lines of code. We used the company’s threshold of 40 and
based on McConnell, we set two other thresholds for method length, 100, and 200
lines of code. Selecting 18 as a threshold would have resulted in 30 to 50% of
methods being categorized as long for all modules. Therefore we considered this
threshold to be too low for our analysis. For the cyclomatic complexity measure,
McCabe originally suggested the limit of 10, and Grady reported that an HP division
had determined that 14 should be the maximum cyclomatic complexity in a
program. Based on those numbers we set the threshold to 10 and 15 for the
cyclomatic complexity of a routine. After we saw the number of methods that
exceeded the thresholds, we decided that it would be beneficial to add a third
threshold that is higher than the ones introduced. Thus, we added a third threshold
of 30. In addition to the threshold values we also report the mean values of both
lines of code per method and the cyclomatic complexity per method. However,
these cannot be taken as a direct indication of the Long Method smell because the
averages are greatly affected by the number of small methods.

Empir Software Eng (2006) 11: 395–431 417

The metrics related to the method size in the different modules are shown in
Table 11 under the metric data section. The data shows that A1 has the longest
methods in all expect two occurrences out of the eight. When measured with mean
lines of code per method, and the percentage of methods that have 40 lines or more,
module A3 has the longest methods. A2 has the shortest methods except when
measured with methods that have cyclomatic complexity more or equal to 10 or 15.
In those cases A3 has the shortest methods.

The mean and medians of the human evaluations in Table 11 show that module
A1 has the most of the Long Method smell. A2 contains slightly less of this smell
than A1, and A3 has a minimal amount of this smell according to the evaluations.
Notice that for module A1 there is complete agreement between all five evaluators.
We can see that there is a correlation for modules A1 and A2, when comparing the
smell evaluations and metrics. Comparison between modules A1 and A3 shows that
there is correlation between the metrics and human evaluations except when
measuring Long Method with the average value of LOC per method or with the
percentage of methods that contain 40 LOC or more. However, it must be noted
that the difference in the evaluations between modules A1 and A3 is too high when
compared to their difference in metric values. Finally, smell evaluations for modules
A2 and A3 are correlated with the metrics only if we study the method length by
methods that have more or equal to 10 or 15 for cyclomatic complexity.

We studied the five informants that had evaluated both modules A1 and A2 and
this revealed that two informants had evaluated that modules A1 and A2 have an
equal amount of the Long Method smell. However, three informants had
evaluated—in correlation with the metrics—that A2 has somewhat less (one or
two points in the seven point ordinal scale) of the Long Method smell. If we leave
out the module with only a single evaluation, we can conclude that for the Long
Method smell the metrics and the smell evaluations are quite satisfactorily
correlated.

Table 11 Long method measures

Metric data

Property Module

A1 A2 A3

Number of methods 2.879 1.105 487

Mean # of LOC / Method 22.28 19.10 26.94

Methods Q 40 LOC 393 (13.7%) 129 (11.7%) 82 (16.8%)

Methods Q 100 LOC 105 (3.6%) 21 (1.9%) 13 (2.7%)

Methods Q 200 LOC 23 (0.8%) 4 (0.4%) 2 (0.4%)

Mean # of CC/Method 5.24 3.71 4.18

Methods Q 10 CC 356 (12.3%) 100 (9.0%) 38 (7.8%)

Methods Q 15 CC 212 (7.4%) 48 (4.3%) 19 (3.9%)

Methods Q 30 CC 79 (2.7%) 12 (1.2%) 7 (1.4%)

Human evaluations (a larger number indicates more of the smell)

N 5 6 1

Mean 6.00 5.17 2.00

SD 0.000 0.983 –

Median 6.00 5.50 2.00

418 Empir Software Eng (2006) 11: 395–431

5.3. Long Parameter List

The Long Parameter List smell refers to cases, where a method has too many
parameters. We thus need to decide how many is too many. In the era of procedural
programming, all data was generally passed as parameters. At that time, the option
to passing parameters was to use global data, which was much worse than lengthy
parameter lists. McConnell’s guidebook for procedural programming (McConnell,
1993) recommends that the number of parameters should be limited to seven.
Object-oriented programming generally requires less parameter passing, since
classes can encapsulate data and operations together. Therefore, we also selected
two other parameter limits with values of three and five. We ended up with three
opinions on what a long parameter list is. These can be understood as three
tolerance levels: low, medium, and high. The maximum number of parameters in
these categories is three for low, five for medium, and seven for high.

The metric data in Table 12 shows that the oldest and biggest module (A1)
actually has the fewest long parameter lists. Modules A2 and A3 have the same
number of long parameter lists in the low and high tolerance groups. In the medium
tolerance group, module A2 has more than twice as many long parameter lists.
Therefore, it seems that the oldest module seems to be clearly in the best shape, if
we measure its internal quality by looking only at this single measure.

When Fowler and Beck (Fowler and Beck, 2000) introduced the Long Parameter
List smell, they had assumed that long parameter lists are made of primitives rather
than objects. This source code material supports that assumption. Of the methods
with more than three parameters only 13.9% of parameters are classes, whereas
86.1% are primitives. The maximum number of primitive parameters is 16, whereas
the maximum number of class parameters is three. Therefore, it seems clear that the
Long Parameter List smell mainly consists of primitives.

The Human Evaluations data in Table 12 shows the smell means and medians of
the three modules under study. If we compare the two modules with more than one
evaluation (A1 and A2), we can see that the informants have evaluated—in

Table 12 Long parameter list measures

Metric Data

Property Module

A1 A2 A3

Number of methods1 2 838 1 077 464

Mean # of parameters 1.85 2.05 2.04

Methods Q 4 parameters 259 (9.1%) 160 (14.9%) 70 (15.1%)

Methods Q 6 parameters 38 (1.3%) 76 (7.1%) 16 (3.4%)

Methods Q 8 parameters 4 (0.1%) 13 (1.2%) 5 (1.1%)

Human evaluations (a larger number indicates more of the smell)

N 5 6 1

Mean 3.40 4.00 1.00

SD 1.140 1.265 –

Median 3.00 4.50 1.00

1 The discrepancy in the number of methods when compared to Table 11 is caused by nested
methods. The method count in Table 11 contains the nested methods, but Table 12 does not.

Empir Software Eng (2006) 11: 395–431 419

correlation with the metrics—that A2 has the most of the Long Parameter List
smell. We still have to bear in mind that the standard deviations for the smell means
are quite high. The difference between the median of modules A1 and A2 is greater
than the mean values. The median values are the ones we wish to look at since the
deviation is so large. We also studied the five informants who had evaluated both
modules A1 and A2 and found that only one of them had made a difference with the
Long Parameter List in these two modules. This developer had evaluated—in
correlation with the metrics—that module A2 has more of the Long Parameter List
smell (with Likert scale numbers 5 and 3) whereas others had evaluated that this
smell is equally present in both modules.

For the newest module (A3) we received only one smell evaluation. This
evaluation is in conflict with the metrics, because it claims that the Long Parameter
List smell does not exist in the module, whereas the measurements show that
module A3 has more of this smell than module A1. It is even more interesting that
the developer who had evaluated module A3 also had evaluated module A1 and
given it a smell evaluation of three for the Long Parameter List smell.

In the case of the Long Parameter List smell, the developers assumed—in
correlation with the metrics—that module A2 had more long parameter lists than
module A1. On the other hand, the opinions of the individual informants were
conflicting, since many informants were unable to make distinctions between the
two modules that according to the measures contained considerably different
amounts of the Long Parameter List smell. In addition, the comparison between the
individual informants’ evaluations showed conflicting results with the metrics.

5.4. Duplicate Code

According to Fowler and Beck (2000), the Duplicate Code smell Bis number one in
the stink parade.’’ Removing duplication makes programs easier to understand,
maintain, and develop further. When we measure the Duplicate Code smell, we
must decide the size of the duplicated fragments we wish to identify. It is not very
wise to remove duplicated code fragments that consist of only a few lines of code,
since the effort spent in removing them will outweigh the benefits. We are not aware
of any recommendations for how many duplicate code lines are too much. The same
tool, which was introduced in the beginning of Section 5, by default reports
duplicates of ten LOC or more. For us this sounds acceptable, but given that bigger
duplicates are more interesting, we also defined thresholds of 15, 20, and 50 lines of
code. The amount of duplicate code lines is calculated by summing the redundant
code lines, i.e., not including the first occurrence of the code.

The metric data in Table 13 shows the percentages of the duplicate code lines
measured. In the table, we can see that module A1 contains the largest chunks of
duplicate code. However, module A3 has over 15% of duplicate code if we define
the duplicate code chunks to be only ten lines of code or more. If we only measure
larger duplicate code chunks, the duplicate code percentage of module A3 drops
very quickly. From the source code, we found out that A3 has many methods that
terminate in a similar way, i.e., they check out of a critical section, do some
exception handling, and then report to the log system that the method has exited.
Therefore, this kind of duplication will only cause problems if the exiting sequence
has to be changed.

420 Empir Software Eng (2006) 11: 395–431

Based on the Human Evaluations data in Table 13 we see that module A2
contains the most of the Duplicate Code smell. Although the difference to module
A1 is not very big, we can clearly see that the informants’ opinions are conflicting
with the metrics, because A1 has much more duplicate code according to our
measurement. When we looked at the five informants that had evaluated both
modules A1 and A2, we saw that two informants had evaluated that A2 contains
more duplicate code; two informants had decided that the modules contain the same
amount of the Duplicate Code smell, and one developer had determined that A1 has
more of this smell. To explain why the informants felt that module A2 contained
more duplicate code than it actually does, we also tried to look at duplicate code
between the modules. We found out that the amount of duplication does not
significantly increase in module A2 if we measure its inter-module duplication with
A1.

A reason for the differences between the smell evaluations and the source
code measurements was revealed to us in a discussion with the developers of
the case company. The developers told us that module A2 actually has quite a
few lines for which copy–paste coding has been applied, but after each paste
operation the code has been modified. The same tool is unable to detect this
form of duplication. Therefore, the smell evaluations are not as conflicting as they
would appear according to the measurements. However, it is a completely
different story to find out whether code that has been developed with the copy–
paste–modify method is actually duplicate code, and how much modification is
needed before the code can no longer be considered duplicate code. However, it is
certain that removing identical code chunks is easier than removing slightly mod-
ified code.

Again, we also studied the answers of the respondent who had evaluated the
newest module (A3) and the other two modules. This developer had evaluated that
A2 had more duplicate code smell than A3, whereas in reality they had about the
same amount of duplicate code. The result for this single developer is very similar
for this smell as for the previous smells.

Table 13 Duplicate code measures

Metric data

Property Module

A1 A2 A3

Total NLOC 83 200 28 654 16 787

Duplicate NLOC Q 10 8 576 (10.3%) 1 922 (6.7%) 2 560 (15.2%)

Duplicate NLOC Q 15 5 714 (6.9%) 939 (3.3%) 470 (2.8%)

Duplicate NLOC Q 20 3 780 (4.5%) 425 (1.5%) 131 (0.8%)

Duplicate NLOC Q 50 818 (1.0%) 0 (0.0%) 63 (0.4%)

Human evaluations (a larger number indicates more of the smell)

N 5 6 1

Mean 3.60 4.00 1.00

SD 1.140 1.265 –

Median 3.00 3.50 1.00

Empir Software Eng (2006) 11: 395–431 421

6. Discussion

In this section, we discuss the results, the answers to our research questions, and
compare our findings with related work. Finally, we address the limitations of the
study.

6.1. Answers to the Research Questions

Next we answer each research question in Section 3.1 in its own subsection.

6.1.1 Do Software Developers Have a Uniform Opinion on the BSmelliness’’
of the Source Code?

Unfortunately, due to the small amount of data, we cannot give statistically
significant answers to our first research question. However, the standard deviation in
the answers is greater than one might expect. Especially for smells like Switch
Statement and Inappropriate Intimacy, the distribution indicates that the informants’
opinions were not uniform. We can speculate that perhaps these smells represent
problems that are localized to a certain piece of code in the software modules. It is
easy to imagine how the usage of switch statements can be concentrated to one
location in the code. The same holds for Inappropriate Intimacy, which refers to
heavy coupling between a pair of classes. It could be concentrated to a cluster of
classes. If the developers have focused on working only with certain features in the
module and the problems are localized in certain features only, it is sensible to have
conflicting opinions. This can explain why developers evaluated these smells
differently in the same modules. Generally, the smells that had the most uniform
opinions were the smells that had low evaluations for their existence in the software
system. This indicates that the developers agree more when certain code problems
do not exist, than when there is a great deal of a certain type of problem.

Related work by Shneiderman (1980, pp. 134–138) on subjective code quality
evaluation shows similar results. From his work we can see that occasionally the raters
had uniform opinions about the code quality and sometimes there was no agreement
between the raters. Results from both Shneiderman and us illustrate one of the key
problems that involves using human evaluators, namely how to achieve inter-rater
agreement. In our study it seems that the lack of uniformity in the smell evaluations
can call the use of the smells for internal software quality assessment into question.

6.1.2 Do Demographics of the Developers Affect the Smell Evaluations,
and if so, How?

In the study we saw that the lead developers tended to see more structural problems
(Parallel Inheritance Hierarchies), whereas the regular developers saw more
problems on the code level (Duplicate Code). This result fits nicely with the idea
that the regular developers work closer to the code level and that the lead
developers have more design tasks than the regular developers. We observed that
the developers with better knowledge of the module evaluated that there is more of
the Lazy Class smell that is difficult to spot. Again, this could be expected, as the
smells that are difficult to spot naturally require better knowledge of the code.

422 Empir Software Eng (2006) 11: 395–431

The two developers that had been in the company before the birth of the
products and had the longest work experience in the company, tended to evaluate
that the software had much less smells than the other ten developers. A possible
interpretation is that the two developers have emotional attachment to the software,
since they have written a great deal of it and therefore were reluctant to see the
smells. Also the fact that it is easier to understand code that you have personally
written might affect the evaluations. Another interpretation, suggested by one of the
lead developers, is that you get used to the smells. People who have worked with
software products for longer periods perhaps understand that complex software
products do not always look like textbook examples.

Related work on the differences between novice and expert coders exists, but these
studies have mainly focused on the cognitive process and improving the novices’
performance, e.g. (Iio et al., 1997; Yu et al., 1994). Thus, we are not aware of any
studies where the comparison would have been based on subjective evaluations of
the software code quality or maintainability. Also in our study even the least
experienced developer had been working in the company as a programmer for 17
months. Consequently, none of our subjects can be really thought as novices. There-
fore it seems there is no related work that we could compare these results with.

6.1.3 Do the Developers’ Evaluations on Code Smells Correlate with Related
Source Code Metrics?

A comparison between the code metrics and the existence of the Large Class smell
was presented in Section 5.1. Our initial expectation was that the subjective
evaluations of the Large Class smell would nicely correlate with the measures. We
believed that Large Classes are quite easy to recognize and recall, and that
measuring class size would be easy, or that at least the different code metrics would
produce similar results. Conversely, the LCOM metric led to results different from
what one would expect based on the other measures, such as the number of
variables, number of methods, and method complexity. If each class size measure is
individually compared to the developers’ evaluations on the Large Class smell, the
results are conflicting, because the developers evaluated that modules A1 and A2
have an equal amount of the Large Class smell. None of the metrics showed values
that were close to each other for modules A1 and A2. However, when there are
several ways of measuring class size and the metrics yield conflicting results; one can
take an alternative view and use the developers’ evaluations as a starting point. This
will lead to a conclusion that the Large Class smell can be viewed as referring to
problems in two distinct areas. Firstly, a class can be considered large when the size
of a class measured with traditional size and complexity metrics such as lines of code
and the number of instance variables indicates this. Secondly, a class can be
considered as an excessively large entity when it is not cohesive, e.g., a class con-
sisting of several unrelated items.

The evaluations on Long Method and Long Parameter List correlated well with
the metrics of the smells studied. This is not surprising, because they are both quite
simple and should be very easy smells to spot. With the Long Parameter List smell,
there really can be no issues on how to measure it, since the number of parameters is
the only possible measure. With Long Method one can always use cohesion
measures for measuring the method size. With Long Method the developers who
made the evaluations that did not correlate with the code metrics were in the

Empir Software Eng (2006) 11: 395–431 423

minority. It must be noted that the company had previously measured their method
sizes and it seems likely that this has influenced the developers’ opinions, and
perhaps shifted them to be more in correlation with the metrics. With the Long
Parameter List smell we also saw some conflicting evaluations when compared to
the metrics. However, in both cases the quite high number of methods in the
modules can explain some of these differences.

We saw that evaluations of the Duplicate Code smell correlated poorly with the
metrics. Based on the data it seems that the evaluations by all but one developer
conflict with the metrics when it comes to duplicate code. However, two issues
concerning the measurement instrument might have caused the biasing of the data.
First, copy–paste–modify programming had been used, which resulted in some
nearly duplicate code that the tool could not detect. Another problem is that our
tool was only able to detect text-based duplication, when it would be more
interesting to study lexical or semantic duplication. Nevertheless, the amount of
duplicate code detected and the case company’s expressed interest for a duplicate
code detection tool indicate that redundant code is an important candidate for
automatic detection.

The above discussion is mainly based on the evaluations made of modules A1 and
A2 since they had the largest number of evaluators; five and six, respectively. Only a
single developer evaluated module A3. Fortunately, the developer was one of the
most experienced lead developers, who also evaluated modules A1 and A2, which
allows a comparison. In all smell evaluations, the developer had evaluated module
A3 as having considerably less smells than modules A1 and A2. However, only the
LCOM metric for the Large Class smell can be said to support the developer’s
evaluation, and in all other cases, including all other smell measures for the Large
Class smell, the developer’s evaluation did not correlate with the metrics. Module
A3 was the newest module, as it was less than a year old, and the developer who
made the evaluations had created it for the most parts. These facts have
undoubtedly caused bias to the developer’s evaluation of module A3.

Overall, it seems that the developers’ evaluations of the smells correlated better
with the metrics for smells that are simple and easy to spot, i.e., Long Method and
Long Parameter List. For smells that are more difficult to spot, e.g., Large Class,
which can be difficult to detect because it can be measured in many different ways
and the developers working on individual features do not necessarily pay attention
to the class sizes of an established program, and Duplicate Code, the evaluations did
not correlate with the metrics. All smell evaluations made of module A3 by the single
developer did not correlate with the selected metrics. If we assume that the tools used
provide reliable metrics, we can question the usefulness of the developers’ subjective
evaluations at least on the module level. Naturally, the other possible interpretation
of this result is that the metrics and the tools used in these measurements are not
capable of detecting the smells we tried to study.

In related work, Kafura and Reddy (1987) concluded that the expert evaluations
on maintainability were in conformance with the complexity source code metric
used to measure the maintainability, but there are three differences compared to
our study. First, they collected the subjective evaluations by first showing the metrics
results to the evaluators and after that they asked what the evaluators thought of the
routines that were most complex. We first asked for the evaluations and then
collected the metrics and compared the results. There is a distinct possibility that
showing the measurement results to the evaluators first might have affected the

424 Empir Software Eng (2006) 11: 395–431

evaluators’ opinions in Kafura’s and Reddy’s study. This assumption is supported in
our study, where the Long Method smell evaluation results correlated best with the
metrics. This result might have been affected by the method size measurement
performed by the case company prior to our involvement. Second, their informants
evaluated the high-level concept of maintainability, whereas we used code smells
which are more precise. Third, their subjective evaluations are based on interviews,
whereas we used a questionnaire with a Likert scale, which makes the comparison
difficult. Nevertheless, it appears that their results are somewhat different from ours.

Oman et al. (Coleman et al., 1994, 1995; Oman and Hagemeister, 1994; Welker et
al., 1997) used subjective evaluations, collected with randomly selected questions of
the 1989 version of the AFOTEC pamphlet,6 to create a maintainability measure
based on metrics. In validating their maintainability measure with six industrial
systems (Oman and Hagemeister, 1994) the researchers also experienced some
anomalies as some systems had a lower maintainability measure than what one
would have expected based on the subjective ratings. This result is somewhat similar
to our results. However, the researchers continued tuning their maintainability
measure with numerous empirical studies, and they conclude that improved versions
of the maintainability measure have successfully matched the practitioners’
subjective evaluations (Welker et al., 1997, p. 134). Thus, it seems that their
maintainability measure improved in the later stages of the work, but it is
unfortunate that these later evaluations have not been meticulously reported. We
feel that the differences in our results can be explained by two factors. Firstly, Oman
et al., measured the high-level concept of maintainability whereas we measured
more exact code smells. Secondly, at the end they had made many studies in tuning
their metric to match the subjective evaluations, and it is therefore quite natural that
their metric correlated well with the subjective evaluations.

Kataoka et al. (2002) report that experts’ subjective evaluations on the
effectiveness of refactorings correlated quite well with improvement in coupling
metrics. However, in Kataoka’s work there was a contradicting case where
refactoring would have improved the metrics, but the expert opinion was that the
refactoring would not necessarily be effective. Kataoka’s work shows that metrics
can give good indication whether a single refactoring in the code would be useful to
perform. We, on the other hand, studied how well the developers’ evaluations on the
degree of code smells correlate with the chosen code-smell metrics at the module
level. We feel that these differences in the studies can explain the different results.

There also exists a branch of work that has used subjective evolvability by the
developers to tune their metrics-based design flaw or code evolvability tools
(Marinescu, 2004; Schwanke and Hanson, 1994). The tools have been based on
machine learning techniques, such as genetic algorithms and neural networks. In
both studies a small empirical assessment indicated that machine learning tools can
be tuned to be relatively good predictors of the developers’ evaluations. This
indicates that subjective evolvability evaluation can be predicted with a learning
tool if it is properly trained.

6 The 1989 version of the pamphlet is no longer available, but the more recent edition (AFOTEC,?
1996) is available

Empir Software Eng (2006) 11: 395–431 425

6.2. Limitations

Although we tried to make our study as reliable as possible, for example by using
the instructions presented by Pfleeger and Kitchenham (Kitchenham and Pfleeger,
2002a,b,c,d; Pfleeger and Kitchenham, 2001), the study still has many limitations we
must address. First of all, we collected the data with an unsupervised survey.
Therefore we had no way of making sure the respondent had actually understood
the questions. We tried to compensate this limitation by setting the default answer
as the option BI don’t know’’. Unsupervised surveys also often suffer from a lack of
motivation by the informants, which shows up as a low response rate. We did not,
however, experience this, as our response rate was 66.7%.

Another major limitation is that we do not know how the developers studied the
modules before answering. However, it seems very likely that the modules were not
inspected, but that the developers based their smell evaluations on memory
recollection. Still, we must keep in mind that the developers only answered the
survey concerning the modules they had mostly worked with. However, as human
memory is fallible, the developers’ recollections can be biased, making the answers
less reliable. Nevertheless, this problem is also often faced in practice when
important decisions are based on recollection rather than on systematic assessment.

The third limitation comes from the number of participants. We had 12
developers, who returned 37 smell evaluations concerning 11 modules. These
numbers are small when considering the statistical power of the study. With a larger
data set the effect of demographic variables could have been more thoroughly
analyzed. However, this limitation is difficult to address in real situations, because in
practice most software modules are developed by a small number of individuals, i.e.,
we cannot get a data set where we would have dozens of people evaluating their
collectively developed software module.

Limited information was available on the knowledge that the developers had of
the modules they evaluated. We only collected the developers’ own subjective
evaluations of their familiarity with each module. In addition, knowing how up-to-
date the knowledge was, and for how long each developer had been involved with
the module, could have provided additional information that might have helped us
interpret the results.

There are a few limitations that are specific to research question 1. In the survey,
all smells were evaluated against each module the developer had worked with. This
could cause bias on the individual opinions based on the quality of the other
modules the developer had worked with. For example, consider the situation
illustrated in Fig. 2, where developers A and B have worked with one common
module X and also with modules Y and Z. In this case, developers A and B could
evaluate module X quite differently based on their experiences with module Y or Z.

When we studied the uniformity of the smell evaluations, we saw that the
evaluator affected the smell evaluations more than the module in question. This
result, in conjunction with the fact that the developers had different attitudes
(positive and negative), indicates the problems that exist in using standard deviation
to analyze ordinal scale answers. In many studies like this one, values such as mean
and standard deviation are calculated from ordinal scale metrics although this is not
statistically valid because an ordinal scale is not an interval scale. Instead, if one
wishes to study the uniformity of opinions one can use Friedman’s test and calculate
Kendall’s coefficient of concordance (Kendall, 1948; Siegel, 1956). Unfortunately, in

426 Empir Software Eng (2006) 11: 395–431

this study our data set made it impossible to use these tests, because our informants
could not evaluate all the modules, which would have provided a solid base for this
type of statistical testing.

There is a limitation that is specific to the second research question. We studied
the difference in smell evaluations between the various groups and found that there
were significant differences in some smell evaluations between these groups. Since
we studied so many smells it is likely, merely by chance, that there were significant
differences in the smell evaluations between groups. In studying 23 items we have a
69.3% chance that one or more of these items will be significant at level 0.05
(compute 1j0.9523). This means that when studying the statistically significant
differences in any study we must also assess whether the result and its interpretation
is sensible or not. We hope that in this study we have been able to explain the
significant differences in a way that matches with common sense.

A limitation affecting the third research question relates to the mapping of the
smells to the code metrics. We do not know how well the chosen metrics map onto
the code smells the developers actually evaluated. Discovering this would have
required the developers to explain their evaluations.

Finally, the setting of metric thresholds suffers from a limitation, because for
many metrics there exist no empirically grounded thresholds that could have been
used as an aid. Therefore, we were forced to set some metric thresholds mostly by
using reasoning, common sense, or the distribution percentiles contained in our data
set. However, based on the data it seems that the results for the code metrics would
have been the same even if the threshold had been slightly different.

7. Conclusions

The purpose of this paper was to study the use of indicators of subjectively
perceived code quality, i.e., Bbad smells in code.’’ First we suggested the use of the
term software evolvability over the traditional term software maintainability. To
position our research, we provided four viewpoints to software evolvability. Based
on these viewpoints, we focused our empirical study on subjective evolvability
evaluation by humans. The empirical research was carried out with a Finnish
software product company, whose software products were analyzed. We studied the
developers’ subjective smell evaluations and noticed that demographic data

Fig. 2 Two developers with a shared module

Empir Software Eng (2006) 11: 395–431 427

(knowledge, role, work-experience) seemed to explain some of the variances in the
smell evaluations. When studying the uniformity of the smell evaluations, we saw
how subjective smell evaluations are affected by conflicting perceptions of the
different developers. We also applied source code metrics for four smells and
compared the results to the subjective smell evaluations. It appears that the
developers’ evaluations of the more complex smells do not correlate with the source
code metrics we used, which indicates that organisations should be careful when
using subjective evaluations to evaluate software evolvability. However, based on
the results, organisations can also question the correctness and the usefulness of the
metrics. For example, for the Large Class smell, a composite measure could have
been created that would have matched the developers opinions, since the measures
themselves were conflicting, as LCOM measure produced different results when
compared to other Large Class smell measures. Thus, we feel that organisations
should not base their software evolvability improvement (refactoring) decisions on
either subjective judgment or code metrics alone. Using source code metrics in
conjunction with human evaluations is likely to be the best alternative. Code metrics
can provide an objective overview of the software, but developers’ evaluations and
code review is still needed to produce qualitative information about the evolvability
of the source code.

To our knowledge there are no similar studies, in which subjective evaluations of
code smells would have been studied. Therefore, despite the limitations, we feel that
this work offers a contribution to the software engineering community, and provides
a basis from which one can learn when building more refined studies.

Based on this initial study, we plan to continue and improve our empirical
research on indicators of subjective code quality. We are in the process of using
inspections to evaluate the evolvability at the method level. Focusing strictly on the
method level will give us better control of this study and will make the study more
targeted. The study will also have a far greater number of subjects, thus increasing
the statistical power.

In our upcoming study we plan to eliminate the ownership issues when evaluating
the source code. However, this study has indicated that ownership could affect the
source code evolvability evaluations and this area should be further studied. Another
area worth studying is the usage of software design/code metrics in industry.
According to our current understanding, such metrics are not widely utilised even
though they have been widely researched. The reasons behind this, as well as the pros
and cons of using and not using metrics might be particularly interesting.

References

AFOTEC (1996) Software maintainability evaluation guide. Department of the Air Force, HQ Air
Force Operational Test and Evaluation Center

Arnold RS (1989) Software restructuring. Proc IEEE 77:607–617
Balazinska M, Merlo E, Dagenais M, Lague B, Kontogiannis K (2000) Advanced clone-analysis to

support object-oriented system refactoring. Proceedings of Seventh Working Conference on
Reverse Engineering, pp 98–107.

Bandi RK, Vaishnavi VK, Turk DE (2003) Predicting maintenance performance using object-
oriented design complexity metrics. IEEE Trans Softw Eng 29:77–87

Bansiya J, David CG (2002) A hierarchical model for object-oriented design quality. IEEE Trans
Softw Eng 28:4–17

428 Empir Software Eng (2006) 11: 395–431

Beck K, Beedle M, van Bennekum A, Cockburn A, Cunningham W, Fowler M, Grenning J et al
(2001) Manifesto for agile software development. [cited 8/21 2003]. Available from http://
agilemanifesto.org/

Briand LC, Daly JW, Wüst JK (1997) A unified framework for cohesion measurement in object-
oriented systems. Proceedings of the Fourth International Software Metrics Symposium, pp 43–53

Briand LC, Daly JW, Wüst JK (1999) A unified framework for coupling measurement in object-
oriented systems. IEEE Trans Softw Eng 25:91–121

Brown WJ, R Malveau C, McCormick HW, T Mowbray J (1998) AntiPatterns: refactoring software,
architectures, and projects in crisis. Wiley, New York

Chidamber SR, Kemerer CF (1994) A metric suite for object oriented design. IEEE Trans Softw
Eng 20:476–493

Chidamber SR, Darcy DP, Kemerer CF (1998) Managerial use of metrics for object-oriented
software: an exploratory analysis. IEEE Trans Softw Eng 24:629–639

Chikofsky EJ, Cross JH (1990) Reverse engineering and design recovery: a taxonomy. IEEE Softw
7:13–17

Coleman D, Ash D, Lowther B, Oman PW (1994) Using metrics to evaluate software system
maintainability. Computer 27:44–49

Coleman D, Lowther B, Oman PW (1995) The application of software maintainability models in
industrial software systems. J Syst Softw 29:3–16

Cusumano MA, Selby RW (1995) Microsoft secrets. Free Press, USA
Cusumano MA, Yoffie DB (1998) Design strategy. In: Competing on internet time. Free Press, New

York, USA, pp 180–198
Ducasse S, Rieger M, Demeyer S (1999) A language independent approach for detecting duplicated

code. Proceedings of the International Conference on Software Maintenance, Oxford, England,
UK, pp 109–118

Fowler M (2000) Refactoring: improving the design of existing code, 1st edn. Addison-Wesley,
Boston

Fowler M, Beck K (2000) Bad smells in code. In: Refactoring: improving the design of existing code,
1st edn. Addison-Wesley, Boston, pp 75–88

Garvin DA (1984) What does Bproduct quality’’ really mean? Sloan Manage Rev 26:25–43
Grady RB (1994) Successfully applying software metrics. Computer 27:18–25
Halstead MH (1977) Elements of software science. Elsevier, New York
Harrison R, Counsell SJ, Nithi RV (1998) An evaluation of the MOOD set of object-oriented

software metrics. IEEE Trans Softw Eng 24:491–496
Henderson-Sellers B (1996) Object-oriented metrics. Prentice Hall, Upper Saddle River, New

Jersey
Hitz M, Montazeri B (1996) Chidamber and kemerer’s metrics suite: a measurement theory

perspective. IEEE Trans Softw Eng 22:267–271
IEEE (1998) IEEE standard for software maintenance. The Institute of Electrical and Electronics

Engineers, Inc, New York
IEEE (1990) IEEE standard glossary of software engineering terminology. The Institute of

Electrical and Electronics Engineers, Inc, New York
Iio K, Furuyama T, Arai Y (1997) Experimental analysis of the cognitive processes of program

maintainers during software maintenance. Proceedings of International Conference on Software
Maintenance, pp 242–249

Kafura DG, Reddy GR (1987) The use of software complexity metrics in software maintenance.
IEEE Trans Softw Eng 13:335–343

Kataoka Y, Ernst MD, Griswold WG, Notkin D (2001) Automated support for program refactoring
using invariants. Proceedings of International Conference on Software Maintenance, Florence,
Italy, pp 736–743

Kataoka Y, Imai T, Andou H, Fukaya T (2002) A quantative evaluation of maintainability
enhancement by refactoring. Proceedings of the International Conference on Software
Maintenance, Montreal, Canada, pp 576–585

Kendall M, (1948) The problem of m ranking. In: Rank correlation methods, 5th edn. Edward
Arnold, London, pp 117–143

Kitchenham BA, Pfleeger SL (1996) Software quality: the elusive target. IEEE Softw 13:12–21
Kitchenham BA, Pfleeger SL (2002a) Principles of survey research part 2: designing a survey. ACM

SIGSOFT Softw Eng Notes 27:18–20
Kitchenham BA, Pfleeger SL (2002b) Principles of survey research part 4: questionnaire evaluation.

ACM SIGSOFT Softw Eng Notes 27:20–23

Empir Software Eng (2006) 11: 395–431 429

http://agilemanifesto.org/
http://agilemanifesto.org/

Kitchenham BA, Pfleeger SL (2002c) Principles of survey research: part 3: constructing a survey
instrument. ACM SIGSOFT Softw Eng Notes 27:20–24

Kitchenham BA, Pfleeger SL (2002d) Principles of survey research: part 5: populations and samples.
ACM SIGSOFT Softw Eng Notes 27:17–20

Lehman MM (1980) On understanding laws, evolution, and conservation in the large-program life
cycle. J Syst Softw 1:213–221

Li W, Henry SM (1993) Object-oriented metrics that predict maintainability. J Syst Softw 23:111–
122

Lorenz M, Kidd J (1994) Object-oriented software metrics. Prentice Hall, Upper Saddle River, New
Jersey

Mäntylä MV, Vanhanen J, Lassenius C (2003) A taxonomy and an initial empirical study of bad
smells in code. Proceedings of the International Conference on Software Maintenance,
Amsterdam, The Netherlands, pp 381–384

Marinescu R (2004) Detection strategies: metrics-based rules for detecting design flaws. In:
Proceedings of Software Maintenance, Chicago, Illinois, USA, pp 350–359

Maruyama K, Shima K (1999) Automatic method refactoring using weighted dependence graphs.
Proceedings of the International Conference on Software Engineering, Los Angeles, California,
USA, pp 236–245

McCabe TJ (1976) A complexity measure. IEEE Trans Softw Eng 2:308–320
McConnell S (1993) Code complete. Microsoft, Redmond, Washington
McConnell S (2004) High-quality routines. In: Code complete 2, 2nd edn. Microsoft, Redmond,

Washington, pp 161–186
Mens T, Tourwe T (2004) A survey of software refactoring. IEEE Trans Softw Eng 30:126–139
Muthanna S, Stacey B, Kontogiannis K, Ponnambalam K (2000) A maintainability model for

industrial software systems using design level metrics. Proceedings of Seventh Working
Conference on Reverse Engineering, Brisbane, Australia, pp 248–256

Oman PW, Hagemeister J (1994) Constructing and testing of polynomials predicting software
maintainability. J Syst Softw 24:251–266

Oman PW, Hagemeister J, Ash D (1991) A definition and taxonomy for software maintainability.
Software Engineering Test Lab, University of Idaho, pp 91–08

Pfleeger SL, Kitchenham BA (2001) Principles of survey research. Part 1. Turning lemons into
lemonade. ACM SIGSOFT Softw Eng Notes 26:16–18

Pigoski TM (1996) Practical software maintenance. Wiley
Rajlich VT, Bennett KH (2000) A staged model for the software life cycle. Computer 33:66–71
Robillard MP, Coelho W, Murphy GC (2004) How effective developers investigate source code: an

exploratory study. IEEE Trans Softw Eng 30:889–903
Rombach DH (1987) Controlled experiment on the impact of software structure on maintainability.

IEEE Trans Softw Eng 13:344–354
Schwanke RW, Hanson SJ (1994) Using neural networks to modularize software. Mach Learn

15:137–168
Shepperd MJ (1990) System architecture metrics for controlling software maintainability. IEE

Colloquium on Software Metrics 4/1–4/3
Shneiderman B (1980) Software psychology: human factors in computer and information systems.

Winthrop, Cambridge, Massachusetts
Siegel S (1956) Nonparametric statistics for the behavioral sciences, 1st edn. McGraw-Hill, New

York
Simon F, Steinbruckner F, Lewerentz C (2001) Metrics based refactoring. Proceedings Fifth

European Conference on Software Maintenance and Reengineering, Lisbon, Portugal, pp 30–38
Sommerville I (2001) Software engineering. Addison-Wesley, Reading, Massachusetts
Stevens W, Myers G, Constantine L (1974) Structured design. IBM Syst J 13:115–139
Subramanyam R, Krishnan MS (2003) Empirical analysis of CK metrics for object-oriented design

complexity: implications for software defects. IEEE Trans Softw Eng 29:297–310
Succi G, Pedrycz W, Djokic S, Zuliani P, Russo B (2005) An empirical exploration of the

distributions of the Chidamber and Kemerer object-oriented metrics suite. Empirical Software
Engineering 10:81–104

Sun Microsystems (1999) Code conventions for the java programming language. in Sun Micro-
systems [database online]. [cited 7/20 1999]. Available from http://java.sun.com/docs/codeconv/

Szulewski PA, Budlong FC (1996) Metrics for ada 95: focus on reliability and maintainability.
CrossTalk—The Journal of Defence Software Engineering 1996

430 Empir Software Eng (2006) 11: 395–431

http://java.sun.com/docs/codeconv/

Tourwé T, Mens T (2003) Identifying refactoring opportunities using logic meta programming.
Proceedings of the Seventh European Conference on Software Maintenance and Reengineer-
ing, 2003, Benevento, Italy, pp 91–100

Wake WC (2003) Refactoring workbook, 1st edn. Addison Wesley
Welker KD, Oman PW, Atkinson GG (1997) Development and application of an automated source

code maintainability index. J Softw Maint Res Pract 9:127–159
Yu H, Ikeda M, Mizoguchi R (1994) Helping novice programmers bridge the conceptual gap.

Proceedings of International Conference on Expert Systems for Development, Bangkok,
Thailand, pp 192–197

Mr. Casper Lassenius is a teaching researcher at the Software Business and Engineering Laboratory
at Helsinki University of Technology, and the head of the software process research group. He
received an M.Sc. in software engineering in 1996 and is currently preparing for his dissertation
defense. Mr. Lassenius’ research interests include software process modeling, software measurement,
software product development, agile development, and globally distributed software development.

Mr. Mika Mäntylä is a researcher and a doctoral student at the Software Business and Engineering
Laboratory, Helsinki University of Technology, Finland. He received a Lic. Sc. in 2005 and a M. Sc.
in 2003 in software engineering from Helsinki University of Technology. Previously, he was a software
developer in the Finnish software industry. His research interests include empirical software
engineering, software evolution, code refactoring, and subjective evaluations of code quality.

Empir Software Eng (2006) 11: 395–431 431

	Subjective evaluation of software evolvability using code smells: An empirical study
	Abstract
	Introduction
	Theoretical Background
	Software Evolvability
	Viewpoints to Software Evolvability
	Approaches to Software Evolvability Evaluation
	Human-Based Software Evolvability Evaluation
	Subjective Evolvability Criteria
	Studies of Subjective Evolvability Evaluation

	Research Methods and Objectives
	Research Objectives
	Research Methodology and Data Analysis
	Case Company
	Informants
	Introducing the Smells under Study

	Results—Effect of Human Factors in Code Smell Evaluation
	Uniformity of the Smell Evaluations
	Effect of Demographics

	Results—Human Evaluation and Source Code Metrics
	Large Class
	Long Method
	Long Parameter List
	Duplicate Code

	Discussion
	Answers to the Research Questions
	Do Software Developers Have a Uniform Opinion on the “Smelliness” �of the Source Code?
	Do Demographics of the Developers Affect the Smell Evaluations, �and if so, How?
	Do the Developers’ Evaluations on Code Smells Correlate with Related �Source Code Metrics?

	Limitations

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AardvarkPSMT
 /AceBinghamSH
 /AddisonLibbySH
 /AGaramond-Italic
 /AGaramond-Regular
 /AkbarPlain
 /Albertus-Bold
 /AlbertusExtraBold-Regular
 /AlbertusMedium-Italic
 /AlbertusMedium-Regular
 /AlfonsoWhiteheadSH
 /Algerian
 /AllegroBT-Regular
 /AmarilloUSAF
 /AmazoneBT-Regular
 /AmeliaBT-Regular
 /AmerigoBT-BoldA
 /AmerTypewriterITCbyBT-Medium
 /AndaleMono
 /AndyMacarthurSH
 /Animals
 /AnneBoleynSH
 /Annifont
 /AntiqueOlive-Bold
 /AntiqueOliveCompact-Regular
 /AntiqueOlive-Italic
 /AntiqueOlive-Regular
 /AntonioMountbattenSH
 /ArabiaPSMT
 /AradLevelVI
 /ArchitecturePlain
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialMTBlack-Regular
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeLight
 /ArialUnicodeLight-Bold
 /ArialUnicodeLight-BoldItalic
 /ArialUnicodeLight-Italic
 /ArrowsAPlentySH
 /ArrusBT-Bold
 /ArrusBT-BoldItalic
 /ArrusBT-Italic
 /ArrusBT-Roman
 /Asiana
 /AssadSadatSH
 /AvalonPSMT
 /AvantGardeITCbyBT-Book
 /AvantGardeITCbyBT-BookOblique
 /AvantGardeITCbyBT-Demi
 /AvantGardeITCbyBT-DemiOblique
 /AvantGardeITCbyBT-Medium
 /AvantGardeITCbyBT-MediumOblique
 /BankGothicBT-Light
 /BankGothicBT-Medium
 /Baskerville-Bold
 /Baskerville-Normal
 /Baskerville-Normal-Italic
 /BaskOldFace
 /Bauhaus93
 /Bavand
 /BazookaRegular
 /BeauTerrySH
 /BECROSS
 /BedrockPlain
 /BeeskneesITC
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BenguiatITCbyBT-Bold
 /BenguiatITCbyBT-BoldItalic
 /BenguiatITCbyBT-Book
 /BenguiatITCbyBT-BookItalic
 /BennieGoetheSH
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BernhardBoldCondensedBT-Regular
 /BernhardFashionBT-Regular
 /BernhardModernBT-Bold
 /BernhardModernBT-BoldItalic
 /BernhardModernBT-Italic
 /BernhardModernBT-Roman
 /Bethel
 /BibiGodivaSH
 /BibiNehruSH
 /BKenwood-Regular
 /BlackadderITC-Regular
 /BlondieBurtonSH
 /BodoniBlack-Regular
 /Bodoni-Bold
 /Bodoni-BoldItalic
 /BodoniBT-Bold
 /BodoniBT-BoldItalic
 /BodoniBT-Italic
 /BodoniBT-Roman
 /Bodoni-Italic
 /BodoniMTPosterCompressed
 /Bodoni-Regular
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolFive
 /BookshelfSymbolFour
 /BookshelfSymbolOne-Regular
 /BookshelfSymbolThree-Regular
 /BookshelfSymbolTwo-Regular
 /BookwomanDemiItalicSH
 /BookwomanDemiSH
 /BookwomanExptLightSH
 /BookwomanLightItalicSH
 /BookwomanLightSH
 /BookwomanMonoLightSH
 /BookwomanSwashDemiSH
 /BookwomanSwashLightSH
 /BoulderRegular
 /BradleyHandITC
 /Braggadocio
 /BrailleSH
 /BRectangular
 /BremenBT-Bold
 /BritannicBold
 /Broadview
 /Broadway
 /BroadwayBT-Regular
 /BRubber
 /Brush445BT-Regular
 /BrushScriptMT
 /BSorbonna
 /BStranger
 /BTriumph
 /BuckyMerlinSH
 /BusoramaITCbyBT-Medium
 /Caesar
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-Italic
 /CalligrapherRegular
 /CameronStendahlSH
 /Candy
 /CandyCaneUnregistered
 /CankerSore
 /CarlTellerSH
 /CarrieCattSH
 /CaslonOpenfaceBT-Regular
 /CassTaylorSH
 /CDOT
 /Centaur
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturyOldStyle-BoldItalic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Cezanne
 /CGOmega-Bold
 /CGOmega-BoldItalic
 /CGOmega-Italic
 /CGOmega-Regular
 /CGTimes-Bold
 /CGTimes-BoldItalic
 /CGTimes-Italic
 /CGTimes-Regular
 /Charting
 /ChartreuseParsonsSH
 /ChaseCallasSH
 /ChasThirdSH
 /ChaucerRegular
 /CheltenhamITCbyBT-Bold
 /CheltenhamITCbyBT-BoldItalic
 /CheltenhamITCbyBT-Book
 /CheltenhamITCbyBT-BookItalic
 /ChildBonaparteSH
 /Chiller-Regular
 /ChuckWarrenChiselSH
 /ChuckWarrenDesignSH
 /CityBlueprint
 /Clarendon-Bold
 /Clarendon-Book
 /ClarendonCondensedBold
 /ClarendonCondensed-Bold
 /ClarendonExtended-Bold
 /ClassicalGaramondBT-Bold
 /ClassicalGaramondBT-BoldItalic
 /ClassicalGaramondBT-Italic
 /ClassicalGaramondBT-Roman
 /ClaudeCaesarSH
 /CLI
 /Clocks
 /ClosetoMe
 /CluKennedySH
 /CMBX10
 /CMBX5
 /CMBX7
 /CMEX10
 /CMMI10
 /CMMI5
 /CMMI7
 /CMMIB10
 /CMR10
 /CMR5
 /CMR7
 /CMSL10
 /CMSY10
 /CMSY5
 /CMSY7
 /CMTI10
 /CMTT10
 /CoffeeCamusInitialsSH
 /ColetteColeridgeSH
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CommercialPiBT-Regular
 /CommercialScriptBT-Regular
 /Complex
 /CooperBlack
 /CooperBT-BlackHeadline
 /CooperBT-BlackItalic
 /CooperBT-Bold
 /CooperBT-BoldItalic
 /CooperBT-Medium
 /CooperBT-MediumItalic
 /CooperPlanck2LightSH
 /CooperPlanck4SH
 /CooperPlanck6BoldSH
 /CopperplateGothicBT-Bold
 /CopperplateGothicBT-Roman
 /CopperplateGothicBT-RomanCond
 /CopticLS
 /Cornerstone
 /Coronet
 /CoronetItalic
 /Cotillion
 /CountryBlueprint
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /CSSubscript
 /CSSubscriptBold
 /CSSubscriptItalic
 /CSSuperscript
 /CSSuperscriptBold
 /Cuckoo
 /CurlzMT
 /CybilListzSH
 /CzarBold
 /CzarBoldItalic
 /CzarItalic
 /CzarNormal
 /DauphinPlain
 /DawnCastleBold
 /DawnCastlePlain
 /Dekker
 /DellaRobbiaBT-Bold
 /DellaRobbiaBT-Roman
 /Denmark
 /Desdemona
 /Diploma
 /DizzyDomingoSH
 /DizzyFeiningerSH
 /DocTermanBoldSH
 /DodgenburnA
 /DodoCasalsSH
 /DodoDiogenesSH
 /DomCasualBT-Regular
 /Durian-Republik
 /Dutch801BT-Bold
 /Dutch801BT-BoldItalic
 /Dutch801BT-ExtraBold
 /Dutch801BT-Italic
 /Dutch801BT-Roman
 /EBT's-cmbx10
 /EBT's-cmex10
 /EBT's-cmmi10
 /EBT's-cmmi5
 /EBT's-cmmi7
 /EBT's-cmr10
 /EBT's-cmr5
 /EBT's-cmr7
 /EBT's-cmsy10
 /EBT's-cmsy5
 /EBT's-cmsy7
 /EdithDaySH
 /Elephant-Italic
 /Elephant-Regular
 /EmGravesSH
 /EngelEinsteinSH
 /English111VivaceBT-Regular
 /English157BT-Regular
 /EngraversGothicBT-Regular
 /EngraversOldEnglishBT-Bold
 /EngraversOldEnglishBT-Regular
 /EngraversRomanBT-Bold
 /EngraversRomanBT-Regular
 /EnviroD
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /ErasITC-Ultra
 /ErnestBlochSH
 /EstrangeloEdessa
 /Euclid
 /Euclid-Bold
 /Euclid-BoldItalic
 /EuclidExtra
 /EuclidExtra-Bold
 /EuclidFraktur
 /EuclidFraktur-Bold
 /Euclid-Italic
 /EuclidMathOne
 /EuclidMathOne-Bold
 /EuclidMathTwo
 /EuclidMathTwo-Bold
 /EuclidSymbol
 /EuclidSymbol-Bold
 /EuclidSymbol-BoldItalic
 /EuclidSymbol-Italic
 /EuroRoman
 /EuroRomanOblique
 /ExxPresleySH
 /FencesPlain
 /Fences-Regular
 /FifthAvenue
 /FigurineCrrCB
 /FigurineCrrCBBold
 /FigurineCrrCBBoldItalic
 /FigurineCrrCBItalic
 /FigurineTmsCB
 /FigurineTmsCBBold
 /FigurineTmsCBBoldItalic
 /FigurineTmsCBItalic
 /FillmoreRegular
 /Fitzgerald
 /Flareserif821BT-Roman
 /FleurFordSH
 /Fontdinerdotcom
 /FontdinerdotcomSparkly
 /FootlightMTLight
 /ForefrontBookObliqueSH
 /ForefrontBookSH
 /ForefrontDemiObliqueSH
 /ForefrontDemiSH
 /Fortress
 /FractionsAPlentySH
 /FrakturPlain
 /Franciscan
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /FranklinUnic
 /FredFlahertySH
 /Freehand575BT-RegularB
 /Freehand591BT-RegularA
 /FreestyleScript-Regular
 /Frutiger-Roman
 /FTPMultinational
 /FTPMultinational-Bold
 /FujiyamaPSMT
 /FuturaBlackBT-Regular
 /FuturaBT-Bold
 /FuturaBT-BoldCondensed
 /FuturaBT-BoldItalic
 /FuturaBT-Book
 /FuturaBT-BookItalic
 /FuturaBT-ExtraBlack
 /FuturaBT-ExtraBlackCondensed
 /FuturaBT-ExtraBlackCondItalic
 /FuturaBT-ExtraBlackItalic
 /FuturaBT-Light
 /FuturaBT-LightItalic
 /FuturaBT-Medium
 /FuturaBT-MediumCondensed
 /FuturaBT-MediumItalic
 /GabbyGauguinSH
 /GalliardITCbyBT-Bold
 /GalliardITCbyBT-BoldItalic
 /GalliardITCbyBT-Italic
 /GalliardITCbyBT-Roman
 /Garamond
 /Garamond-Antiqua
 /Garamond-Bold
 /Garamond-Halbfett
 /Garamond-Italic
 /Garamond-Kursiv
 /Garamond-KursivHalbfett
 /Garcia
 /GarryMondrian3LightItalicSH
 /GarryMondrian3LightSH
 /GarryMondrian4BookItalicSH
 /GarryMondrian4BookSH
 /GarryMondrian5SBldItalicSH
 /GarryMondrian5SBldSH
 /GarryMondrian6BoldItalicSH
 /GarryMondrian6BoldSH
 /GarryMondrian7ExtraBoldSH
 /GarryMondrian8UltraSH
 /GarryMondrianCond3LightSH
 /GarryMondrianCond4BookSH
 /GarryMondrianCond5SBldSH
 /GarryMondrianCond6BoldSH
 /GarryMondrianCond7ExtraBoldSH
 /GarryMondrianCond8UltraSH
 /GarryMondrianExpt3LightSH
 /GarryMondrianExpt4BookSH
 /GarryMondrianExpt5SBldSH
 /GarryMondrianExpt6BoldSH
 /GarryMondrianSwashSH
 /Gaslight
 /GatineauPSMT
 /Gautami
 /GDT
 /Geometric231BT-BoldC
 /Geometric231BT-LightC
 /Geometric231BT-RomanC
 /GeometricSlab703BT-Bold
 /GeometricSlab703BT-BoldCond
 /GeometricSlab703BT-BoldItalic
 /GeometricSlab703BT-Light
 /GeometricSlab703BT-LightItalic
 /GeometricSlab703BT-Medium
 /GeometricSlab703BT-MediumCond
 /GeometricSlab703BT-MediumItalic
 /GeometricSlab703BT-XtraBold
 /GeorgeMelvilleSH
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansBC
 /GillSans-Bold
 /GillSans-BoldItalic
 /GillSansCondensed-Bold
 /GillSansCondensed-Regular
 /GillSansExtraBold-Regular
 /GillSans-Italic
 /GillSansLight-Italic
 /GillSansLight-Regular
 /GillSans-Regular
 /GoldMinePlain
 /Gonzo
 /GothicE
 /GothicG
 /GothicI
 /GoudyHandtooledBT-Regular
 /GoudyOldStyle-Bold
 /GoudyOldStyle-BoldItalic
 /GoudyOldStyleBT-Bold
 /GoudyOldStyleBT-BoldItalic
 /GoudyOldStyleBT-Italic
 /GoudyOldStyleBT-Roman
 /GoudyOldStyleExtrabold-Regular
 /GoudyOldStyle-Italic
 /GoudyOldStyle-Regular
 /GoudySansITCbyBT-Bold
 /GoudySansITCbyBT-BoldItalic
 /GoudySansITCbyBT-Medium
 /GoudySansITCbyBT-MediumItalic
 /GraceAdonisSH
 /Graeca
 /Graeca-Bold
 /Graeca-BoldItalic
 /Graeca-Italic
 /Graphos-Bold
 /Graphos-BoldItalic
 /Graphos-Italic
 /Graphos-Regular
 /GreekC
 /GreekS
 /GreekSans
 /GreekSans-Bold
 /GreekSans-BoldOblique
 /GreekSans-Oblique
 /Griffin
 /GrungeUpdate
 /Haettenschweiler
 /HankKhrushchevSH
 /HarlowSolid
 /HarpoonPlain
 /Harrington
 /HeatherRegular
 /Hebraica
 /HeleneHissBlackSH
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Narrow
 /Helvetica-Narrow-Bold
 /Helvetica-Narrow-BoldOblique
 /Helvetica-Narrow-Oblique
 /Helvetica-Oblique
 /HenryPatrickSH
 /Herald
 /HighTowerText-Italic
 /HighTowerText-Reg
 /HogBold-HMK
 /HogBook-HMK
 /HomePlanning
 /HomePlanning2
 /HomewardBoundPSMT
 /Humanist521BT-Bold
 /Humanist521BT-BoldCondensed
 /Humanist521BT-BoldItalic
 /Humanist521BT-Italic
 /Humanist521BT-Light
 /Humanist521BT-LightItalic
 /Humanist521BT-Roman
 /Humanist521BT-RomanCondensed
 /IBMPCDOS
 /IceAgeD
 /Impact
 /Incised901BT-Bold
 /Incised901BT-Light
 /Incised901BT-Roman
 /Industrial736BT-Italic
 /Informal011BT-Roman
 /InformalRoman-Regular
 /Intrepid
 /IntrepidBold
 /IntrepidOblique
 /Invitation
 /IPAExtras
 /IPAExtras-Bold
 /IPAHighLow
 /IPAHighLow-Bold
 /IPAKiel
 /IPAKiel-Bold
 /IPAKielSeven
 /IPAKielSeven-Bold
 /IPAsans
 /ISOCP
 /ISOCP2
 /ISOCP3
 /ISOCT
 /ISOCT2
 /ISOCT3
 /Italic
 /ItalicC
 /ItalicT
 /JesterRegular
 /Jokerman-Regular
 /JotMedium-HMK
 /JuiceITC-Regular
 /JupiterPSMT
 /KabelITCbyBT-Book
 /KabelITCbyBT-Ultra
 /KarlaJohnson5CursiveSH
 /KarlaJohnson5RegularSH
 /KarlaJohnson6BoldCursiveSH
 /KarlaJohnson6BoldSH
 /KarlaJohnson7ExtraBoldCursiveSH
 /KarlaJohnson7ExtraBoldSH
 /KarlKhayyamSH
 /Karnack
 /Kartika
 /Kashmir
 /KaufmannBT-Bold
 /KaufmannBT-Regular
 /KeplerStd-Black
 /KeplerStd-BlackIt
 /KeplerStd-Bold
 /KeplerStd-BoldIt
 /KeplerStd-Italic
 /KeplerStd-Light
 /KeplerStd-LightIt
 /KeplerStd-Medium
 /KeplerStd-MediumIt
 /KeplerStd-Regular
 /KeplerStd-Semibold
 /KeplerStd-SemiboldIt
 /KeystrokeNormal
 /Kidnap
 /KidsPlain
 /Kindergarten
 /KinoMT
 /KissMeKissMeKissMe
 /KoalaPSMT
 /KorinnaITCbyBT-Bold
 /KorinnaITCbyBT-KursivBold
 /KorinnaITCbyBT-KursivRegular
 /KorinnaITCbyBT-Regular
 /KristenITC-Regular
 /Kristin
 /KunstlerScript
 /KyotoSong
 /LainieDaySH
 /LandscapePlanning
 /Lapidary333BT-Bold
 /Lapidary333BT-BoldItalic
 /Lapidary333BT-Italic
 /Lapidary333BT-Roman
 /Latha
 /LatinoPal3LightItalicSH
 /LatinoPal3LightSH
 /LatinoPal4ItalicSH
 /LatinoPal4RomanSH
 /LatinoPal5DemiItalicSH
 /LatinoPal5DemiSH
 /LatinoPal6BoldItalicSH
 /LatinoPal6BoldSH
 /LatinoPal7ExtraBoldSH
 /LatinoPal8BlackSH
 /LatinoPalCond4RomanSH
 /LatinoPalCond5DemiSH
 /LatinoPalCond6BoldSH
 /LatinoPalExptRomanSH
 /LatinoPalSwashSH
 /LatinWidD
 /LatinWide
 /LeeToscanini3LightSH
 /LeeToscanini5RegularSH
 /LeeToscanini7BoldSH
 /LeeToscanini9BlackSH
 /LeeToscaniniInlineSH
 /LetterGothic12PitchBT-Bold
 /LetterGothic12PitchBT-BoldItal
 /LetterGothic12PitchBT-Italic
 /LetterGothic12PitchBT-Roman
 /LetterGothic-Bold
 /LetterGothic-BoldItalic
 /LetterGothic-Italic
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LetterGothic-Regular
 /LibrarianRegular
 /LinusPSMT
 /Lithograph-Bold
 /LithographLight
 /LongIsland
 /LubalinGraphMdITCTT
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /LydianCursiveBT-Regular
 /Magneto-Bold
 /Mangal-Regular
 /Map-Symbols
 /MarcusHobbesSH
 /Mariah
 /Marigold
 /MaritaMedium-HMK
 /MaritaScript-HMK
 /Market
 /MartinMaxxieSH
 /MathTypeMed
 /MatisseITC-Regular
 /MaturaMTScriptCapitals
 /MaudeMeadSH
 /MemorandumPSMT
 /Metro
 /Metrostyle-Bold
 /MetrostyleExtended-Bold
 /MetrostyleExtended-Regular
 /Metrostyle-Regular
 /MicrogrammaD-BoldExte
 /MicrosoftSansSerif
 /MikePicassoSH
 /MiniPicsLilEdibles
 /MiniPicsLilFolks
 /MiniPicsLilStuff
 /MischstabPopanz
 /MisterEarlBT-Regular
 /Mistral
 /ModerneDemi
 /ModerneDemiOblique
 /ModerneOblique
 /ModerneRegular
 /Modern-Regular
 /MonaLisaRecutITC-Normal
 /Monospace821BT-Bold
 /Monospace821BT-BoldItalic
 /Monospace821BT-Italic
 /Monospace821BT-Roman
 /Monotxt
 /MonotypeCorsiva
 /MonotypeSorts
 /MorrisonMedium
 /MorseCode
 /MotorPSMT
 /MSAM10
 /MSLineDrawPSMT
 /MS-Mincho
 /MSOutlook
 /MSReference1
 /MSReference2
 /MTEX
 /MTEXB
 /MTEXH
 /MT-Extra
 /MTGU
 /MTGUB
 /MTLS
 /MTLSB
 /MTMI
 /MTMIB
 /MTMIH
 /MTMS
 /MTMSB
 /MTMUB
 /MTMUH
 /MTSY
 /MTSYB
 /MTSYH
 /MT-Symbol
 /MTSYN
 /Music
 /MVBoli
 /MysticalPSMT
 /NagHammadiLS
 /NealCurieRuledSH
 /NealCurieSH
 /NebraskaPSMT
 /Neuropol-Medium
 /NevisonCasD
 /NewMilleniumSchlbkBoldItalicSH
 /NewMilleniumSchlbkBoldSH
 /NewMilleniumSchlbkExptSH
 /NewMilleniumSchlbkItalicSH
 /NewMilleniumSchlbkRomanSH
 /News702BT-Bold
 /News702BT-Italic
 /News702BT-Roman
 /Newton
 /NewZuricaBold
 /NewZuricaItalic
 /NewZuricaRegular
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NigelSadeSH
 /Nirvana
 /NuptialBT-Regular
 /OCRAbyBT-Regular
 /OfficePlanning
 /OldCentury
 /OldEnglishTextMT
 /Onyx
 /OnyxBT-Regular
 /OpenSymbol
 /OttawaPSMT
 /OttoMasonSH
 /OzHandicraftBT-Roman
 /OzzieBlack-Italic
 /OzzieBlack-Regular
 /PalatiaBold
 /PalatiaItalic
 /PalatiaRegular
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /PalmSpringsPSMT
 /Pamela
 /PanRoman
 /ParadisePSMT
 /ParagonPSMT
 /ParamountBold
 /ParamountItalic
 /ParamountRegular
 /Parchment-Regular
 /ParisianBT-Regular
 /ParkAvenueBT-Regular
 /Patrick
 /Patriot
 /PaulPutnamSH
 /PcEncodingLowerSH
 /PcEncodingSH
 /Pegasus
 /PenguinLightPSMT
 /PennSilvaSH
 /Percival
 /PerfectRegular
 /Pfn2BlackItalic
 /Phantom
 /PhilSimmonsSH
 /Pickwick
 /PipelinePlain
 /Playbill
 /PoorRichard-Regular
 /Poster
 /PosterBodoniBT-Italic
 /PosterBodoniBT-Roman
 /Pristina-Regular
 /Proxy1
 /Proxy2
 /Proxy3
 /Proxy4
 /Proxy5
 /Proxy6
 /Proxy7
 /Proxy8
 /Proxy9
 /Prx1
 /Prx2
 /Prx3
 /Prx4
 /Prx5
 /Prx6
 /Prx7
 /Prx8
 /Prx9
 /Pythagoras
 /Raavi
 /Ranegund
 /Ravie
 /Ribbon131BT-Bold
 /RMTMI
 /RMTMIB
 /RMTMIH
 /RMTMUB
 /RMTMUH
 /RobWebsterExtraBoldSH
 /Rockwell
 /Rockwell-Bold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /RomanC
 /RomanD
 /RomanS
 /RomanT
 /Romantic
 /RomanticBold
 /RomanticItalic
 /Sahara
 /SalTintorettoSH
 /SamBarberInitialsSH
 /SamPlimsollSH
 /SansSerif
 /SansSerifBold
 /SansSerifBoldOblique
 /SansSerifOblique
 /Sceptre
 /ScribbleRegular
 /ScriptC
 /ScriptHebrew
 /ScriptS
 /Semaphore
 /SerifaBT-Black
 /SerifaBT-Bold
 /SerifaBT-Italic
 /SerifaBT-Roman
 /SerifaBT-Thin
 /Sfn2Bold
 /Sfn3Italic
 /ShelleyAllegroBT-Regular
 /ShelleyVolanteBT-Regular
 /ShellyMarisSH
 /SherwoodRegular
 /ShlomoAleichemSH
 /ShotgunBT-Regular
 /ShowcardGothic-Reg
 /Shruti
 /SignatureRegular
 /Signboard
 /SignetRoundhandATT-Italic
 /SignetRoundhand-Italic
 /SignLanguage
 /Signs
 /Simplex
 /SissyRomeoSH
 /SlimStravinskySH
 /SnapITC-Regular
 /SnellBT-Bold
 /Socket
 /Sonate
 /SouvenirITCbyBT-Demi
 /SouvenirITCbyBT-DemiItalic
 /SouvenirITCbyBT-Light
 /SouvenirITCbyBT-LightItalic
 /SpruceByingtonSH
 /SPSFont1Medium
 /SPSFont2Medium
 /SPSFont3Medium
 /SpsFont4Medium
 /SPSFont4Medium
 /SPSFont5Normal
 /SPSScript
 /SRegular
 /Staccato222BT-Regular
 /StageCoachRegular
 /StandoutRegular
 /StarTrekNextBT-ExtraBold
 /StarTrekNextPiBT-Regular
 /SteamerRegular
 /Stencil
 /StencilBT-Regular
 /Stewardson
 /Stonehenge
 /StopD
 /Storybook
 /Strict
 /Strider-Regular
 /StuyvesantBT-Regular
 /StylusBT
 /StylusRegular
 /SubwayRegular
 /SueVermeer4LightItalicSH
 /SueVermeer4LightSH
 /SueVermeer5MedItalicSH
 /SueVermeer5MediumSH
 /SueVermeer6DemiItalicSH
 /SueVermeer6DemiSH
 /SueVermeer7BoldItalicSH
 /SueVermeer7BoldSH
 /SunYatsenSH
 /SuperFrench
 /SuzanneQuillSH
 /Swiss721-BlackObliqueSWA
 /Swiss721-BlackSWA
 /Swiss721BT-Black
 /Swiss721BT-BlackCondensed
 /Swiss721BT-BlackCondensedItalic
 /Swiss721BT-BlackExtended
 /Swiss721BT-BlackItalic
 /Swiss721BT-BlackOutline
 /Swiss721BT-Bold
 /Swiss721BT-BoldCondensed
 /Swiss721BT-BoldCondensedItalic
 /Swiss721BT-BoldCondensedOutline
 /Swiss721BT-BoldExtended
 /Swiss721BT-BoldItalic
 /Swiss721BT-BoldOutline
 /Swiss721BT-Italic
 /Swiss721BT-ItalicCondensed
 /Swiss721BT-Light
 /Swiss721BT-LightCondensed
 /Swiss721BT-LightCondensedItalic
 /Swiss721BT-LightExtended
 /Swiss721BT-LightItalic
 /Swiss721BT-Roman
 /Swiss721BT-RomanCondensed
 /Swiss721BT-RomanExtended
 /Swiss721BT-Thin
 /Swiss721-LightObliqueSWA
 /Swiss721-LightSWA
 /Swiss911BT-ExtraCompressed
 /Swiss921BT-RegularA
 /Syastro
 /Sylfaen
 /Symap
 /Symath
 /SymbolGreek
 /SymbolGreek-Bold
 /SymbolGreek-BoldItalic
 /SymbolGreek-Italic
 /SymbolGreekP
 /SymbolGreekP-Bold
 /SymbolGreekP-BoldItalic
 /SymbolGreekP-Italic
 /SymbolGreekPMono
 /SymbolMT
 /SymbolProportionalBT-Regular
 /SymbolsAPlentySH
 /Symeteo
 /Symusic
 /Tahoma
 /Tahoma-Bold
 /TahomaItalic
 /TamFlanahanSH
 /Technic
 /TechnicalItalic
 /TechnicalPlain
 /TechnicBold
 /TechnicLite
 /Tekton-Bold
 /Teletype
 /TempsExptBoldSH
 /TempsExptItalicSH
 /TempsExptRomanSH
 /TempsSwashSH
 /TempusSansITC
 /TessHoustonSH
 /TexCatlinObliqueSH
 /TexCatlinSH
 /Thrust
 /Times-Bold
 /Times-BoldItalic
 /Times-BoldOblique
 /Times-ExtraBold
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Oblique
 /Times-Roman
 /Times-Semibold
 /Times-SemiboldItalic
 /TimesUnic-Bold
 /TimesUnic-BoldItalic
 /TimesUnic-Italic
 /TimesUnic-Regular
 /TonyWhiteSH
 /TransCyrillic
 /TransCyrillic-Bold
 /TransCyrillic-BoldItalic
 /TransCyrillic-Italic
 /Transistor
 /Transitional521BT-BoldA
 /Transitional521BT-CursiveA
 /Transitional521BT-RomanA
 /TranslitLS
 /TranslitLS-Bold
 /TranslitLS-BoldItalic
 /TranslitLS-Italic
 /TransRoman
 /TransRoman-Bold
 /TransRoman-BoldItalic
 /TransRoman-Italic
 /TransSlavic
 /TransSlavic-Bold
 /TransSlavic-BoldItalic
 /TransSlavic-Italic
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /TribuneBold
 /TribuneItalic
 /TribuneRegular
 /Tristan
 /TrotsLight-HMK
 /TrotsMedium-HMK
 /TubularRegular
 /Tunga-Regular
 /Txt
 /TypoUprightBT-Regular
 /UmbraBT-Regular
 /UmbrellaPSMT
 /UncialLS
 /Unicorn
 /UnicornPSMT
 /Univers
 /UniversalMath1BT-Regular
 /Univers-Bold
 /Univers-BoldItalic
 /UniversCondensed
 /UniversCondensed-Bold
 /UniversCondensed-BoldItalic
 /UniversCondensed-Italic
 /UniversCondensed-Medium
 /UniversCondensed-MediumItalic
 /Univers-CondensedOblique
 /UniversExtended-Bold
 /UniversExtended-BoldItalic
 /UniversExtended-Medium
 /UniversExtended-MediumItalic
 /Univers-Italic
 /UniversityRomanBT-Regular
 /UniversLightCondensed-Italic
 /UniversLightCondensed-Regular
 /Univers-Medium
 /Univers-MediumItalic
 /URWWoodTypD
 /USABlackPSMT
 /USALightPSMT
 /Vagabond
 /Venetian301BT-Demi
 /Venetian301BT-DemiItalic
 /Venetian301BT-Italic
 /Venetian301BT-Roman
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /VinetaBT-Regular
 /Vivaldii
 /VladimirScript
 /VoguePSMT
 /Vrinda
 /WaldoIconsNormalA
 /WaltHarringtonSH
 /Webdings
 /Weiland
 /WesHollidaySH
 /Wingdings-Regular
 /WP-HebrewDavid
 /XavierPlatoSH
 /YuriKaySH
 /ZapfChanceryITCbyBT-Bold
 /ZapfChanceryITCbyBT-Medium
 /ZapfDingbatsITCbyBT-Regular
 /ZapfElliptical711BT-Bold
 /ZapfElliptical711BT-BoldItalic
 /ZapfElliptical711BT-Italic
 /ZapfElliptical711BT-Roman
 /ZapfHumanist601BT-Bold
 /ZapfHumanist601BT-BoldItalic
 /ZapfHumanist601BT-Italic
 /ZapfHumanist601BT-Roman
 /ZappedChancellorMedItalicSH
 /ZurichBT-BlackExtended
 /ZurichBT-Bold
 /ZurichBT-BoldCondensed
 /ZurichBT-BoldCondensedItalic
 /ZurichBT-BoldItalic
 /ZurichBT-ExtraCondensed
 /ZurichBT-Italic
 /ZurichBT-ItalicCondensed
 /ZurichBT-Light
 /ZurichBT-LightCondensed
 /ZurichBT-Roman
 /ZurichBT-RomanCondensed
 /ZurichBT-RomanExtended
 /ZurichBT-UltraBlackExtended
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

