
This is a preprint of an article accepted for publication in Empirical Software Engineering.

For publishers version see: http://dx.doi.org/10.1007/s10664-015-9378-4

Comparing and Experimenting Machine Learning Techniques
for Code Smell Detection
Francesca Arcelli Fontana1, Mika V. Mäntylä2,3, Marco Zanoni1, Alessandro Marino1

1University of Milano-Bicocca, Milano, Italy
2Aalto University, Helsinki, Finland
3University of Oulu, Oulu, Finland

Abstract Several code smell detection tools have been developed providing different results, because smells can be
subjectively interpreted, and hence detected, in different ways. In this paper, we perform the largest experiment of ap-
plying machine learning algorithms to code smells to the best of our knowledge. We experiment 16 different machine-
learning algorithms on four code smells (Data Class, Large Class, Feature Envy, Long Method) and 74 software sys-
tems, with 1,986 manually validated code smell samples. We found that all algorithms achieved high performances in
the cross-validation data set, yet the highest performances were obtained by J48 and Random Forest, while the worst
performance were achieved by support vector machines. However, the lower prevalence of code smells, i.e. imbalanced
data, in the entire data set caused varying performances that need to be addressed in the future studies. We conclude that
the application of machine learning to the detection of these code smells can provide high accuracy (>96%), and only a
hundred training examples are needed to reach at least 95% accuracy.

Keywords—code smells detection, machine learning techniques, benchmark for code smell detection.

1 Introduction
Code smells were informally identified by Fowler et al. (1999) as symptoms of possible code or design problems. Code
smell detection has become an established method to discover source code (or design) problems to be removed through
refactoring steps, with the aim to improve software quality and maintenance.

In the literature, the evidence whether code smells are harmful is conflicting. Some recent works are reporting that
smells do not really affect change effort or fault-proneness (e.g., Olbrich et al. 2010, Sjøberg et al. 2013, Hall et al.
2014). For example, in Sjøberg et al. (2013) the file size is a better predictor of change effort than code smells. Howev-
er, the advantage that code smells have over file size is that they come with specific refactorings to remove them. In the
same way Sjøberg et al. (2013) points out that file size and code smells are significantly correlated, we think also that
the reduction of file size can be achieved by refactoring out code smells. After all, reducing the file size is not a trivial
problem.

At the same time, other works outline different results. For example, Moser et al. (2008) provide empirical, industrially
based evidence that refactoring, in general and for removing code smells, increases development productivity and im-
proves quality factors; Zazworka et al. (2011) have investigated questions regarding the impact of God Classes on soft-
ware quality and they observed that God Classes are in general more change prone and in some cases more defect
prone; Deligiannis et al. (2004) in their study observed that a design without a God Class will result in more complete-

ness, correctness and consistency compared to designs with a God Class; Li and Shatnawi (2007) investigated the rela-
tionship between six code smells and the probability of error in classes in an industrial system, and found the presence
of Shotgun Surgery to be connected with a statistically significant higher probability of defects; Yamashita (2014) in-
vestigated the relationship between code smells and the incidence of problems during software maintenance, and she
recommends, based on her results, that future studies should focus on the interaction effect between code smells, be-
tween code smells and other design properties, and between code smells and the program size.

Probably, the fact that we can find in the literature so different results is due to the need to achieve, first of all, con-
sistency in the definition of code smells. Until commonly used smell definitions are established, we are not able to
achieve a mature knowledge of the impact of smells on software systems (Bowes et al, 2013).

This fact has obviously a great impact also on code smell detection. In fact, code smells can be subjectively interpreted
(Mäntylä and Lassenius, 2006), the results provided by detectors are usually different (Arcelli Fontana et al., 2012), the
agreement in the results is scarce, and a benchmark for the comparison of these results is not yet available. For exam-
ple, Bowes et al. (2013) describe the inconsistent measurement of Message Chains smell through the comparison of two
tools for code smell detection, and Arcelli Fontana et al. (2012) describe the comparison of four code smell detection
tools on six versions of a medium-size software project for six code smells and provide an assessment of the agreement,
consistency and relevance of the results produced. Usually, detection rules are based only on the computation of a set of
metrics, e.g., well-known object-oriented metrics or metrics defined ad hoc for the detection of a particular smell. The
metrics used for the detection of a code smell by different tools can be different, according to their detection rules.
Moreover, even if the metrics are the same, the thresholds of the metrics can change. By changing these values, the
number of detected smells can increase or decrease accordingly. Another problem regards the accuracy of the results;
many false positive smells can be detected, not representing real problems (and hence smells to be refactored), because
information related to the context, the domain, the size and the design of the analyzed system is not usually considered
(Ferme et al., 2013). Other detection tools are not based on metrics computation, but are able to detect the smell through
the opportunities of applying refactoring steps to remove it (Tsantalis et al., 2009).

For all these reasons, and in particular the intrinsic informal and subjective definition of code smells, another way to
provide a better-targeted detection would be to make it subjective to the particular user or community. Machine learning
technology can be exploited to make a tool learn how to classify code smells by examples, easing the build of automatic
code smell detectors.

The solution proposed in this work exploits supervised machine learning techniques, to support a learn-by-example pro-
cess to construct code smell detection rules able to evaluate new candidates. Most techniques are able to provide a con-
fidence value, telling how much results conform to the learned model. Some algorithms provide also human-readable
rules, which have been analyzed to understand which combination of metrics has more influence on the detection and
on the discovery of the inferred threshold values.

The application of machine learning to the code smell detection problem needs a formalization of the input and output
of the learning algorithms, and a selection of the data to be analyzed and the algorithms to use in the experimentation. A
large set of object-oriented metrics, covering different aspects of software design, have been computed on a large repos-
itory of heterogeneous software systems (Tempero et al., 2010). Metrics represent the independent variables in the ma-
chine learning approach. A set of code smells to detect has been identified, representing the dependent variables. For
each code smell, a set of example instances have been manually evaluated and labeled as correct or incorrect (affected
or not by a code smell). The selection and labeling phase of example instances plays an important role in machine learn-
ing techniques. Our approach selects the example instances by applying stratified random sampling on many projects,
guided by the results of a set of pre-existing code smell detection tools and rules, called Advisors. This methodology
ensures a homogeneous selection of instances on different projects and prioritizes the labeling of instances with a higher
chance of being affected by a code smell. The selected instances are used to train a set of machine learning algorithms,
to perform experiments evaluating the performance of different algorithms and to search for the best setting of their pa-
rameters.

The classification process was performed on four code smells (Data Class, God Class, Feature Envy, and Long Method)
and 32 different machine learning algorithms (16 different algorithms plus their combination with a boosting tech-
nique). The experimented algorithms obtained high performances, regardless of the type of code smell. This paper ex-

tends our previous work (Arcelli Fontana et al., 2013b), where we described our preliminary results. The main contribu-
tions of this paper are:

· a methodology for the application of machine learning to address code smell detection tasks;
· an extensive experimentation (on 74 systems) for selecting the best algorithm and the respective parameters,

for the detection of each of the considered smells.

The paper is organized through the following sections: in Section 2 we introduce related work on code smell detection
techniques or approaches based on machine learning techniques; in Section 3 we introduce the smells considered in this
work; in Section 4 we describe all the steps of our machine learning approach for code smell detection; in Section 5 we
provide the results of our experimentations; in Section 6 we introduce some threats to validity and limitations of our ap-
proach; in Section 7 we discuss the application of machine learning for code smell detection and describe the next fu-
ture developments of this research; finally, in Section 8 we make our conclusions.

2 Related Work
The past work on code smell detection can be mainly divided into two main categories. Firstly, there are rule-based ap-
proaches that rely mostly on metrics, plus, in certain cases, other rules related to the code structure and naming. Second-
ly, there are approaches using machine learning techniques, which are largely metrics based, such as the one presented
in this paper. There are benefits and drawbacks in both approaches.

One can argue that the rule-based approaches are more sophisticated as they use more sources of information than the
metrics based ML-approach, e.g., naming (Moha et al 2010), structural rules (Moha et al 2010), or even version history
(Palomba et al 2013). One could also think that it makes them better in code smell detection; yet, to the authors’ best
knowledge this has not been studied. On the other hand, rule-based approaches rely on human created rules that must be
manually specified. For example, DÉCOR (Moha et al 2010) requires that the rules are specified in the form of domain
specific language and this specification process must be undertaken by domain experts, engineers or quality experts.
Naturally, this rule creation requires effort from these individuals that could be spent in some other tasks. Whether the
metrics based ML-approaches require less effort than rule-based approaches is however not clear, and it depends on two
factors; (a) how complex rules one needs for the rule based approaches, and (b) how many training samples are needed
for the metrics based machine learning approaches. At the moment, we are not aware of any studies comparing the ap-
proaches effort-wise. However, what remains a clear benefit for the metrics based ML-approach is the reduction of cog-
nitive load required from the engineers. The rule-based approach requires that the engineers create specific rules of de-
fining each smell. For the machine learning based approached the rule creation is left for the ML-algorithms requiring
the engineers only to provide information whether a piece of code has a smell or not.

We do not think any code smell detection is superior to another and we think that several approaches may benefit code
smell prevention, detection and fixing. To illustrate why multiple approaches are needed for code smells, we can look
into Anti-spam techniques. Over 30 different approaches are presented for spam prevention in Wikipedia1; yet, most
users still end up with several spam messages per day. We believe it is the same for code smells and it is unlikely that
any single technique will completely solve the code smell problem.

Next, we present the prior works in the literature exploiting machine learning techniques for code smell detection. Mai-
ga et al. (2012) introduce SVMDetect, an approach to detected anti-patterns, based on support vector machines (SVM).
The subjects of their study are the Blob, Functional Decomposition, Spaghetti Code and Swiss Army Knife antipatterns,
extracted from three open-source programs: ArgoUML, Azureus, and Xerces. Maiga and Ali (2012) extend the previous
paper by introducing SMURF, which takes into account practitioners’ feedback.

Khomh et al. (2009) propose a Bayesian approach to detect occurrences of the Blob antipattern on open-source pro-
grams (GanttProject v1.10.2 and Xerces v2.7.0). Khomh et al. (2011) present BDTEX (Bayesian Detection Expert), a
Goal Question Metric approach to build Bayesian Belief Networks from the definitions of antipatterns and validate
BDTEX with Blob, Functional Decomposition, and Spaghetti Code antipatterns on two open-source programs.

1 http://en.wikipedia.org/wiki/Anti-spam_techniques

Yang et al. (2012) study the judgment of individual users by applying machine learning algorithms on code clones.

Kreimer (2005) proposes an adaptive detection to combine known methods for finding design flaws Large Class and
Long Method on the basis of metrics with learning decision trees. The analyses were conducted on two software sys-
tems: IYC system and the WEKA package.

As we can see, the principal differences of the previous works respect to our approach are that they did their experimen-
tations by considering only 2 or 3 systems and they usually experiment only one machine learning algorithm. In our ap-
proach, we focus our attention on 4 code smells, we consider 74 systems for the analysis and our validation and we ex-
periment 16 different machine learning algorithms (J48 Pruned, J48 Unpruned, J48 Reduced Error Pruning, JRip, Ran-
dom Forest, Naïve Bayes, SMO RBF Kernel, SMO Poly Kernel, LibSVM C-SVC Linear Kernel, LibSVM C-SVC Pol-
ynomial Kernel, LibSVM C-SVC Radial Kernel, LibSVM C-SVC Sigmoid Kernel, LibSVM ν-SVC Linear Kernel,
LibSVM ν-SVC Polynomial Kernel, LibSVM ν-SVC Radial Kernel, LibSVM ν-SVC Sigmoid Kernel), and considering
also a boosted variant of the algorithms, the total number rises to 32. Additionally, we tested several hundreds of differ-
ent parameter settings. In Table 1, we compare the previous approaches according to the detected smells or antipatterns,
the used algorithms and number of analyzed systems.

Table 1 Comparison prior work and this paper

Study Smells Algorithms Feature
Selection

Boosting Systems

Kreimer (2005) 2: Large Class, Long Method 1: Decision Tree No No 2
Khomh et al.
(2009)

3: Blob, Functional Decomposition, and
Spaghetti Code

1: Bayesian No No 2

Maiga et al.
(2012) + Maiga
and Ali (2012)

4: Blob (Large Class), Functional de-
composition, Spaghetti code, Swiss Army
Knife

1: SVM n/a2 No 3

Yang et al. (2012) Code Clones n/a n/a No n/a

This paper 4: Feature Envy, Data Class, Long
Method, Large Class

16: see text, No Yes 74

3 Code Smells Definitions
In this work, we chose a set of four code smells to experiment our detection approach. We considered code smells
among the ones having the highest frequency (Zhang et al., 2011), that may have the greatest negative impact (Olbrich
et al., 2010) on software quality, and having detection rules defined in the literature or implemented in available tools
(Arcelli Fontana et al., 2012). We decided to focus our attention on two smells at method level and two smells at class
level as reported in Table 2, which correspond to four smells among the most frequent ones, as identified in a study on
the frequency of 17 code smells on 76 systems (Arcelli Fontana et al., 2013a).

Table 2 - Selected Code Smells

Code Smell Affected entity Impacted OO quality Dimensions

Data Class Class Encapsulation, Data Abstraction

God/Large/ Brain Class Class Coupling, Cohesion, Complexity, Size

Feature Envy Method Data Abstraction

2 The figure in the paper indicates a smaller set of metrics was selected. However, no information of this feature selec-
tion process is given. Thus, the feature selection may have been even performed manually by humans. Regardless, the
approach is impossible to replicate due to lack of information.

Long/God Method Method Coupling, Cohesion, Complexity, Size

In Table 2, we outline also the impact of the considered smells on some quality dimensions, as outlined by Marinescu
(2005) and extended by us to other smells. Below, the definitions of the selected code smells are reported. These defini-
tions have been created starting from the literature, and basing on our previous experiences in code smell detection; they
are taken as a reference for the whole work.

Data Class

The Data Class code smell refers to classes that store data without providing complex functionality, and having other
classes strongly relying on them. A Data Class reveals many attributes, it is not complex, and exposes data through ac-
cessor methods.

God Class

The God Class code smell refers to classes that tend to centralize the intelligence of the system. A God Class tends to be
complex, to have too much code, to use large amounts of data from other classes and to implement several different
functionalities.

Feature Envy

The Feature Envy code smell refers to methods that use much more data from other classes than from their own class. A
Feature Envy tends to use many attributes of other classes (considering also attributes accessed through accessor meth-
ods), to use more attributes from other classes than from its own class, and to use many attributes from few different
classes.

Long Method

The Long Method code smell refers to methods that tend to centralize the functionality of a class. A Long Method tends
to have too much code, to be complex, to be difficult to understand and to use large amounts of data from other classes.

For each code smell, we identified in the literature a set of available detection tools and rules, which are able to detect
them (see Section 4.3).

4 Towards a Machine Learning Approach
The application of machine learning to the code smell detection problem needs a formalization of the input and output
of the learning algorithm and a selection of data and algorithms to be used in the experimentation. Figure 1 summarizes
our data sets, code smell detection approaches and the resulting measures of our research.

Fig 1 Machine Learning Approach

The following points and the flow graph in Figure 2 summarize the principal steps of our approach, while the remainder
of the section describes them:

1. Collection of a large repository of heterogeneous software systems.
2. Metrics Extraction: extract a large set of object-oriented metrics from systems at class, method, package and

project levels. The metrics are considered as independent variables in the machine learning approach.
3. Choice of tools, or rules, for their detection; they are called Advisors in the following.
4. Application of the chosen Advisors on the systems, recording the results for each class and method.
5. Labeling: following the output of the Advisors, the reported code smell candidates are manually evaluated, and

they are assigned different degrees of gravity.
6. Experimentation: The manual labeling is used to train supervised classifiers, whose performances (e.g., preci-

sion, recall, learning curves) will be compared to find the best one.

Data sets

Manual Validation Set with 420
examples for each code smell

Large repository of 74 heterogeneous
software systems (Qualitas Corpus)

Code smells detection

Manual validation
performed by 3 MSc
students

Is part of

Machine Learning
algorithms utilizing code
metrics

Code smell advisors (Iplasma, PMD,
Fluid Tool, Antipattern Scanner,
Marinescu 2002)

Resulting Measures

Machine learning performance metrics

Fig 2: Flow graph of the research steps taken

4.1 Collection of software systems
For our analysis, we considered the Qualitas Corpus (QC) of systems collected by Tempero et al. (2010). The corpus,
and in particular the collection we used, 20120401r, is composed of 111 systems written in Java, characterized by dif-
ferent sizes and belonging to different application domains. The systems selected for the analysis are 74. The reason of
the selection is that the systems must be compilable to correctly compute the metrics values. We manually added all the
missing third party libraries to each system, allowing the resolution of class dependencies.

The selected 74 systems have different sizes and belong to different application domains. Table A in the Appendix re-
ports the size measures, application domains and release dates for each selected project; Table 3 reports the overall size
measures of the selected projects.

Table 3 - Summary of projects characteristics

Number of Systems Lines of Code Number of Packages Number of Classes Number of Methods

74 6,785,568 3,420 51,826 404,316

A sufficiently high number of systems is fundamental to have a machine learning process that does not depend on a
specific dataset, allowing to generalize the obtained results. At the best of our knowledge, the number of systems ana-
lyzed is the largest available, for code smell (or antipattern) detection with machine learning algorithms.

4.2 Metrics Extraction
We computed a large set of object-oriented metrics that are considered as independent variables in our machine learning
approach. The metrics were computed on all the 74 systems of the QC.

The selected metrics are at class, method, package and project level; the set of metrics is composed of metrics needed
by the exploited Advisors, plus standard metrics covering different aspects of the code, i.e., complexity, cohesion, size,
coupling. We chose well-known metrics that are widely used in the literature (Bansiya and Davis, 2002; Dubey et al.,
2012; Chidamber and Kemerer, 1994; Lorenz and Kidd, 1994; Aggarwal et al, 2006). The chosen metrics are reported

Access collection of 74
heterogeneous software
systems (1)

Use Code smell advisors to
select candidates (3 & 4)

Manual validation of
selected candidates (5)

Perform machine learning
parameter optimizations (6)

Extract code metrics from
all systems (2)

Compare machine learning
algorithms with each other
(6)

Present human readable
code smells rules (6)

in Table 4, classified under six quality dimensions of object-oriented software. Metrics having a “*” in the name are
customized versions of standard metrics, or slight modifications of existing metrics; metrics with a “§” suffix have been
defined specifically for the detection of the Message Chain code smell (not considered in this paper). The extended
names are reported in Table B in the Appendix and the descriptions of all metrics are reported on the web
(http://essere.disco.unimib.it/reverse/MLCSD.html).

Table 4 - Selected Metrics

Size Complexity Cohesion Coupling Encapsulation Inheritance

LOC CYCLO LCOM5 FANOUT LAA DIT

LOCNAMM* WMC TCC ATFD NOAM NOI

NOM WMCNAMM* FDP NOPA NOC

NOPK AMWNAMM* RFC NMO

NOCS AMW CBO NIM

NOMNAMM* MAXNESTING CFNAMM* NOII

NOA WOC CINT

CLNAMM CDISP

NOP MaMCL§

NOAV MeMCL§

ATLD* NMCS§

NOLV CC

CM

Furthermore, Custom Metrics (see Table 5) have been defined, to catch other structural properties of the source code.
Their definitions are mainly based on the combinations of modifiers (e.g., public, private, protected, static, final, and
abstract) on attributes and methods (e.g., the number of public and static attributes, or the number of abstract methods).
Table C in the Appendix lists the full names of the Metrics.

Table 5 – Custom Metrics

NODA NOPVA NOPRA NOFA

NOFSA NOFNSA NONFNSA NOSA

NONFSA NOABM NOCM NONCM

NOFM NOFNSM NOFSM NONFMABM

NONFNSM NONFSM NONAM NOSM

NOPLM NOPRM NOPM NODM

All metrics have been computed through a tool we developed, which parses the source code of Java projects through the
Eclipse JDT library. The tool is called “Design Features and Metrics for Java” (DFMC4J). It is designed with the aim of
being integrated as a library in other projects. The user can request information on specific entities or on a category of
entities (e.g., all the methods of a system, all classes of a system). We tested the computation of all the metrics we de-
fined and computed. We used, as a reference test system, the “Personal Lending Library”, a small sample application to
manage a personal library of books (Kline, 2013). The reliability of the tool has been described in detail in (Ferme,
2013).

4.3 Choice of a set of code smells detection rules or tools

The application of supervised learning needs a training set, containing labeled instances. In our case, the label must
specify if (or how much) a class (or method) is affected by a code smell. The set of correct label assignments is also
called “oracle”. As we have no external benchmark data yet, this oracle must be created by manual code analysis.

As we want to work on large and heterogeneous datasets, the creation of an oracle including all the extracted source
code elements is not possible without massive human resources. This is a common situation, which leads to create da-
tasets using a sampling approach. The simpler method is random sampling. It prescribes that the subjects to be selected
should be chosen randomly from all the available ones.

In this domain, random sampling has a major drawback: code smells density in code is low, so the composition of a
randomly sampled training set will have a great chance to contain only a few instances affected by code smells. Ma-
chine learning with such an unbalanced training set is very likely to produce bad results. In fact, many preprocessing
techniques in the machine learning field are used to provide better-balanced datasets.

In our case, we chose to use a stratified sampling of the available instances, based on a set of hints, called Advisors. An
Advisor is a deterministic rule, implemented locally or in an external tool, that gives a classification of a code element
(class or method), telling if it is a code smell or not. The idea is that Advisors should approximate the label better than
the random choice, and by aggregating their suggestions we should be able to sample more code elements affected by
code smells.

Following this idea, we formulated some requirements, to determine how to select available Advisors from the litera-
ture:

· Different Advisors (for the same smell) should use different rules or approaches as much as possible; in this
way, we avoid possible naive correlations among similar rules.

· An Advisor can be implemented as an available external tool. A rule implemented by an automatic detection
tool has some advantages: it eliminates the possibility of misinterpretation of the rule definition, and reuses
functionalities having (possibly) a wide diffusion and agreement. We considered only freely available tools.

· Advisors implemented in external tools must be available for batch computation, and they should export data
in a parsable and documented format.

· Advisors can be also defined by research papers. In this case, the whole detection rule must be clearly de-
scribed in the original source, to be implemented accordingly.

We did an analysis of the literature related to code smell detection, and related freely available tools. The Advisors se-
lected for each code smell are reported in Table 6. Some well-known tools have not been considered, because it is not
possible to run them in batch without a manual configuration of the projects to analyze, or they are not freely available,
or they use detection rules that are too similar to other selected ones. For example, the JDeodorant (Tsantalis et al.,
2009) tool has not been considered, because it is not possible (without customizations) to run it in batch without a man-
ual configuration of the project that has to be analyzed.

In Table 6, we have considered as Advisors: PMD3 and iPlasma (Marinescu et al., 2005), which are two free tools; Flu-
id Tool (Nongpong, 2012) and AntiPattern Scanner (Wieman, 2011), which have been described in research papers, but
the tools are not available. Moreover, we have considered a detection rule for the Long Method smell defined by
Marinescu (2002). In these three last cases we implemented the detection rules, following the respective references. We
choose to map two smells detected in iPlasma (God Class and Brain Class) to the God Class code smell in our ap-
proach, because they identify very similar concepts. The same has been done for Brain Method, detected by iPlasma,
and Long Method.

Table 6 Code Smells and Advisors

3 http://pmd.sourceforge.net/

Code Smell Advisors: Detection Tools or Rules

God Class iPlasma, PMD

Data Class iPlasma, Fluid Tool, Antipattern Scanner

Long Method iPlasma, PMD, Marinescu (2002)

Feature Envy iPlasma, Fluid Tool

4.4 Labeling
In this section, the usage of Advisors for code elements sampling is explained.

4.4.1 Sampling
Advisors, as already introduced, are used to provide hints of the presence of a code smell on a particular entity. Being
them based on external tools or well-defined deterministic rules, we can apply them, and store their evaluation of all
classes and methods. We consider an advice as positive when an Advisor reports an element as affected by a code smell,
and negative otherwise.

Given that we have at least two Advisors for each code smell (and three Advisors for two smells), a possible way to
provide a large oracle would be to aggregate the Advisor values, e.g., considering as code smells all classes or methods
having at least half positive advices, or a number of positive advices higher than a given threshold. The problem is that
the real performances of each single Advisor are unknown, i.e., we have to take into consideration that Advisors are
subjected to error. In addition, we do not want to bias our oracle towards the rules implemented in the Advisors.

To comply with our requirements, we set up a stratified sampling method using the following procedure.

Consider having a separate dataset for each code smell, containing only the elements eligible for being affected by the
smell (e.g., classes for God Class, methods for Long Method). Consider also that the value of each Advisor is available
for all the elements of the dataset. The sampling procedure is organized in this way:

· Each dataset element is annotated with two values:
o the name of the project containing it;
o a number N, counting the number of Advisors reporting a positive evaluation, i.e., telling that they

consider the element affected by the smell;
· Dataset elements are grouped by project and N. Groups are then sorted by project and N.
· Cycling the groups in the defined order, an instance I is randomly sampled and removed from each group. If a

group is empty, it is skipped.
· Instance I is then evaluated, and added to the training set.
· Cycling restarts from the first group, until a target number of positive instances is found.

An overview of the procedure is depicted in Figure 3. The procedure gives the same probability of selection to groups
of instances belonging to different projects, and having different likelihoods (given by the Advisors) of being affected
by a code smell. In this way, we increase the chance of building a dataset that represents different application domains
(if the input projects belong to different domains), and with a sufficient number of affected entities, but keeping differ-
ent characteristics (exploiting the N grouping parameter).

Finally, the obtained training set is normalized in size, by randomly removing (if needed) negative instances, until the
balance of the training set is of ⅓ positive (and ⅔ negative) instances. This operation is performed because, usually, on-
ly a very small fraction of classes and methods is affected by a particular code smell. This fact results in highly unbal-
anced datasets, where the large majority of the considered elements are not affected by code smell. Machine learning
algorithms tend to perform badly on very unbalanced dataset, so this kind of dataset preparation is popular (Gueheneuc
et al., 2004).

Using this procedure, we obtained four datasets (one for each code smell), each one composed of 140 positive instances
and 280 negative instances (420 instances in total).

Label Instance

Random sampling
instance with

positive Advisor
numbers = N

For each Project

Label Instance

Random sampling
instance with

positive Advisor
numbers = N - 1

For each Project

…...

Label Instance

Random sampling
instance with

positive Advisor
numbers = 0

For each Project

Figure 3 Labeling Process

4.4.2 Label assignment criteria
The labeling is done by performing a severity classification of code smells based on an ordinal scale. The idea of a se-
verity classification has been applied to software defects over the years and its industrial adoption is widespread. Sever-
al authors have recently worked on the prediction of defect severity by means of machine learning techniques (Menzies
and Marcus, 2008) (Lamkanfi and Demeyer, 2010) (Tian et al., 2012). In this study, the code smell severity can have
one of these four possible values:

0 - no smell: the class (or method) is not affected by the smell;
1 - non-severe smell: the class (or method) is only partially affected by the smell;
2 - smell: the smell characteristics are all present in the class (or method);
3 - severe smell: the smell is present, and has particularly high values of size, complexity or coupling.

The usage of code smell severity can have two possible benefits. First, the ranking of classes (or methods) by the severi-
ty of their code smells can help software developers prioritize their work on the most severe code smells. Developers
might not have enough time to fix all the code smells that can be automatically detect. Second, the use of the code smell
severity for labelling purposes provides more information than a more traditional binary classification. This information
can be exploited during the learning phase, or collapsed back to a binary classification by grouping together the values,
e.g., {0} → INCORRECT, {1, 2, 3} → CORRECT. It is important to understand that different machine learning algo-
rithms have different capabilities, and choosing an appropriate labeling helps to achieve better results. In fact, selecting
an algorithm which does not exploit the ordinal information in the class attribute is similar to perform binary classifica-
tion over the (four in our case) possible values; as a consequence, each class value defines a reduced training set, with
respect to the binary classification. For these reasons, we did not exploit the severity classification in our experiments,
while we keep it for future work. For this work, we mapped severity to a binary class variable, following the schema
proposed above.

The labeling evaluation was performed by three MSc students specifically trained for the task. The students inde-
pendently studied the code smell definitions, and had a 2 hours discussion about their comprehension of the definitions.
Then they performed a short manual labeling exercise, and discussed their evaluations, to reach an agreement. The out-
put of this setup phase was a set of guidelines for determining the most relevant aspects to consider for each code smell,
which determine also the way labels are assigned. The guidelines are reported in the following.

Data Class:

· data classes must not contain complex methods;

· data classes can expose few non-accessor methods, and they must be very simple;
· data classes mainly expose accessor methods;
· the attributes of a data class must be either public or exposed through accessor methods.

God Class:

· god classes tend to access many attributes from many other classes; the number of attributes contained in other
classes that are used from the class, considering also attributes accessed using accessors, must be high;

· how much the class centralizes the intelligence of the system;
· god classes usually contain large and complex methods;
· god classes are large;
· god classes usually expose a large number of methods.

Feature Envy:

· feature envies access many foreign attributes; the number of foreign (contained in other classes) attributes, di-
rectly used by a method, considering also attributes accessed through accessors, must be high;

· feature envies access more foreign attributes than local ones;
· feature envies mainly use the attributes of a small number of foreign classes.

Long Method:

· long methods tend to be complex;
· long methods access many attributes, a large part of the attributes declared in the class; the number of used

variables, considering also attributes accessed through an accessor, must be high;
· long methods contain many lines of code;
· long methods tend to have many parameters.

During the manual labeling phase, each student individually evaluated each selected instance, by inspecting the code
with the only support of the Eclipse IDE. No metric values were supplied to the students to evaluate the code, and they
did not know the number of Advisors giving a positive evaluation. In the case individual evaluations were in conflict, an
agreement was reached by discussion among the students, to decide which label to apply to the instances. For conflict,
we mean that there was no total agreement among all students. The procedure was structured to reduce the bias given by
the known sensibility of code smell detection based on single developer opinion (Mäntylä, 2004).

4.5 Experimentation setup
We experimented our approach by selecting a set of suitable machine learning algorithms and testing them on the gen-
erated datasets, by means of 10-fold cross validation.

For each code smell type, a dataset has been created: two datasets for class-level smells (Data Class and God Class) and
two for method-level smells (Feature Envy and Long Method).

In each dataset, each row represents class or method instances, and has one attribute for each metric. In addition, a
boolean feature represents the label that shows whether the instance is a code smell or not (obtained by mapping the se-
verity score, as explained in Section 4.4.2). Class and method instances have a different set of metrics; Figure 4 shows
the groups of attributes selected for each instance type.

Class Metrics Package Metrics Project Metrics

Class Metrics Package Metrics Project MetricsMethod Metrics

Class Metrics Instance

Method Metrics Instance

Figure 4 Class and Method Metrics Instance

For each instance (class or method), the metrics of the respective containers are included in the features. The contain-
ment relation defines that a method is contained in a class, a class is contained in a package, and a package is contained
in a project. The inclusion of the metrics of containers allows exploiting the interaction (if existing) among the features
of the classified element and the ones of its containers. The combination of different metrics could better discriminate
the class that occurs in the training data, increasing the quality of the classification results as well.

In the set of supervised classification algorithms we selected, we can find algorithms used in the literature for software
engineering tasks and algorithms able to produce human-readable models. Moreover, the set of selected algorithms co-
vers many different machine learning approaches, i.e., decision trees, rule learners, support vector machines, bayesian
networks. The algorithms’ implementation is the one available in Weka (Hall et al., 2009). In the following, we report
the list of the selected algorithms, with a short description:

· J48 is an implementation of the C4.5 decision tree. This algorithm produces human understandable rules for
the classification of new instances. The Weka implementation offers three different approaches to compute the
decision tree, based on the types of pruning techniques: pruned, unpruned and reduced error pruning. In the
experimentation, all the available pruning techniques were used, and reported as separated classifiers.

· JRip is an implementation of a propositional rule learner. It is able to produce simple propositional logic rules
for the classification, which are understandable to humans and can be simply translated into logic program-
ming.

· Random Forest is a classifier that builds many classification trees as a forest of random decision trees, each
one using a specific subset of the input features. Each tree gives a classification (vote) and the algorithm
chooses the classification having most votes among all the trees in the forest.

· Naïve Bayes is the simplest probabilistic classifier based on applying Bayes' theorem. It makes strong assump-
tions on the input: the features are considered conditionally independent among each other.

· SMO is an implementation of John Platt’s sequential minimal optimization algorithm to train a support vector
classifier. In the experimentation, RBF (Radial Basis Function) kernel and Polynomial kernel were used in
combination with this classifier.

· LibSVM is an integrated software for support vector classification. It is available for Weka by using an exter-
nal adapter. Two support vector machine algorithms are experimented (C-SVC, ν-SVC), in combination with
four different kernels (Linear, Polynomial, RBF, Sigmoid).

The listed classifiers were also combined with the AdaBoostM1 (Freund and Schapire, 1996) boosting technique. This
method combines multiple algorithms of the same type. Through an iterative process, each new model is influenced by
the performances of those previously built. AdaBoostM1, at each iteration, builds the input model and assigns a greater
weight to those instances that are harder to classify. Therefore, the final classification result depends on the weights
given to the input instances.

The cross validation experiment has the goal of finding the best algorithm, in its best setup, with respect to some per-
formance measures. We applied three standard performance measures: accuracy, F-Measure, and Area Under ROC.
These three measures express different point of views of the performances of a predictive model, and use a single num-
ber to express a whole performance measure. This is in contrast, e.g., with precision and recall, which must be consid-
ered together to better understand the performances of a model.

A short description of these estimators is reported below.

Accuracy is the proportion of correctly classified instances in the positive and negative class. This performance index is
one of the simplest performance measures for a classification task. Usually, accuracy is never reported alone because,
when the positive and negative classes are unbalanced (small number of positive instances and a large number of nega-
tive instances) the result undergoes a severe distortion. That never occurs in our experiments, because all datasets are
balanced.

The F-measure is defined (in the basic version) as the harmonic mean of precision and recall. Precision is the fraction of
positive-classified instances that are really positive, whereas recall is the fraction of really-positive instances that are
classified as positive. These two performance indexes tend to be in contrast with one another and the purpose of F-
Measure is to find a trade-off.

The last performance index is the area under ROC (Receiver Operating Characteristic). ROC is a plot of true positive
rate against false positive rate as the discrimination threshold of the classifier is varied. The area under ROC gets close
to value 1 when the discrimination performs better, while a bad classification brings values close to 0.5.

Every algorithm was applied in different configurations to each dataset, by means of 10-fold cross validation, and the
performances obtained on each fold were recorded. Then, by means of the Wilcoxon signed rank test (see Section 5.2),
the performances were compared, to extract the set of models having the best performances.

5 Experimentations and Results
In this section, we describe the data we collected, the experiments we performed on them, and their outcomes.

5.1 Results of Advisors and manual labeling process
Here we present the results of the labeling process that leads to the dataset used as an input for our machine learning al-
gorithms. Section 4.4 previously described the labeling process.

5.1.1 Advisor results
Table 7 shows the number and the percentage of instances for each dataset, according to the number of Advisors indi-
cating a code smell, i.e., a positive result. It is evident that the number of instances with three positive results of Advi-
sors is very low, because some Advisor rules (in particular for data class) are radically different. Therefore, the proba-
bility that all Advisors give positive outcomes is very low. When the number of positive Advisors results decreases, the
number of the instances increases, without following a particular law.

As the table shows, the number of the instances is very large when the number of positive results of Advisors is equal to
zero. This is due to the distribution of the class/method affected by code smells, which is unbalanced and in favor of the
instances that are not code smells. However, the Advisors results are subject to false positive results that may signifi-
cantly influence the obtained results. For example, the high number of instances detected as Feature Envy with a single
Advisor suggests that there may be numerous false positives.

Table 7 - Number of instances according to the number of smell detections of Advisor

Number of Advisors
indicating a smell

Number / percentage of smelly instances on datasets
Data Class God Class Feature Envy Long Method

3 2 / 0.004% 102 / 0.199% 0 166 / 0.044%
2 286 / 0.587% 425 / 0.829% 587 / 0.157% 1,514 / 0.404%
1 4,377 / 8.987% 1,319 / 2.573% 89,580 / 23.902% 3,693 / 0.985%
0 44,041 / 90.422% 49,418 / 96.399% 284,621 / 74.942% 369,415 / 98.566%

5.1.2 Manual labeling of results
The results of Table 7 are used to produce stratified samples for the manual labeling process, as explained in Section
4.4. Table 8 shows the number of instances manually labeled as affected or not affected by a smell for each dataset,
with respect to the number of Advisors indicating a code smell in a particular instance.

The instances selected during the labeling process with three positive results of Advisors have been labeled as smelly,
except one for God Class dataset. As expected, when the number of positive results of Advisor decreases, the number of
smelly instances decreases. Even when the number of positive results of Advisor is zero, some instances have been la-
beled as smelly except for Long method, in which all the instances have been labeled as non-smelly. This result indi-
cates for Long Method a strong agreement between the negative results of the Advisors and the results obtained with the
manual validation.

Table 8 – Manually labeled instances according to the number of positive smell outcomes of Advisors

Number of Advisors
indicating a smell

Number of SMELLY/NON-SMELLY instances on datasets
Data Class God Class Feature Envy Long Method

3 2/0 69/1 - 84/0
2 97/22 109/18 136/8 133/15
1 36/112 22/126 56/169 32/116
0 9/152 4/144 37/111 0/166

Overall, 1986 instances were manually labeled (826 positive and 1160 negative instances), see Table 9. For each code
smell, a dataset with 140 positive instances and 280 negative instances (420 instances) was selected. For each project,
the positive label and negative instances are randomly sampled until they reach the desired number of labeled instances.

Table 9 - Evaluated instances summary on datasets

Dataset Candidates Evaluated Correct Incorrect
Data Class 48,706 430 144 286
God Class 51,264 493 204 289

Feature Envy 374,788 517 229 288
Long Method 374,788 546 249 297

Total 1,986 826 1,160

5.2 Training phase with search of best parameter setting
The search for the best parameters of the machine learning algorithm is a difficult task in terms of computation com-
plexity, time and efforts. Each algorithm has a set of parameters, each one having its domain, which can be of different
types (i.e., continuous, discrete, boolean and nominal), making the entire set of parameters of a single algorithm a large
space to explore. Furthermore, some parameters are more relevant than others and their optimal choice cannot be known
a priori as they depend on the dataset.

Grid-search (Hsu et al., 2003) is the traditional way of exploring the parameter space and it was adopted. Additionally,
there are several other techniques to perform parameter optimization, e.g., simulated annealing (Dekkers and Aarts,
1991), genetic algorithms (Goldberg, 1989). The grid search was chosen for two reasons. First, the other methods,

which avoid doing an exhaustive parameter search by approximations or heuristics, are not totally safe, i.e., they do not
guarantee that unexplored combinations are worse than the experimented ones, and it is not possible to understand the
performances of non-optimal solutions. Second, the grid-search can be easily parallelized because each parameter con-
figuration is independent. Many of the advanced methods are iterative processes that can be hardly parallelized. Thus,
the grid-search technique is straightforward and very effective. Its only disadvantage is that it is time-consuming.

In the grid search, numeric parameters are discretized in a fixed number of values, equally distributed in a certain range;
the possible values of nominal and boolean parameters are assigned to a set of discrete numbers. For each possible
combination of parameters, an algorithm is tested by performing 10-fold cross-validation tests with 10 repetitions, one
for each different randomization of the dataset (100 runs for each combination). The cross validation procedure has
been selected because it is a standard, which guarantees a stratified sampling of the dataset (Bengio and Grandvalet,
2004) (Stone, 1974) and reduces the overfitting phenomenon (Cohen and Jensen, 1997). A high number of repetitions is
needed to guarantee a good statistical validity of performance values. Each run produces a set of performance values
(i.e., accuracy, precision, recall) that are analyzed. We would like to underline that we treat classifier models as black-
box implementations in this regards. The whole parameter selection procedure is set to avoid depending on the particu-
lar implementation issues of each algorithm. We simply picked up a widely known and free machine learning library as
Weka and applied the selected techniques, which are well known. Our goal is to test known machine learning approach-
es on this problem, and not defining specific techniques for dealing with this kind of data.

In our experiments, we did not exploit data pre-processing strategies, and in particular we did not try to compare the re-
sults obtained through different pre-processing techniques. The only exception are SVM. This class of models is known
to be sensible to the scale of data, and for this reason normalization or standardization are often applied in combination
with these algorithms. For this reason, we added a normalized and a standardized version of the dataset when applying
SVM. These alternatives were treated as additional categorical parameters (e.g., 0: no-process, 1: normalize, 2: stand-
ardize) in the parameter selection procedure. Additional pre-processing strategies (e.g., feature selection) were not taken
into consideration, and may be experimented in future work; please see further discussion of this in Section Experi-
ments Limitations 6.3.

Once the results of combinations of parameters for each algorithm are computed, it is necessary to choose comparison
criteria and a parameter estimator for the comparison of values in order to find the best combination. There are several
statistical techniques to compare classifiers performance (Demšar, 2006), which are parametric and non-parametric
tests. It is not always easy to identify the most suitable test in the context, because, according to the data distribution, a
test may be more appropriate than another one.

The selected comparison standard is the Wilcoxon signed rank test (Hollander et al., 2014). It is a non-parametric test,
which allows comparing each pair of configuration parameters of the algorithms. It can be used to test if the two algo-
rithms’ performances are equal or if one is greater than the other. If the test tells one algorithm configuration has higher
performance than the other, the former is the winner and the other algorithm is the loser. If the test tells the two perfor-
mances are not distinguishable, the algorithms neither win nor lose. Finally, the results of all tests produce a ranking.
Configurations are ordered according to the difference between the number of winner and loser configurations. The se-
lected parameter estimator value is accuracy: it represents the percentage of correctly classified instances, both in the
positive and negative class. Because all our datasets are balanced, it is possible to use accuracy in order to compare the
performance results. The tests have been performed with a significance level equal to 0.05.

Our comparisons were demanding in terms of computation efforts and resources, as some algorithms have a large num-
ber of different combinations of parameters and need to perform millions of comparisons before they can produce the
ranking result. In order to overcome this issue, we created a filter capable of decreasing the number of comparisons to
be tested. All parameter combinations where the average accuracy of a parameter combination was less than the total
average accuracy of all parameter combinations were excluded. This allowed us to remove roughly 50% of the parame-
ter combinations, reducing the number of comparisons by roughly 75%. With the remaining configurations, we per-
formed first a ranking (wins minus losses) test of all configurations of each algorithm. The winner configuration of each
algorithm was chosen to be compared in another ranking test with the winners of all the other algorithms. As a conse-
quence, in the final round, 32 algorithms were compared for each code smell. This selection procedure reduced the
number of performed tests to a manageable number.

For some algorithms, the ranking results gave no winners and no losers, whereas, for others, small subsets of configura-
tion results have the same ranking values, making it difficult to determine a true winner. In these cases, the edit distance
among parameter configurations has been calculated to select one of the configurations. This value is an integer number
that represents the edit distance between each configuration of parameters and the default parameter configuration. The
default parameter configuration has been chosen as a reference because default parameter values are well known and
more stable than any other configuration. The configuration with the smallest distance form the default represents the
best algorithm parameter combination.

5.3 Presentation of the obtained performances
Once the best combinations of parameters for each algorithm and dataset are found (32 algorithm for each datasets), the
Wilcoxon signed rank tests are performed in order to find the best algorithm for each dataset, through a ranking given
by the wins-losses difference between each couple of algorithms. In this section, we report the results of this analysis.

5.3.1 Algorithms – Winners
We report the top 10 ranked algorithms for each code smell in Tables 10, 11, 12, 13. For each algorithm, we report the
number of significant wins-losses difference against the other 31, and the respective percentage. Moreover, we add the
Cliff delta effect size measure, in terms of value and magnitude. The effect size is computed considering, for each algo-
rithm, its 100 accuracy values (treatment group) against the 3100 accuracy values of the remaining algorithms (control
group).

The best algorithm on the Data Class dataset (Table 10) is B-J48 Pruned4. This algorithm wins 29 times against the oth-
er algorithms, with 94% of victories. Random Forest and B-JRip are the second and third best algorithms, with 26 victo-
ries. The number of wins decreases up to the tenth algorithm that has 14 victories. The top 2 algorithms have a “large”
effect size, meaning that there is a tangible advantage of using them instead of the remaining 30.

Naïve Bayes is the best algorithm on the God Class dataset (Table 11) with 24 (77%) victories. All the three variants of
J48 are the second best algorithms with 21 victories, and JRip, B-J48 Pruned, B-J48 Reduced Error Pruning and Ran-
dom Forest are the third best algorithms with 20 victories. The last two best algorithms are B-Naïve Bayes and B-
Random Forest with 19 victories. Only the first algorithm has a “medium” effect size, all the others are reported as
“small”. On this dataset, it seems that the choice of the algorithm has no great influence on the results.

As regards the Feature Envy dataset (Table 12), the winning algorithm is B-J48 Pruned, with 26 victories, followed by
B-J48 Unpruned, with 25 victories. B-Random Forest, B-JRip and J48 Unpruned algorithms are classified at the third
place with 17 victories. The first nine ranked algorithms have “medium” effect size; the remaining one has “small” ef-
fect size. These top 10 algorithms appear to be similarly better than the ones out of table.

For Long Method (Table 13) the results did not identify a single winning algorithm configuration. B-J48
Pruned/Unpruned, B-Random Forest, B-JRip are the co-winner algorithms with 25 victories. Random Forest follows
with 24 victories, and B-J48 Reduced Error Pruning. The first 6 algorithms have “medium” effect size, while the re-
maining are “small”.

4 B-J48 Pruned is the Pruned variant of J48, with AdaBoostM1 applied. All algorithms with a “B-” prefix in the name
are boosted algorithms.

Table 10 - The first 10 best algorithms on Data Class

Classifier Wilcoxon victories Cliff Delta effect size
Number Percentage Value Magnitude

B-J48 Pruned 29 94% 0,48 large
Random Forest 26 84% 0,49 large

B-JRip 26 84% 0,43 medium
B-J48 Unpruned 24 77% 0,40 medium

B-Random Forest 24 77% 0,37 medium
J48 Pruned 23 74% 0,37 medium

J48 Unpruned 20 65% 0,32 small
JRip 17 55% 0,28 small

B-J48 Reduced Error Pruning 16 52% 0,27 small
J48 Reduced Error Pruning 14 45% 0,25 small

Table 11 - The first 10 best algorithms on God Class

Classifier Wilcoxon victories Cliff delta effect size
Number Percentage Value Magnitude

Naïve Bayes 24 77% 0,33 medium
J48 Pruned 21 68% 0,29 small

J48 Unpruned 21 68% 0,29 small
J48 Reduced Error Pruning 21 68% 0,28 small

Random Forest 20 65% 0,29 small
B-J48 Pruned 20 65% 0,29 small

B-J48 Reduced Error Pruning 20 65% 0,28 small
JRip 20 65% 0,25 small

B-Random Forest 19 61% 0,22 small
B-Naïve Bayes 19 61% 0,21 small

Table 12 - The first 10 best algorithms on Feature Envy

Classifier Wilcoxon victories Cliff delta effect size
Number Percentage Value Magnitude

B-J48 Pruned 26 84% 0,46 medium
B-J48 Unpruned 25 81% 0,43 medium

B-JRip 23 74% 0,44 medium
B-Random Forest 23 74% 0,42 medium

J48 Unpruned 23 74% 0,37 medium
Random Forest 22 71% 0,39 medium

J48 Reduced Error Pruning 20 65% 0,35 medium
B-J48 Reduced Error Pruning 19 61% 0,34 medium

J48 Pruned 18 58% 0,35 medium
SMO Poly Kernel 16 52% 0,28 small

Table 13 - The first 10 best algorithms on Long Method

Classifier Wilcoxon victories Cliff delta effect size
Number Percentage Value Magnitude

B-J48 Unpruned 25 81% 0,46 medium
B-Random Forest 25 81% 0,43 medium

B-J48 Pruned 25 81% 0,40 medium
B-JRip 25 81% 0,40 medium

Random Forest 24 77% 0,42 medium
B-J48 Reduced Error Pruning 23 74% 0,36 medium

JRip 22 71% 0,32 small
J48 Pruned 18 58% 0,33 small

J48 Unpruned 16 16% 0,32 small
SMO Poly Kernel 13 42% 0,21 small

Table 14 shows the best algorithms and Table 15 algorithms with at least one top ten ranking. From the tables we can
see that J48 algorithm and its variants perform very well. Overall it, B-J48 Pruned is the best algorithm with 2 victories,
with one 3rd and one 8th place. The second best algorithm is Random Forest with a second place, two 5th places and a
6th place. B-J48 Unpruned and B-JRip performed well on three datasets, but did not enter the top ten for God Class, so
we consider their overall performances lower than the B-J48 Pruned and Random Forest. In the first 10 best algorithms
on all code smell datasets, SVM algorithms are not present, except for SMO Poly Kernel algorithm, only on Feature
Envy and Long Method, on the 10th position with a low number of wins. Table 14 sums up the choice of the best algo-
rithms.

Table 14 - Best algorithms chosen for each Code Smell

Best classifiers selected
Data Class God Class Feature Envy Long Method

B-J48 Pruned Naïve Bayes B-J48 Pruned B-J48 Unpruned

Table 15 - Algorithms with at least one top ten rank and their ranks (note: ties exist in the table)

Classifier Data class God class Feature Envy Long Method
B-J48 Pruned 1 6 1 3

B-J48 Reduced Error Pruning 9 7 8 6
B-J48 Unpruned 4 - 2 1

B-JRip 3 - 3 4
B-Naïve Bayes - 10 - -

B-Random Forest 5 9 4 2
J48 Pruned 6 2 9 8

J48 Reduced Error Pruning 10 4 7 -
J48 Unpruned 7 3 5 9

JRip 8 8 - 7
Naïve Bayes - 1 - -

Random Forest 2 5 6 5
SMO Poly Kernel - - 10 10

5.3.2 Algorithm results - Cross validation Accuracy, F-measure, Area under ROC

The best algorithms configurations have been experimented on each code smell dataset, to evaluate the performance of
the algorithms. Three performance estimators have been selected to compare the experimented results: Accuracy, F-
measure and Area under ROC.

Tables 16, 17, 18 and 19 report, for each code smell dataset, the performance estimator values of the algorithms with
best configuration that have been produced with a 10-fold cross-validation after 10 repetitions, one for each different
randomization of the dataset (100 runs for each algorithm). The average has been calculated on performance estimator
values of all runs, to have a single performance value with a good statistical validity.

The cross validation results on Data Class (Table 16), God Class (Table 17) and Long Method (Table 19) all have very
high accuracy values that vary between 95.15% - 99.02%, 93.12% -97.55%, 95.93% - 99.43% respectively. For Feature
Envy (Table 18), the accuracy values have higher variation between 85.50% - 96.84%. Regarding the best algorithms,
the results are similar to the one presented in the previous section, i.e. J48 family of algorithms and Random Forest are
the top performing algorithms for all code smells while the SVM algorithms are the worst performers. There appears to
be no clear benefit in using a boosting algorithm (algorithms name starting with B-). Sometimes the boosting algorithm
improves performance but in the other times it makes the performance worse. The standard deviations of accuracy are
low for all the algorithms and they increase when they get close to the lowest accuracy values. Furthermore, the values
of F-Measure and Area under ROC are high and their standard deviations are close to zero

In view of the obtained results, it is possible to conclude that all the best algorithm configurations have high perfor-
mances, regardless of the type of code smell. The SVM algorithms tend to give worse performances than the other algo-
rithms, regardless of the type of code smell and of the boosting technique. The algorithms J48, JRip, Naive Bayes (ex-
cept for the code smell Feature Envy) and Random Forest gave the best performances. The application of the boosting
technique on the algorithms does not always improve their performances, and in some cases, it makes them worse. De-
spite this, the performances of the algorithms are very high.

Table 16 Data class – Cross validation results and Entire data set results

Classifier

Cross validation - Manually validated data set Entire data set (Qualitas Corpus)

Accuracy
Std.
dev. F measure

Std.
dev.

Area under
 ROC Std. dev.

Code
Smell

Percentage of
Code Smell

Kappa B-J48 Pruned (Data
Class)

B -J48 Pruned 99.02% 1.51 99.26% 1.15 0.9985 0.0064 2,230 4.58% -
B-J48 Unpruned 98.67% 1.79 98.99% 1.86 0.9984 0.0064 2,158 4.43% 0.864

B-J48 Reduce Error Pruning 98.07% 2.47 98.55% 1.36 0.9951 0.0103 2,118 4.35% 0.895
B-JRip 98.83% 1.60 99.12% 1.21 0.9959 0.0111 1,864 3.83% 0.808

B-Random Forest 98.57% 1.68 98.94% 2.08 0.9993 0.0017 1,899 3.90% 0.744
B-Naïve Bayes 97.33% 2.29 98.02% 2.01 0.9955 0.0091 2,141 4.40% 0.765

B-SMO RBF Kernel 97.14% 2.61 97.86% 2.11 0.9782 0.0286 3,697 7.59% 0.496
B-SMO Poly Kernel 96.90% 2.25 97.65% 2.35 0.9862 0.0173 3,388 6.96% 0.463

B-LibSVM C-SVC Linear Kernel 95.14% 2.73 96.34% 2.08 0.9796 0.0230 3,388 6.96% 0.356
B-LibSVM C-SVC Polynomial Kernel 95.79% 2.67 96.83% 1.94 0.9858 0.0202 3,388 6.96% 0.437

B-LibSVM C-SVC Radial Kernel 95.95% 2.79 96.96% 2.01 0.9871 0.0172 3,237 6.65% 0.451
B-LibSVM C-SVC Sigmoid Kernel 95.05% 3.10 96.30% 2.34 0.9745 0.0255 6,005 12.33% 0.274

B-LibSVM ν-SVC Linear Kernel 96.10% 2.75 97.06% 1.70 0.9863 0.0179 4,643 9.53% 0.378
B-LibSVM ν-SVC Polynomial Kernel 96.48% 2.53 97.33% 1.24 0.9888 0.0171 3,258 6.69% 0.42

B-LibSVM ν-SVC Radial Kernel 96.45% 2.68 97.34% 1.71 0.9844 0.0195 3,083 6.33% 0.429
B-LibSVM ν-SVC Sigmoid Kernel 94.81% 3.11 96.13% 1.95 0.9532 0.0342 2,755 5.66% 0.354

J48 Pruned 98.55% 1.84 98.91% 1.39 0.9864 0.0219 2,634 5.41% 0.801
J48 Unpruned 98.38% 1.87 98.79% 1.90 0.9873 0.0208 1,914 3.93% 0.831

J48 Reduced Error Pruning 97.98% 2.46 98.46% 1.40 0.9839 0.0211 2,634 5.41% 0.801
JRip 98.17% 2.18 98.62% 2.07 0.9809 0.0241 2,364 4.85% 0.61

Random Forest 98.95% 1.51 99.29% 2.05 0.9996 0.0014 2,176 4.47% 0.766
Naïve Bayes 96.12% 2.95 97.04% 1.95 0.9938 0.0099 4,344 8.92% 0.529

SMO RBF Kernel 97.05% 2.38 97.78% 2.11 0.9686 0.0286 4,158 8.54% 0.45
SMO Poly Kernel 96.60% 2.76 97.41% 2.13 0.9912 0.0138 3,591 7.37% 0.41

LibSVM C-SVC Linear Kernel 95.76% 2.79 96.86% 2.00 0.9853 0.0146 3,422 7.03% 0.38
LibSVM C-SVC Polynomial Kernel 95.98% 2.77 97.02% 2.12 0.9871 0.0140 3,155 6.48% 0.406

LibSVM C-SVC Radial Kernel 96.00% 2.63 97.01% 1.97 0.9915 0.0100 2,874 5.90% 0.443
LibSVM C-SVC Sigmoid Kernel 95.79% 2.83 96.87% 1.65 0.9831 0.0162 3,152 6.47% 0.364

LibSVM ν-SVC Linear Kernel 95.57% 2.86 96.70% 2.27 0.9813 0.0180 3,005 6.17% 0.371
LibSVM ν-SVC Polynomial Kernel 95.98% 2.71 97.02% 1.12 0.9863 0.0144 3,024 6.21% 0.387

LibSVM ν-SVC Radial Kernel 96.52% 2.81 97.39% 2.12 0.9896 0.0143 2,831 5.81% 0.509
LibSVM ν-SVC Sigmoid Kernel 95.90% 2.65 96.96% 1.79 0.9822 0.0169 3,127 6.42% 0.366

Table 17 God Class – Cross validation results and Entire data set results

Classifier

Cross validation - Manually validated data set Entire data set (Qualitas Corpus)

Accuracy
Std.
dev. F measure

Std.
dev.

Area under
 ROC Std. dev.

Code
Smell

Percentage of
Code Smell Naive Bayes (God Class)

B -J48 Pruned 97.02% 2.82 97.75% 2.14 0.9923 0.0125 4,309 8.41% 0.778
B-J48 Unpruned 97.02% 2.88 97.75% 2.00 0.9925 0.0135 4,076 7.95% 0.764

B-J48 Reduce Error Pruning 97.26% 2.64 97.94% 2.18 0.9861 0.0230 3,547 6.92% 0.739
B-JRip 96.90% 3.15 97.67% 2.39 0.9916 0.0137 3,024 5.90% 0.703

B-Random Forest 96.95% 2.86 97.70% 2.67 0.9890 0.0167 3,637 7.09% 0.779
B-Naïve Bayes 97.54% 2.65 97.70% 2.72 0.9871 0.0186 3,437 6.70% 0.756

B-SMO RBF Kernel 94.62% 3.34 95.98% 2.89 0.9838 0.0186 3,937 7.68% 0.558
B-SMO Poly Kernel 94.33% 3.58 95.75% 2.48 0.9799 0.0221 4,791 9.35% 0.539

B-LibSVM C-SVC Linear Kernel 94.64% 3.52 95.97% 2.79 0.9829 0.0209 3,930 7.67% 0.548
B-LibSVM C-SVC Polynomial Kernel 94.21% 3.61 95.66% 3.04 0.9792 0.0235 6,340 12.37% 0.498

B-LibSVM C-SVC Radial Kernel 94.36% 3.80 95.76% 2.40 0.9801 0.0222 4,839 9.44% 0.545
B-LibSVM C-SVC Sigmoid Kernel 94.57% 3.30 95.93% 2.68 0.9837 0.0207 2,374 4.63% 0.53

B-LibSVM ν-SVC Linear Kernel 94.52% 3.68 95.88% 2.02 0.9819 0.0231 4,596 8.97% 0.533
B-LibSVM ν-SVC Polynomial Kernel 93.12% 4.01 94.84% 2.17 0.9766 0.0241 5,744 11.20% 0.493

B-LibSVM ν-SVC Radial Kernel 94.10% 3.15 95.57% 2.72 0.9778 0.0241 5,440 10.61% 0.495
B-LibSVM ν-SVC Sigmoid Kernel 94.02% 3.51 95.52% 2.50 0.9818 0.0201 3,028 5.91% 0.472

J48 Pruned 97.31% 2.51 97.98% 1.89 0.9783 0.0250 3,547 6.92% 0.739
J48 Unpruned 97.31% 2.51 97.98% 1.93 0.9783 0.0250 2,308 4.50% 0.61

J48 Reduced Error Pruning 97.29% 2.52 97.94% 1.89 0.9742 0.0263 3,547 6.92% 0.739
JRip 97.12% 2.70 97.81% 2.48 0.9717 0.0285 3,547 6.92% 0.739

Random Forest 97.33% 2.64 97.98% 2.24 0.9927 0.0151 3,695 7.21% 0.814
Naïve Bayes 97.55% 2.51 98.14% 2.20 0.9916 0.0148 4,936 9.63% -

SMO RBF Kernel 95.43% 3.26 96.62% 2.40 0.9427 0.0407 4,782 9.33% 0.533
SMO Poly Kernel 95.71% 3.14 96.83% 2.40 0.9459 0.0396 5,603 10.93% 0.531

LibSVM C-SVC Linear Kernel 95.02% 3.37 96.31% 2.41 0.9903 0.0123 2,199 4.29% 0.491
LibSVM C-SVC Polynomial Kernel 95.76% 3.08 96.89% 2.23 0.9892 0.0124 5,239 10.22% 0.453

LibSVM C-SVC Radial Kernel 95.76% 2.97 96.87% 2.62 0.9924 0.0093 4,780 9.32% 0.548
LibSVM C-SVC Sigmoid Kernel 95.12% 3.22 96.38% 2.08 0.9904 0.0136 2,429 4.74% 0.528

LibSVM ν-SVC Linear Kernel 95.48% 3.24 96.65% 1.93 0.9908 0.0135 2,806 5.47% 0.549
LibSVM ν-SVC Polynomial Kernel 95.62% 3.29 96.78% 2.01 0.9913 0.0121 4,338 8.46% 0.471

LibSVM ν-SVC Radial Kernel 95.76% 3.02 96.87% 2.32 0.9925 0.0091 4,948 9.65% 0.536
LibSVM ν-SVC Sigmoid Kernel 94.90% 3.53 96.23% 2.42 0.9903 0.0141 2,908 5.67% 0.552

Table 18 Feature Envy – Cross validation results and Entire data set results

Classifier

Cross validation - Manually validated data set Entire data set (Qualitas Corpus)

Accuracy
Std.
dev. F measure

Std.
dev.

Area under
 ROC Std. dev.

Code
Smell

Percentage of
Code Smell Kappa B-JRip

B -J48 Pruned 96.62% 2.78 97.41% 2.16 0.9900 0.0144 16,729 4.46% 0.728
B-J48 Unpruned 96.50% 2.96 97.37% 2.37 0.9899 0.0137 14,908 3.98% 0.791

B-J48 Reduce Error Pruning 95.90% 3.11 96.90% 2.24 0.9866 0.0185 16,300 4.35% 0.736
B-JRip 96.64% 2.84 97.44% 2.16 0.9891 0.0150 12,645 3.37% -

B-Random Forest 96.40% 2.70 97.29% 2.73 0.9886 0.0154 14,804 3.95% 0.781
B-Naïve Bayes 91.50% 4.20 93.56% 2.93 0.9527 0.0391 94,426 25.19% 0.16

B-SMO RBF Kernel 93.88% 3.20 95.40% 3.17 0.9369 0.0379 113,340 30.24% 0.152
B-SMO Poly Kernel 92.05% 3.50 94.06% 3.07 0.9541 0.0364 40,279 10.75% 0.352

B-LibSVM C-SVC Linear Kernel 92.57% 3.60 94.46% 3.01 0.9668 0.0279 61,059 16.29% 0.29
B-LibSVM C-SVC Polynomial Kernel 91.76% 3.92 93.82% 2.82 0.9706 0.0267 42,443 11.32% 0.318

B-LibSVM C-SVC Radial Kernel 92.05% 4.24 94.06% 2.93 0.9707 0.0260 36,041 9.62% 0.319
B-LibSVM C-SVC Sigmoid Kernel 88.57% 4.12 91.59% 3.08 0.9199 0.0487 58,607 15.64% 0.253

B-LibSVM ν-SVC Linear Kernel 92.02% 3.98 94.05% 3.19 0.9691 0.0240 57,130 15.24% 0.322
B-LibSVM ν-SVC Polynomial Kernel 91.86% 3.69 93.88% 2.05 0.9710 0.0230 46,451 12.39% 0.292

B-LibSVM ν-SVC Radial Kernel 91.95% 3.89 93.97% 2.66 0.9723 0.0253 42,372 11.31% 0.304
B-LibSVM ν-SVC Sigmoid Kernel 89.07% 4.13 91.97% 2.43 0.9080 0.0494 66,365 17.71% 0.219

J48 Pruned 95.95% 2.77 96.91% 2.16 0.9647 0.0283 11,280 3.01% 0.914
J48 Unpruned 96.12% 2.71 97.04% 2.17 0.9661 0.0280 11,280 3.01% 0.914

J48 Reduced Error Pruning 95.93% 2.80 96.89% 2.10 0.9646 0.0287 13,049 3.48% 0.879
JRip 95.67% 3.13 96.69% 2.34 0.9584 0.0335 13,588 3.63% 0.815

Random Forest 96.26% 2.86 97.19% 2.57 0.9902 0.0122 13,294 3.55% 0.836
Naïve Bayes 85.50% 6.09 89.17% 2.46 0.9194 0.0481 106,900 28.52% 0.113

SMO RBF Kernel 93.83% 3.39 95.36% 3.15 0.9309 0.0382 85,255 22.75% 0.188
SMO Poly Kernel 95.45% 3.61 96.58% 2.80 0.9484 0.0410 51,444 13.73% 0.328

LibSVM C-SVC Linear Kernel 94.86% 3.10 96.16% 2.87 0.9803 0.0227 37,536 10.02% 0.421
LibSVM C-SVC Polynomial Kernel 93.64% 3.45 95.26% 2.55 0.9785 0.0213 37,777 10.08% 0.364

LibSVM C-SVC Radial Kernel 94.14% 3.27 95.62% 3.04 0.9802 0.0191 27,594 7.36% 0.403
LibSVM C-SVC Sigmoid Kernel 89.95% 4.23 92.57% 2.43 0.9587 0.0275 51,191 13.66% 0.307

LibSVM ν-SVC Linear Kernel 94.67% 3.66 96.00% 4.59 0.9819 0.0200 26,055 6.95% 0.461
LibSVM ν-SVC Polynomial Kernel 93.62% 3.82 95.24% 2.15 0.9784 0.0206 32,989 8.80% 0.397

LibSVM ν-SVC Radial Kernel 94.05% 3.38 95.55% 2.76 0.9793 0.0193 26,221 7.00% 0.411
LibSVM ν-SVC Sigmoid Kernel 90.02% 4.09 92.62% 2.59 0.9592 0.0267 52,813 14.09% 0.299

Table 19 – Long Method - Cross validation results and Entire data set results

Classifier

Cross validation - Manually validated data set Entire data set (Qualitas Corpus)

Accuracy
Std.
dev. F measure

Std.
dev.

Area under
 ROC Std. dev.

Code
Smell

Percentage of
Code Smell

Kappa B-J48
Pruned

B -J48 Pruned 99.43% 1.36 99.49% 1.00 0.9969 0.0127 4,539 1.21% -
B-J48 Unpruned 99.20% 1.18 99.63% 0.99 0.9969 0.0126 4,884 1.30% 0.883

B-J48 Reduce Error Pruning 99.19% 1.31 99.39% 0.87 0.9967 0.0100 4,939 1.32% 0.909
B-JRip 99.03% 1.26 99.50% 0.94 0.9937 0.0144 4,863 1.30% 0.919

B-Random Forest 99.23% 1.17 99.57% 1.91 0.9998 0.0006 5,196 1.39% 0.89
B-Naïve Bayes 97.86% 2.37 98.35% 2.02 0.9950 0.0084 49,521 13.21% 0.292

B-SMO RBF Kernel 97.00% 2.49 97.75% 2.38 0.9930 0.0116 19,989 5.33% 0.424
B-SMO Poly Kernel 98.67% 1.76 99.00% 2.17 0.9852 0.0208 19,886 5.31% 0.379

B-LibSVM C-SVC Linear Kernel 96.86% 2.54 97.64% 2.11 0.9938 0.0104 11,143 2.97% 0.461
B-LibSVM C-SVC Polynomial Kernel 96.52% 2.70 97.41% 1.79 0.9927 0.0102 21,296 5.68% 0.388

B-LibSVM C-SVC Radial Kernel 95.93% 3.16 96.95% 2.08 0.9901 0.0117 47,177 12.59% 0.396
B-LibSVM C-SVC Sigmoid Kernel 96.74% 2.89 97.54% 2.01 0.9933 0.0099 16,454 4.39% 0.445

B-LibSVM ν-SVC Linear Kernel 96.74% 2.83 97.55% 1.85 0.9936 0.0104 10,148 2.71% 0.493
B-LibSVM ν-SVC Polynomial Kernel 96.90% 2.42 97.69% 0.88 0.9934 0.0107 22,431 5.98% 0.385

B-LibSVM ν-SVC Radial Kernel 96.76% 2.77 97.57% 1.32 0.9936 0.0094 14,829 3.96% 0.434
B-LibSVM ν-SVC Sigmoid Kernel 96.67% 2.69 97.50% 1.87 0.9849 0.0203 16,092 4.29% 0.523

J48 Pruned 99.10% 1.38 99.32% 1.04 0.9930 0.0151 5,048 1.35% 0.912
J48 Unpruned 99.05% 1.51 99.28% 1.54 0.9925 0.0168 5,048 1.35% 0.912

J48 Reduced Error Pruning 98.40% 2.02 98.80% 1.13 0.9868 0.0222 4,939 1.32% 0.909
JRip 99.02% 1.62 99.26% 1.79 0.9884 0.0181 5,322 1.42% 0.886

Random Forest 99.18% 1.20 99.54% 1.62 0.9998 0.0011 5,735 1.53% 0.806
Naïve Bayes 96.24% 2.39 97.09% 1.72 0.9921 0.0086 49,521 13.21% 0.292

SMO RBF Kernel 97.57% 2.02 98.17% 1.61 0.9732 0.0235 19,886 5.31% 0.446
SMO Poly Kernel 98.67% 1.76 99.00% 1.69 0.9852 0.0208 24,240 6.47% 0.379

LibSVM C-SVC Linear Kernel 97.07% 2.35 97.79% 1.58 0.9980 0.0035 20,366 5.43% 0.478
LibSVM C-SVC Polynomial Kernel 97.24% 2.17 97.94% 1.60 0.9956 0.0059 19,777 5.28% 0.402

LibSVM C-SVC Radial Kernel 96.38% 2.19 97.22% 1.63 0.9915 0.0091 76,715 20.47% 0.343
LibSVM C-SVC Sigmoid Kernel 97.21% 2.13 97.90% 1.24 0.9970 0.0053 13,611 3.63% 0.52

LibSVM ν-SVC Linear Kernel 97.31% 2.22 97.97% 1.88 0.9978 0.0044 18,589 4.96% 0.478
LibSVM ν-SVC Polynomial Kernel 97.36% 2.13 98.03% 0.90 0.9958 0.0056 19,730 5.26% 0.411

LibSVM ν-SVC Radial Kernel 97.43% 2.09 98.05% 1.32 0.9972 0.0045 21,537 5.75% 0.437
LibSVM ν-SVC Sigmoid Kernel 97.38% 2.17 98.03% 1.53 0.9979 0.0037 20,319 5.42% 0.467

5.3.3 Learning Curves
A learning curve depicts an improvement in performance on the vertical axis when there are changes in another parame-
ter, in our case the number of training samples. Figures 5, 6, 7 and 8 show the machine learning curves of the top 10 al-
gorithms with the best configurations for each code smell (see Tables 10, 11, 12 and 13 for the top 10 algorithms on
each dataset). Each curve plots the accuracy vs. the number of training examples. Each point of the curves represents
the average of the runs obtained by a 10-fold cross-validation with 10 repetitions, one for each different randomization
of the dataset (100 different runs). Each cross-validation was performed with different sizes of training dataset. Twenty
small datasets were created for each code smell by starting from 20 instances and increasing them by the same amount
until 420 instances were reached (the complete dataset). Each dataset has the same ratio of affected instances of the
larger datasets and the instances belong to different projects, in order to ensure a homogeneous distribution of the da-
tasets. The first point on the X-axis is equal to 18, because the 10-fold cross-validation procedure splits each fold into
two testing instances and 18 training in-stances. For each small dataset, the number of training instances is 90% of the
size of the datasets. For each code smell dataset, the obtained results are reported below.

Figure 5 – Learning curves of first 10 best algorithms on Data Class

Figure 6 - Learning curves of first 10 best algorithms on God Class

Figure 7 - Learning curves of first 10 best algorithms on Feature Envy

Figure 8 - Learning curves of first 10 best algorithms on Long Method

The learning curves of the algorithms on Data Class have a non-monotonic increasing trend. As it can be seen in Figure
5, the accuracies start to approach a constant value when the number of training instances is between 216 and 234.
When these thresholds are overcome, the accuracies tend to have a flat but slightly oscillatory trend, having more than
96% of accuracy values. The obtained results indicate that the learning rate of the curves are very similar to one another
and the number of training instances provided by the algorithms is enough to guarantee a good learning process.

The learning curves of the algorithms on God Class show an oscillatory trend that tends to fade away when the number
of training instances increases. As it can be observed from Figure 6, B-J48 Unpruned, J48 Reduced Error Pruning and
B-J48 Unpruned have the learning curves with the greatest fluctuations, whereas Naive Bayes is the algorithm with the
most constant fluctuation. The course of the accuracies becomes more stable when the number of training instances is
about 306. When this threshold is overcome, the oscillatory trend of the learning curves grows until it reaches the accu-
racy values that are between 96.5% and 97%.

The learning curves of the algorithms on Feature Envy (Figure 7) have a growing but oscillatory trend. Excluding the
trend of the learning curves until the first 54 training instances, they are all very similar in shape and trend, except for
the learning curve of the SMO Poly Kernel algorithm. In this case, the learning curve keeps growing but with an oscilla-
tory trend until it reaches the maximum value of the training instances, whereas the other algorithms tend to stabilize
when the number of the training instances is about 288. When this threshold is overcome, the accuracies of these algo-
rithms tend to have a flat but oscillatory trend with more than 94% of accuracy values.

The learning curves of the algorithms on Long Method (Figure 8) tend to have a growing but oscillatory trend. After the
algorithms have learned about 90 training instances, all the learning curves become similar in shape and trend, except
for the learning curves of the algorithms SMO Poly Kernel Error Pruning and J48 Pruned. The learning curve of B-J48
Reduced Error Pruning is different from the others because the accuracy values decrease when they get close to 162
training instances. They subsequently keep growing until they reach 306 training instances and remain constant with
slight variations. Indeed, the learning curve of B-J48 Pruned slightly differs from the other learning curves when the
values of the training instances range from 90 to 180. During this range, the accuracy values slightly decrease and then
increase progressively.

In view of the obtained results, it is possible to conclude that the learning curves of the top 10 algorithms have different
trends in dependence of the involved code smell dataset. For each code smell, the rates of the learning curves are very
similar to one another (except for SMO Poly Kernel on Feature Envy and Long Method dataset) and the number of the

training instances that have been used to train the algorithms seems to be high enough to guarantee a good learning pro-
cess.

5.3.4 Applying the algorithms to entire data set
Tables 16, 17, 18 and 19 report the results of applying the best algorithm configuration to the entire Qualitas Corpus da-
taset. Note: for the entire data set there is no manual validation, so the truth of the code smells in the entire data set is
unknown. The results tell us the number and percentage of instances affected by the code smell. Table 20 reports, for
each code smell, the algorithm with the best cross-validation performance and the algorithms reporting the highest and
lowest percentage of code smells. With every algorithm, the percentage of code smells detected on the entire dataset is
reported.

Table 20 Summary of code smells detected on the entire dataset

Code smell Winner algorithm Highest % algorithm Lowest % algorithm

Data Class B-J48 Pruned (4.58%) B-LibSVM C-SVC Sigmoid Kernel
(12.33%)

B-JRip (3.83%)

God Class Naïve Bayes (9.63%) B-LibSVM C-SVC Polynomial
Kernel (12.37%)

LibSVM C-SVC Sigmoid Kernel
(4.29%)

Feature Envy B-JRip (3.37%) B-SMO RBF Kernel (30.24%) J48 Pruned (3.01%)

Long Method B-J48 Pruned (1.21%) B-LibSVM C-SVC Polynomial
Kernel (20.47%)

B-J48 Pruned (1.21%)

In view of the obtained results, it is possible to conclude that the percentages of code smell instances vary according to
the machine-learning algorithm. The results show that J48, JRip and Random Forest detect an average lower percentage
of code smell instances than the other algorithms. The differences between the percentages of code smell instances de-
tected by the boosted algorithms and the corresponding non-boosted version significantly vary for each code smell. Ad-
ditionally, we saw that despite very small differences in the algorithms’ performance in the cross validation, the differ-
ences in the entire data set are larger, as the highest code smell percentage can be ten times larger than the smallest one.
Differences can be attributed to the lower prevalence of code smells in the entire data set.

5.4 Discussion about the extracted rules
The J48 and JRip algorithms provide, as output, human understandable detection rules, that are expressed through com-
binations of conditions or boolean logical propositions. The application of these machine learning algorithms has the
advantage of inferring the threshold values of the metrics in the detection rule. These techniques calibrate threshold val-
ues over a labeled dataset. With respect to the definition of thresholds by experts, this approach decreases the cases of
false negative code smells in which metric values are close to thresholds used in the detection rules, but not enough to
classify the instance as affected by code smell.

JRip provides a boolean condition based on the combination of a particular set of metrics values. If the condition is veri-
fied, JRip detects the instance as affected by the code smell. J48 provides a decision tree, where the leaves represent the
class labels (affected or not affected by smell) and the branches signify the conjunctions of metrics (nodes of the tree)
leading to those class labels. Each branch has a condition concerning a metric and an associated threshold value that de-
termines the navigability of the tree. Since, in our case, J48 produced relatively simple decision trees (with only one
leaf having TRUE label) we present only the path leading to this label with boolean logic. All the other paths end in the
FALSE label.

In the remainder of this section, the decision trees and the propositional logic rules with the best configurations on each
code smell, produced respectively by J48 Pruned and JRip, are reported. It is worth noting that we did not select neces-
sarily the best algorithm for each code smell, but the highest performing setup of JRip and J48, without boosting. Ac-
cording to the configuration of the selected parameters, the boosting technique generates 10 different decision trees (or
rule sets), which is too much to be reported in the text. Furthermore, J48 Pruned and JRip have so high performance
values that the detection rules deserve to be shown. For details on metrics, see the definitions reported on the web page
(http://essere.disco.unimib.it/reverse/MLCSD.html).

5.4.1 Data Class
For Data Class, J48 Pruned produces a decision tree expressed in Boolean logic as:

NOAM > 2 and WMCNAMM ≤ 21 and NIM ≤ 30.

The rule detects Data Class if the class has more than 2 accessor/mutator methods (NOAM metric), it is not very com-
plex (WMCNAMM metric) and does not have a very high number of inherited methods (NIM metric). The first two
conditions of the detection rule are partially included in the conceptual definition of Data Class reported in Section 3,
and the threshold values fall approximately in the expected range. The last condition does not have an apparent connec-
tion with the definition of the code smell. The threshold value of the NIM metric is about 70% of the maximum value
assumed by the metric in the entire dataset. Furthermore, this metric is represented in the decision tree as the ultimate
choice to discriminate whether the instance is affected by a code smell or not, i.e., as a leaf in the tree. As a conse-
quence, this metric identifies a part of the domain that is very limited and becomes discriminative only for few instanc-
es. Its presence can be justified by statistic dependence between the values of the metrics and, in particular, it could be
caused by the presence of some training instances bringing noise in the dataset.

For Data Class, JRip produces the following detection rule:

(WOC< 0.352941 and NOAM≥4 and RFC≤41) or (CFNAMM=0 and NOAM≥3) or (AMW≤1 and NOPVA≥3).

The detection rule detects Data Class when at least one of the following conditions are verified: (1) the class reveals da-
ta rather than providing services (WOC metric), it has more than three accessor methods (NOAM metric) and it has a
response set which is not extremely high (RFC metric); (2) the class does not call foreign methods, except for acces-
sor/mutator methods (CFNAMM metric) and it has more than two accessors methods; (3) the class is not very complex
(AMW metric) and it has more than three private attributes (NOPVA metric). The first condition of the detection rule is
partially in the conceptual definition of Data Class reported in Section 3, and the threshold values of the metrics approx-
imately meet the expected size, except for RFC. The presence of this metric can be justified again by statistic depend-
ence or noise in the dataset. The same conclusions made for NIM metric and J48 Pruned on Data Class are valid for this
metric. The second and third conditions are in the conceptual definition of Data Class and the threshold values of the
metrics fall approximately in the expected range. The detection rule, as a whole, can represent a good example of rule
that is inferred by a machine learning algorithm.

Comparison of the rules created by JRip and J48 pruned show that rules by J48 pruned uses only 3 metrics where as
JRip utilizes 6 different metrics. Conceptually they make the same findings. First, the classes have accessor methods
above a certain threshold. Second, the classes are not very complex.

5.4.2 God Class
As regards God Class, J48 Pruned produces a very simple decision tree:

WMCNAMM > 47.

The detection rule detects God Class if the class is complex. The threshold value of the WMCNAMM metric respects
approximately the expected value. The rule detects the only feature that mostly characterizes a God Class: complexity.
The detection rule of JRip for God Class is

WMCNAMM≥ 48,

which is exactly equal to that produced by J48 Pruned for God Class.

5.4.3 Feature Envy
For Feature Envy, J48 Pruned produces the following decision tree:

ATFD (method) > 4 and LAA < 0.458571 and NOA ≤ 16.

The detection rule detects the code smell if the method directly uses many attributes of other classes (ATFD metric on
method), it uses far more attributes from other classes than its own (LAA metric) and the class that contains the method
can have a discrete number (16) of own attributes (NOA). The first two conditions of the detection rule are in the con-
ceptual definition of Feature Envy reported in Section 3 and the threshold values of the metrics fall approximately in the
expected range. There is no apparent relationship between the condition on NOA metric and the definition of the code
smell. Its threshold value is more than 75% of the maximum value of the metric on all systems. Consequently, this met-

ric identifies a part of the domain that is very limited and becomes discriminative only for a few instances. Moreover,
this condition is represented by a leaf in the decision tree.

For Feature Envy, JRip produces a detection rule based on the value of the following metrics:

(ATFD ≥ 5 and LAA < 0.3125) or (ATFD ≥ 9) or (FDP ≤ 3 and NMO ≤ 1).

The detection rule detects the code smell when at least one of the following conditions are verified: (1) the method di-
rectly uses many of other classes attributes (ATFD metric), and it uses far more attributes from other classes than its
own (LAA metric); (2) the method directly uses many attributes (ATFD); the foreign attributes used by the method be-
long to limited set of classes and the class that contains the method has at most one overridden method. In general, the
detection rule is in the conceptual definition of Feature Envy reported in Section 3 and the threshold values of the met-
rics approximately fall approximately in the expected range, except for NMO metric. The condition on NMO is verified
only for the values 0 or 1. For this reason, the condition on NMO metric should not have a significant impact on the de-
tection rule, and could be eliminated in order to make the rule clearer and more readable.

Comparison between J48 Pruned and JRip on Feature Envy shows that both algorithms share two metrics ATFD and
LAA. The former measures the number of attributes used from other classes and both algorithms have exactly the same
threshold for the value (>4). The latter measure is the share of foreign attributes used. The threshold for this metric is
different between algorithms 0.459 and 0.313 for J48 Pruned and JRip respectively. JRip produces additional rules that
are not present in the J48 Pruned.

5.4.4 Long Method
For Long Method, J48 produces a decision tree:

LOC (method) > 79 and CYCLO > 9.

The detection rule detects the code smell if the method size is large (LOC metric) and it is complex (CYCLO metric).
Both conditions reflect the conceptual definition of Long Method reported Section 3 and the threshold values of the
metrics fall approximately in the expected range.

The detection rule of JRip for Long Method is very similar to the one produced by J48:

LOC method≥80 And CYCLO≥8.

The only difference concerns the threshold value of CYCLO metric: this value is equal to 8 for JRip, whereas it is equal
to 10 for J48 Pruned. JRip imposes a slightly more restrictive rule for this smell.

5.4.5 Summary
Both algorithms produced similar detection rules that conceptually matched the smell descriptions. The thresholds and
rules are equal for God Class and nearly equal for Long Method. For Feature Envy and Data Class the produced detec-
tion rules had some differences in addition to similarities. For those smells there were also some rules that were not re-
lated to the concepts of the code smell but existed only due to properties of the data used for training. Table 22 summa-
rizes the extracted rules and their properties.

Some rules included metrics that are not semantically related to the smell definition. This happens for Data Class and
Feature Envy. We investigated this aspect by comparing the results obtained by the rule reported above with the ones
obtained by applying a revised version of the respective rule, not containing the unrelated metric.

For Data Class, both J48 and JRip introduced unrelated metrics in the rule. We revised the rules in this way:

· J48: NOAM > 2 and WMCNAMM ≤ 21; (we removed NIM ≤ 30)
· JRip: (WOC<0.352941 AND NOAM≥4) OR (CFNAMM=0 AND NOAM≥3) OR (AMW≤1 AND

NOPVA≥3); (we removed RFC≤41).

We applied the same revision procedure to the rule for Feature Envy:

· J48: ATFD (method) > 4 and LAA < 0.458571; (we removed NOA≤16)

· JRip: (ATFD ≥ 5 and LAA < 0.3125) or (ATFD ≥ 9) or (FDP ≤ 3); (we removed NMO ≤ 1).

The revised rules for JRip in both cases decrease the rule precision, moving answers from true negatives to false posi-
tives. For Data Class, the difference is 14 answers (-0.08 precision). For Feature Envy, the difference is 53 answers (-
0.03 precision).

For J48, there is no similarity in the effect, instead. In the case of Data Class, the revised rule moves 8 answers from
negative to positive, slightly increasing recall and decreasing precision. The effect on Feature Envy is instead very posi-
tive: 24 answers are moved from false negative to true positive, increasing both precision and recall; F-Measure is in-
creased of 0.1 as a result, reaching 0.93.

The effect of these simple revised rules is not consistent, so we cannot draw generalized conclusions about the extracted
rules and the role of the unrelated metrics. We plan a larger assessment of the role of these metrics in the context of rule
extraction in future work.

Table 22 – Comparison of rules created by J48 Pruned and JRip

Code
smell

Rules by J48 Pruned Rules by JRip Comment

Data
class

NOAM>2 and WMC-
NAMM≤21 and NIM≤30

(WOC<0.352941 and NOAM≥4 and
RFC≤41) or (CFNAMM=0 And NOAM≥3)
or (AMW≤1 And NOPVA≥3)

NIM and RFC are not con-
ceptually part of Data Class
smell.

God
class

WMCNAMM≥ 48 WMCNAMM≥ 48 Both algorithms produce an
equal rule

Feature
Envy

ATFD(method)>4 and
LAA<0.458571 and
NOA≤16

(ATFD≥5 And LAA<0.3125) Or ATFD≥9
Or (FDP≤3 And NMO≤1)

NOA and NMO are not
conceptually part of Feature
Envy smell.

Long
Method

LOC(method)≥80 And CY-
CLO≥10

LOC method≥80 And CYCLO≥8 Both algorithms produce a
nearly equal rule

6 Threats to Validity
This section discusses the threats to validity of our machine learning approach. Threats to internal validity are related to
the correctness of the experiments’ outcome, while threats to external validity are related to the generalization of the
obtained results.

6.1 Threats to Internal Validity
The main threat to internal validity is the difficulty of deciding when a code smell candidate is actually a real code smell
or not. The manual evaluation of code smells is subject to a certain degree of error. Several factors can be taken into ac-
count, such as the developers’ experience in object-oriented programming, the knowledge and the ability to understand
design issues and other factors. This could cause a distortion of the training set. It is not possible to know a priori if the
distortion produced better or worse performances during the experiments, while it surely lowers the performances in the
general case. We managed this threat by aggregating the evaluation of three raters, through the method described in
Section 4.4.2.

6.2 Threats to External Validity
One of the most important threats to external validity is the difficulty to have a training set that completely represents
the code smell domain. As explained in Section 3, for each project, code smell candidates were selected with random
sampling, and stratifying the choice according to the number of positive results of code smell Advisors. This criterion
increases the probability of selecting instances affected by code smells. On the other hand, the sampling method could
cause a distortion during the building of the training set, because the selection criterion is only partly random. Further-
more, the selected systems are open source, so they cannot be considered representative of the panorama of all the pos-
sible existing systems. This problem can lead to lack of generalization of the machine learning algorithms, because
models tend to fit the characteristics that are peculiar to the training set, but they are not tested on other cases. As for the

possibility to generalize results, the datasets contain only Java projects, so results could be transferred only to projects
written in the same language. In particular, the programming language affects the values of many metrics, and often the
design style.

We only used open source systems that might affect the generalizability of our results to industrial context. Early works
suggest that open source may produce poorer code quality than commercial systems (Stamelos et al., 2002). However,
more recent studies suggest that overall there is no difference between the code quality of open source and commercial
systems (Spinellis, 2008). But in more detail it seems that “pure open source” produces better software structure than
commercial system or open source with commercial involvement (Spinellis, 2008; Capra et al., 2011). The Qualitas
Corpus (Tempero et al., 2010) has both “pure open source” systems and open source systems where there has been
commercial involvement. Thus, we feel the threat of using only open source systems is small.

6.3 Experiments Limitations
The experiments have some limitations. First, only four code smells have been selected because the approach requires a
manual validation for each code smell. This task requires a lot of time, because it is necessary to inspect the code of
each instance (class or method) and evaluate its interactions.

Another limitation is the amount of data collected to train the machine learning algorithms. In this work, the number of
the instances is sufficiently large to train the algorithms, but having a larger dataset would allow to have more reliable
data. Larger datasets allow having a validation dataset, used as an additional test for the best-performing algorithms.

A limitation in the manual labeling process is the use of students instead of professionals. The use of students has been
discussed extensively in the context of human subject experiments in software engineering (Höst et al 2000, Tichy
2000, Carver et al 2003, Runeson 2003, Berander 2004 Svanhberd 2008). The general conclusion seems to be that stu-
dents can be used in experiments as substitutes for professionals as long as they are trained for the task and the results
are used to establish trends. Our students were trained for the task, thus, the first criterion is fulfilled. We also think that
the use of students has no effect on whether machine learning approaches work for code smell detection in general.
However, the second criterion means that the results regarding to the exact code smell detection rules, see Section 5.4,
need to be further experimented with professionals, as their hints or drivers on code smell detection might be different
from the students’.

Often in machine learning feature selection is used to improve the performance. In our study, we exploited no possibili-
ties of feature selection. There is no go-to solution for feature selection in the general case that would be equally good
to all of our algorithms. Thus, doing it would create yet another layer of complexity to the machine learning experimen-
tation process by adding more variables to test and compare. Furthermore, we already obtained very good results with
the simpler models among the tested ones, so we do not feel that we need to optimize the process more at this stage.

In the past, various papers show how the performance of the machine-learning algorithms we utilized can be enhanced
by feature selection, e.g. SVM’s (Navot et al 2006; Weston et al 2000; Chen and Chih-Jen 2006), Decision trees (C4.5)
(Hall & Holmes, 2003), Naive Bayes (Hall & Holmes, 2003). Random Forest algorithm includes a feature selection by
default and it might have provided some advantage in our paper. The number of features used by Random Forest was
log_2(#predictors)+1 for Data Class and God Class, 20 for Feature envy and 16 for Long Method. For SVMs, we per-
formed data normalization or standardization as explained in Section 5.2. We recognize that finding the best feature se-
lection algorithm to combine with machine learning algorithms is an active research topic and we encourage future
works on this topic. The need for such future work is amplified by the fact that none of the past works on code smell
detection have done or provided proper reports for their feature selection, see Table 1. Lack of feature selection has also
been present in other machine learning benchmarking studies in software engineering (Lessmann et al, 2008).

Finally, the last limitation is the number of Advisors used as hints to select the instances to manually evaluate. As out-
lined in Section 4, only some of the detectors described in the literature are available or the detection rules they exploit
are clearly defined and few detectors provide an easy and accessible way to export the detection results.

7 Discussion and Future Developments
All of our algorithms produced similar performances see Table 16-19. The performances were also good or very good
with respect to the machine learning measures used (Accuracy, F-measure, ROC). This confirms that using machine
learning algorithms for code smell detection is an appropriate approach, or at least, is appropriate for the experimented
four code smells. The winning machine learning algorithms have significant differences with the remaining ones, with
a medium effect size on average.

However, performances are already so good that we think it does not really matter in practice what machine learning
algorithm one chooses for code smell detection. This result is similar to (Lessmann et al, 2008) who investigated ma-
chine learning algorithms for defect prediction and found that the differences between algorithms are small. Detailed
comparisons between the results by us and Lessmann show differences. In our study, decision tree algorithms offered
one of the best performances, but in their study decision trees did not do so well. This difference can probably be par-
tially attributed to the different decision trees used: we used J48 and JRIP while they used C4.5, ADT and CART. On
the other hand, SVM’s did quite well in their study but performed poorly in our study, which could be due to lack of
feature selection for SVMs in our study. If one wants a single answer on which algorithm to use based on the two stud-
ies, the answer is Random Forest. It was among the very top algorithms in our study and it was the best algorithm in
(Lessmann et al, 2008). Furthermore, machine learning competitions from other domains have showed that Random
Forest tends to work quite well in various circumstances, see www.kaggle.com

On a more general level, our results and the ones by (Lessmann et al, 2008) suggest that future comparison of machine
learning on software engineering data should not be assessed on algorithmic performance alone as the differences be-
tween algorithms might not be so meaningful in practice. The effort used to setup the algorithm by practitioners might
be a better factor that needs to be considered in future studies. For example, some algorithms like SVM’s would require
an additional feature selection step to match the performance of the best performing algorithms in our study. Another
dimension is the understandability of the algorithmic results. Decision tree algorithms extract understandable rules for
code smells (see Section 5.4) that can offer additional benefits to humans as the rules can be used in developer training
and knowledge sharing between developers.

An additional future research area would be to combine the machine learning based approaches with the fixed rule
based approaches such as ones presented in (Moha et al 2010) and (Palomba et al 2013). After all, machine learning
approaches reduce the cognitive load of the individuals as the computer creates the rules for code smells based on input
samples. Unfortunately, for some topics such as code naming it is impossible to use machine learning algorithms to cre-
ate such rules. Thus, approaches that utilize machine learning when possible and complement them with fixed rules
based approaches seems like a highly important future work. In a similar way, another opportunity for future work is to
analyze the rules extracted decision trees (see Section 5.4), and compare them to other rules proposed in the literature,
focusing on the threshold values and on the choice of the metrics. Machine learning may be used as a way to gather a
first version of a detection rule, to be refined with the inclusion of developer’s knowledge.

In Section 5.3.4, we pointed out that despite the rather small differences of machine learning algorithm performance in
the manually validated data set, we found much larger variances when we applied the algorithms to the entire data set.
The lowest code smell percentage proposed by an algorithm in the entire data set varied from 1.2 to 4.3% depending on
the code smell. The highest code smell percentages proposed by an algorithm were much higher varying from 12.3 to
30.2%, see Table 20. This suggests that machine learning performance suffers when there is low prevalence in findings,
i.e., imbalanced data set. In our training set, 33.3% percent of instances had a code smell. In the entire data set, we do
not know the prevalence of code smells as it has not been manually labeled. However, if we use the code smell percent-
age of the winner algorithm as a surrogate we get prevalence values from 1.2 to 9.6%. Support for the idea that lower
prevalence decreases machine learning algorithm performance has been reported previously (McKnight, 2002). In more
detail, (McKnight, 2002) shows through simulation that when prevalence is less than 10% then the performances of ma-
chine learning algorithms suffer significantly, and this matches our situation in the entire Qualitas Corpus data set. Fur-
thermore, the problem of the imbalance data has only recently gained wider attention in the machine learning communi-
ty, e.g., (He and Garcia, 2009) and (Sun et al, 2007). Thus, future work should be performed on code smells to see how
the problem of imbalanced data can be assessed.

In addition to extending the experiments using more/other features, as code smells, algorithms, and Advisors, we have
identified different possible future developments in the following contexts:

Code Smell severity classification. The code smell severity classification can help software developers in prioritizing
their work on most severe code smells and provides more information than a more traditional binary classification. Ac-
cording to the number of severity type, the severity classification requires a manual validation on a large dataset to be
exploited by machine learning algorithms. In this work we produced a severity classification for our training set, which
we will exploit in future experiments.

Social platforms to collect data. To collect more instances, it is possible to create social platform in which experts in
this area share the manually evaluated instances belonging to different systems. The social platform allows having a
larger dataset, statistically more reliable because it reduces the bias given by the known sensibility of code smell detec-
tion based on a single developer opinion (Mäntylä and Lassenius, 2006). Furthermore, this solution decreases the prob-
ability of making errors and enables to perform a careful rechecking of the already instances evaluated. Additionally,
the social platform can educate developers on code smells.

Host online the performance of the algorithms. To better validate the machine learning approach, an extensive com-
parison with other rules and tools will be performed, hosting online the code smell dataset to find the best possible code
smell predictor. The competition results can be used as a baseline for a community effort in finding the best possible
code smell predictor, and then can be extended with other tools, e.g., JDeodorant (Tsantalis et al., 2009), Stench Blos-
som (Murphy-Hill and Black, 2010), DÉCOR-Ptidej (Moha et al, 2010).

8 Conclusions
In this paper, we compare and benchmark code smell detection with supervised machine learning techniques that are
able to evolve with the availability of new data. The approach can be easily used to detect other code smells, depending
on the availability of training data.

Our machine learning applies stratified sampling of the instances, creating strata using two criteria: the project contain-
ing instances and the results of a set of code smell detection tools and rules (called Advisors). This methodology en-
sures a homogeneous distribution of instances on different projects and prioritizes the labelling of instances with a high-
er chance of being affected by code smells. Selected instances are used to train the machine learning algorithms. Then a
parameter optimization technique is applied, to find the best algorithm with respect to a set of standard performance
measures. Finally, experiments are performed to evaluate the performance values of the algorithms on code smell da-
taset. The classification process was tested through a set of experiments on four code smells (Data Class, God Class,
Feature Envy, Long Method) and 32 different machine learning algorithms (16 different algorithms and their applica-
tion of boosting technique). The experimented algorithms obtain high performances, regardless of the type of code
smell. The SVM algorithms tend to give worse performances than the other algorithms, regardless of the type of code
smell and of the boosting technique. Future studies should look whether the difference remains if one performs feature
selection for all algorithms. The algorithms J48, JRip, Naive Bayes (except for the code smell Feature Envy) and Ran-
dom Forest gave the best performances.

For each code smell, the best algorithms obtain the following performance: B-J48 Pruned scores 99.02% of accuracy on
Data Class, Naïve Bayes scores 97.55% of accuracy on God Class, B-JRip scores 96.64% of accuracy on Feature Envy
and B-J48 Pruned scores 99.43% of accuracy on Long Method. For each code smell, the best algorithms score at least
97% of F-Measure. The application of the boosting technique on the algorithms does not always improve their perfor-
mances, and in some cases, it makes them worse. The machine learning curves of the best algorithms indicate that the
learning rates of the curves are very similar to one another, according to the type of code smell. The number of the
training instances used to train the algorithms seems to be high enough to guarantee a good learning process.

Through our experimental analysis and results, we obtained:

· a large dataset containing manually validated code smell instances, useful for benchmarking code smell detec-
tors;

· a dataset containing the gathered metrics, useful for other software quality assessment tasks;
· a dataset containing the results of the exploited detection tools and rules (Advisors), useful to make compari-

sons among them and new detection results;
· the possibility to host online competitions to find the best code smell predictors; the competition results can

then be used as a baseline for a community to compare the best code smell predictors.

All datasets are available for download at http://essere.disco.unimib.it/reverse/MLCSD.html.

9 References
(Abbes et al, 2011) M. Abbes, F. Khomh, Y.-G. Gueheneuc, and G. Antoniol, “An Empirical Study of the Impact of
Two Antipatterns, Blob and Spaghetti Code, on Program Comprehension,” 2011 15th European Conference on Soft-
ware Maintenance and Reengineering, pp. 181–190, Mar. 2011.

(Aggarwal et al, 2006) K. K. Aggarwal, Y. Singh, A. Kaur, and R. Malhotra, “Empirical study of object-oriented met-
rics,” Journal of Object Technology, vol. 5, no. 8, p. 149, 2006. doi:10.5381/jot.2006.5.8.a5.

(Arcelli Fontana et al., 2012) F. Arcelli Fontana, P. Braione, and M. Zanoni, “Automatic detection of bad smells in
code: An experimental assessment,” Journal of Object Technology, vol. 11, no. 2, p. 5:1, 2012.

(Arcelli Fontana et al., 2013a) F. Arcelli Fontana, V. Ferme, A. Marino, B. Walter, and P. Martenka. Investigating the
Impact of Code Smells on System's Quality: An Empirical Study on Systems of Different Application Domains. Pro-
ceedings of the 29th IEEE International Conference on Software Maintenance (ICSM 2013), 2013, 260-269.

(Arcelli Fontana et al., 2013b) F. Arcelli Fontana, M. Zanoni, A. Marino, M. V. Mantyla; "Code Smell Detection: To-
wards a Machine Learning-Based Approach," 29th IEEE International Conference on Software Maintenance (ICSM),
2013, vol., no., pp.396,399, 22-28 Sept. 2013. doi: 10.1109/ICSM.2013.56

(Bansiya and Davis, 2002) J. Bansiya and C. G. Davis, “A hierarchical model for object-oriented design quality assess-
ment,” IEEE Transactions on Software Engineering, vol. 28, no. 1, pp. 4–17, 2002. doi:10.1109/32.979986.

(Bengio and Grandvalet, 2004) Y. Bengio and Y. Grandvalet, “No unbiased estimator of the variance of k-fold cross-
validation,” The Journal of Machine Learning Research, vol. 5, pp. 1089–1105, 2004.

(Berander, 2004) Berander,P., "Using students as subjects in requirements prioritization," Proceedings of the Interna-
tional Symposium on Empirical Software Engineering (ISESE'04). 2004, pp. 167-176.

(Bowes et al, 2013) Bowes, D., Randall, D. & Hall, T ,The inconsistent measurement of Message Chains. 2013 Proc.
2013 4th International Workshop on Emerging Trends in Software Metrics (WETSoM). IEEE, p. 62-68.

(Capra et al, 2011) Capra, E., Francalanci, C., Merlo, F., & Rossi-Lamastra, C. (2011). Firms’ involvement in Open
Source projects: A trade-off between software structural quality and popularity. Journal of Systems and Software, 84(1),
144-161.

(Carver et al., 2003) Carver, J., Jaccheri, L., Morasca, S. and Shull, F., "Issues in using students in empirical studies in
software engineering education," Proceedings of the Ninth International Software Metrics Symposium, 2003., pp. 239-
249.

(Chidamber and Kemerer, 1994) S. Chidamber and C. Kemerer, “A metrics suite for object oriented design,” IEEE Tra-
sactions On Software Engineering, vol. 20, no. 6, pp. 476–493, 1994. doi:10.1109/32.295895.

(Chen and Chih-Jen 2006) Chen, Yi-Wei, and Chih-Jen Lin. "Combining SVMs with various feature selection strate-
gies." Feature extraction. Springer Berlin Heidelberg, 2006. 315-324.

(Cohen, 1960) J. Cohen, “A coefficient of agreement for nominal scales,” Educational and psychological measurement,
vol. 20, no. 1, pp. 37–46, Apr. 1960. doi:10.1177/001316446002000104.

(Cohen and Jensen, 1997) P. Cohen and D. Jensen, “Overfitting explained,” Preliminary Papers of the Sixth Interna-
tional Workshop on Artificial Intelligence and Statistics, pp. 115–122, 1997.

 (Dekkers and Aarts, 1991) A. Dekkers and E. Aarts, “Global optimization and simulated annealing,” Mathematical
programming, vol. 50, pp. 367–393, 1991.

(Demšar, 2006) J. Demšar, “Statistical comparisons of classifiers over multiple data sets,” The Journal of Machine
Learning Research, vol. 7, pp. 1–30, 2006.

(Deligiannis et al., 2004) I. Deligiannis, I. Stamelos, L. Angelis, M. Roumeliotis and M. Shepperd, “A Controlled Ex-
periment Investigation of an Object-Oriented Design Heuristic for Maintainability” J. Syst.Softw., 72(2): pp. 129-143,
2004.

(Dubey et al., 2012) S. K. Dubey, A. Sharma, and A. Rana, “Comparison of Software Quality Metrics for Object-
Oriented System,” International Journal of Computer Science & Management Studies, vol. 12, no. June, pp. 12–24,
2012.

(Ferme, 2013) V. Ferme, “JCodeOdor: A software quality advisor through design flaws detection,” Master’s thesis,
University of Milano-Bicocca, 2013.

(Ferme et al., 2013) V. Ferme, A. Marino, and F. Arcelli Fontana, “Is it a Real Code Smell to be Removed or not?,”
Presented at the RefTest 2013 Workshop, co-located event with XP 2013 Conference, p. 15, 2013.

(Freund and Schapire, 1996) Y. Freund and R. Schapire, “Experiments with a new boosting algorithm,” in Proceedings
of the Thirteenth International Conference on Machine Learning (ICML 1996), 1996, Bari, Italy, pp. 148–156.

(Fowler et al., 1999) M. Fowler and K. Beck, Refactoring: improving the design of existing code. 1999, pp. 1–82.

(Gueheneuc et al., 2004) Gueheneuc Y-G; Sahraoui, H.; Zaidi, F., "Fingerprinting design patterns," Reverse Engineer-
ing, 2004. Proceedings. 11th Working Conference on , vol., no., pp.172,181, 8-12 Nov. 2004. doi:
10.1109/WCRE.2004.21

(Goldberg, 1989) D. Goldberg, Genetic algorithms in search, optimization, and machine learning, 1st edition. Addison-
Wesley, Ed. Longman Publishing Co., Inc., 1989.

(Hall & Holmes, 2003) Hall, M. A., & Holmes, G. (2003). Benchmarking attribute selection techniques for discrete
class data mining. Knowledge and Data Engineering, IEEE Transactions on, 15(6), 1437-1447.

(Hall et al., 2009) M. Hall, E. Frank, and G. Holmes, “The WEKA data mining software: an update,” SIGKDD Explor.
Newsl., vol. 11, no. 1, pp. 10–18, 2009. doi:10.1145/1656274.1656278.

(Hall et al, 2014) Tracy Hall, Min Zhang, David Bowes, Yi Sun: Some Code Smells Have a Significant but Small Ef-
fect on Faults. ACM Trans. Softw. Eng. Methodol. 23(4): 33 (2014)

(He and Garcia, 2009) He, H., Garcia, E. A. Learning from imbalanced data. IEEE Transactions on Knowledge and Da-
ta Engineering, 21(9), 1263-1284. (2009).

(Hollander et al., 2014) M. Hollander, D. A. Wolfe, E. Chicken. Nonparametric Statistical Methods, 3rd Edition.
Wiley, 2000. Pages 39-55,84-87.

(Höst et al., 2000) Höst,M., Regnell,B. and Wohlin,C., "Using students as subjects—a comparative study of students
and professionals in lead-time impact assessment," Empirical Software Engineering, vol. 5, no. 3, 2000, pp. 201-214.

(Hsu et al., 2003) C. Hsu, C. Chang, and C. Lin, “A practical guide to support vector classification,” vol. 1, no. 1, pp. 5–
8, 2003. URL: http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf

(Khomh et al., 2009) F. Khomh, S. Vaucher, Y.-G. Guéhéneuc, and H. Sahraoui, “A Bayesian Approach for the Detec-
tion of Code and Design Smells,” Proceedings of the 9th International Conference on Quality Software (QSIC 2009),
2009, Jeju, Korea: IEEE, pp. 305–314. doi:10.1109/QSIC.2009.47.

(Khomh et al., 2011) F. Khomh, S. Vaucher, Y.-G. Guéhéneuc, and H. Sahraoui, “BDTEX: A GQM-based Bayesian
approach for the detection of antipatterns,” Journal of Systems and Software, vol. 84, no. 4, pp. 559–572, Apr. 2011,
Elsevier Inc. doi:10.1016/j.jss.2010.11.921.

(Kline, 2013) R. M. Kline, “Library Example.” [Online]. Available: http://www.cs.wcupa.edu/~rkline/java/library.html.
Accessed: 2013

(Kreimer, 2005) J. Kreimer, “Adaptive detection of design flaws,” Electronic Notes in Theoretical Computer Science,
vol. 141, no. 4, pp. 117–136, Dec. 2005. doi:10.1016/j.entcs.2005.02.059.

(Lamkanfi and Demeyer, 2010) A. Lamkanfi and S. Demeyer, “Predicting the severity of a reported bug,” in 7th Work-
ing Conference on Mining Software Repositories (MSR 2010), 2010, Cape Town: Ieee, pp. 1–10.
doi:10.1109/MSR.2010.5463284.

(Lessmann et al, 2008) Lessmann, S., Baesens, B., Mues, C., & Pietsch, S. (2008). Benchmarking classification models
for software defect prediction: A proposed framework and novel findings. IEEE Transactions on Software Engineering,
34(4), 485-496.

(Li and Shatnawi, 2007) Wei Li, Raed Shatnawi, An empirical study of the bad smells and class error probability in the
post-release object-oriented system evolution, Journal of Systems and Software, Volume 80, Issue 7, July 2007, Pages
1120-1128, ISSN 0164-1212, doi:10.1016/j.jss.2006.10.018.

(Lorenz and Kidd, 1994) M. Lorenz and J. Kidd, Object-oriented software metrics: a practical guide. Prentice-Hall, Ed.
1994.

(Maiga and Ali, 2012) A. Maiga and N. Ali, “SMURF: a SVM-based incremental anti-pattern detection approach,”
Proceedings of the 19th Working Conference on Reverse Engineering (WCRE 2012), 2012, Kingston, ON: IEEE, pp.
466–475. doi:10.1109/WCRE.2012.56.

(Maiga et al., 2012) A. Maiga, N. Ali, N. Bhattacharya, A. Sabané, Y.-G. Guéhéneuc, G. Antoniol, and E. Aïmeur,
“Support vector machines for anti- pattern detection,” in Proceedings of the 27th IEEE/ACM International Conference
on Automated Software Engineering (ASE 2012). Essen, Germany: ACM, 2012, pp. 278–281.

(Mäntylä, 2004) M. Mäntylä, “Bad smells-humans as code critics,” Proceedings of the 20th IEEE International Confer-
ence on Software Maintenance, p. 10, 2004.

(Mäntylä and Lassenius, 2006) M. V. Mäntylä and C. Lassenius, “Subjective evaluation of software evolvability using
code smells: An empirical study,” Empirical Software Engineering, vol. 11, no. 3, pp. 395–431, May 2006.

(Marinescu, 2002) R. Marinescu, “Measurement and quality in object-oriented design,” Politechnica University of
Timisoara, 2002.

(Marinescu, 2005) R. Marinescu, “Measurement and quality in object-oriented design,” in 21st
IEEE International Conference on Software Maintenance (ICSM’05),
2005, IEEE, pp. 701–704. doi:10.1109/ICSM.2005.63

(Marinescu et al., 2005) Cristina Marinescu, Radu Marinescu, Petru Mihancea, Daniel Ratiu, and Richard Wettel.
iPlasma:An Integrated Platform for Quality Assessment of Object-Oriented Design. Proceedings of the 21st IEEE Inter-
national Conference on Software Maintenance (ICSM 2005), p. 77-80, 2005.

(McKnight, 2002) McKnight LK, Wilcox A, Hripcsak G. The effect of sample size and disease prevalence on super-
vised machine learning of narrative data. Proc AMIA Symp. 2002:519-22.

(Menzies and Marcus, 2008) T. Menzies and A. Marcus, “Automated severity assessment of software defect reports,”
Proceedings of the International Conference on Software Maintenance (ICSM 2008), 2008, Beijing, pp. 346 – 355.
doi:10.1109/ICSM.2008.4658083.

(Moha et al 2010) Naouel Moha, Yann-Gaël Guéhéneuc, Laurence Duchien, Anne-Françoise Le Meur: DECOR: A
Method for the Specification and Detection of Code and Design Smells. IEEE Trans. Software Eng. 36(1): 20-36 (2010)

(Moser et al, 2008) Moser, R., Abrahamsson, P., Pedrycz, W., Sillitti, A., & Succi, G. (2008). A case study on the im-
pact of refactoring on quality and productivity in an agile team. In Balancing Agility and Formalism in Software Engi-
neering (pp. 252-266). Springer Berlin Heidelberg.

(Murphy-Hill and Black, 2010) Emerson Murphy-Hill and Andrew P. Black. 2010. An interactive ambient visualization
for code smells. In Proceedings of the 5th international symposium on Software visualization (SOFTVIS '10). ACM,
New York, NY, USA, 5-14. DOI=10.1145/1879211.1879216

(Navot et al., 2006) Navot, A., Gilad-Bachrach, R., Navot, Y., & Tishby, N. (2006). Is feature selection still necessary?.
In Subspace, Latent Structure and Feature Selection (pp. 127-138). Springer Berlin Heidelberg.

(Nongpong, 2012) K. Nongpong, “Integrating ‘Code Smells’ Detection with Refactoring Tool Support,” University of
Wisconsin-Milwaukee, 2012.

(Olbrich et al., 2010) Olbrich, S.; Cruzes, D. & Sjoberg, D. I. K. Are all code smells harmful? A study of God Classes
and Brain Classes in the evolution of three open source systems IEEE International Conference on Software Mainte-
nance (ICSM 2010), 2010, 10

(Palomba et al, 2013) Palomba, F., Bavota, G., Di Penta, M., Oliveto, R., De Lucia, A., & Poshyvanyk, D. (2013,
November). Detecting bad smells in source code using change history information. In Automated Software Engineering
(ASE), 2013 IEEE/ACM 28th International Conference on (pp. 268-278). IEEE.

 (Runeson, 2003) Runeson,P., "Using students as experiment subjects and analysis on graduate and freshmen student
data," Proceedings of the 7th International Conference on Empirical Assessment in Software Engineering.–Keele Uni-
versity, UK, 2003, pp. 95-102

(Sjøberg et al, 2013) D. I. K. Sjøberg, A. F. Yamashita, B. C. D. Anda, A. Mockus, T. Dybå: Quantifying the Effect of
Code Smells on Maintenance Effort. IEEE Trans. Software Eng. 39(8): 1144-1156 (2013)

(Spinellis 2008) Spinellis, D. (2008, May). A tale of four kernels. In Proceedings of the 30th international conference on
Software engineering (ICSE 2008) (pp. 381-390). ACM.

(Stamelos et al., 2002) Stamelos, I., Angelis, L., Oikonomou, A., & Bleris, G. L. (2002). Code quality analysis in open
source software development. Information Systems Journal, 12(1), 43-60.

(Stone, 1974) M. Stone, “Cross-validatory choice and assessment of statistical predictions,” Journal of the Royal Statis-
tical Society, vol. 36, no. 2, pp. 111–147, 1974.

(Sun et al, 2007) Sun, Y., Kamel, M. S., Wong, A. K., & Wang, Y. Cost-sensitive boosting for classification of imbal-
anced data. Pattern Recognition, 40(12), 3358-3378. (2007).

(Svahnberg et al, 2008) Svahnberg,M., Aurum,A. and Wohlin,C., "Using students as subjects-an empirical evaluation,"
Proceedings of the Second ACM-IEEE international symposium on Empirical software engineering and measurement,
2008, pp. 288-290.

(Tempero et al., 2010) E. Tempero, C. Anslow, and J. Dietrich, “The Qualitas Corpus: A curated collection of Java code
for empirical studies,” Proceedings of the 17th Asia Pacific Software Engineering Conference, pp. 336–345, Nov. 2010.

(Tian et al., 2012) Y. Tian, D. Lo, and C. Sun, “Information retrieval based nearest neighbor classification for fine-
grained bug severity prediction,” in 19th Working Conference on Reverse Engineering, 2012, Ontario, Canada: IEEE,
pp. 215–224. doi:10.1109/WCRE.2012.31.

(Tichy, 2000) Tichy,W.F., "Hints for reviewing empirical work in software engineering," Empirical Software Engineer-
ing, vol. 5, no. 4, 2000, pp. 309-312.

(Tsantalis et al., 2009) N. Tsantalis, S. Member, and A. Chatzigeorgiou, “Identification of Move Method Refactoring
Opportunities,” IEEE Transactions on Software Engineering, vol. 35, no. 3, pp. 347–367, 2009

(Viera and Garrett, 2005) A. Viera and J. Garrett, “Understanding interobserver agreement: the kappa statistic,” Fam
Med, vol. 37, no. 5, pp. 360–3, May 2005.

(Weston et al., 2000) Weston, J., Mukherjee, S., Chapelle, O., Pontil, M., Poggio, T., & Vapnik, V. (2000, December).
Feature selection for SVMs. In NIPS (Vol. 12, pp. 668-674).

(Wieman, 2011) R. Wieman, “Anti-Pattern Scanner: An Approach to Detect Anti-Patterns and Design Violations,”
Delft University of Technology, 2011.

(Yamashita 2014) A. Yamashita. Assessing the Capability of Code Smells to Explain Maintenance Problems: An Em-
pirical Study Combining Quantitative and Qualitative Data, Journal of Empirical Software Engineering 19(4):1111-
1143, 2014.

(Yamashita and Moonen, 2012) A. Yamashita and L. Moonen, “Do code smells reflect important maintainability as-
pects?,” International Conference on Software Maintenance, pp. 306–315, Sep. 2012.

(Yang et al., 2012) J. Yang, K. Hotta, Y. Higo, H. Igaki, and S. Kusumoto, “Filtering clones for individual user based
on machine learning analysis” . Proceedings of the 6th International Workshop on Software Clones (IWSC 2012), 2012,
Zurich, Switzerland: IEEE, pp. 76–77. doi:10.1109/IWSC.2012.6227872.

(Zazworka et al, 2011) Zazworka, N., Shaw, M. A., Shull, F., & Seaman, C. (2011, May). Investigating the impact of
design debt on software quality. Proceedings of the 2nd Workshop on Managing Technical Debt (pp. 17-23). ACM.

(Zhang et al., 2011) M. Zhang, T. Hall, and N. Baddoo, “Code Bad Smells : a review of current knowledge,” Journal of
Software Maintenance and Evolution: Research and Practice, vol. 23, no. 3, pp. 179–202, 2011. doi:10.1002/smr.521.

10 Appendix
Table A - Projects characteristics

System LOC NOPK NOCS NOM Domain Release
date

aoi-2.8.1 136,533 22 799 688 3D/graphics/media 01/03/2010

argouml-0.34 284,934 125 2,361 18,015 diagram generator/data visualiza-
tion

12/15/2011

axion-1.0-M2 28,583 13 223 2,989 Database 07/11/2003

castor-1.3.1 213,479 149 1,542 11,967 Middleware 01/03/2010

cobertura-1.9.4.1 58,364 19 107 3,309 Testing 03/03/2010

colt-1.2.0 75,688 24 525 4,143 SDK 09/10/2004

columba-1.0 109,035 183 1,188 6,818 Tool 09/18/2005

displaytag-1.2 20,892 18 128 1,064 diagram generator/data visualiza-
tion

12/27/2008

drawswf-1.2.9 38,451 33 297 2,742 3D/graphics/media 06/08/2004

drjava-sTable-20100913-
r5387

130,132 29 225 10,364 IDE 09/13/2010

emma-2.0.5312 34,404 26 262 1,805 Testing 06/12/2005

exoportal-v1.0.2 102,803 382 1,855 11,709 diagram generator/data visualiza-
tion

05/16/2006

findbugs-1.3.9 146,551 54 1,631 10,153 Testing 08/21/2009

fitjava-1.1 2,453 2 60 254 Testing 04/07/2004

fitlibraryforfitnesse-
20100806

25,691 108 795 4,165 Testing 08/06/2010

freecol-0.10.3 163,595 36 1,244 8,322 Games 09/27/2011

freecs-1.3.20100406 25,747 12 131 1,404 Tool 04/06/2010

freemind-0.9.0 65,687 43 849 5,788 diagram generator/data visualiza-
tion

02/19/2011

galleon-2.3.0 12,072 35 764 4,305 3D/graphics/media 04/15/2006

ganttproject-2.0.9 58,718 54 959 5,518 Tool 03/31/2009

heritrix-1.14.4 9,424 45 649 5,366 Tool 05/10/2010

hsqldb-2.0.0 171,667 22 465 7,652 Database 06/07/2010

itext-5.0.3 117,757 24 497 5,768 diagram generator/data visualiza-
tion

07/22/2010

jag-6.1 24,112 15 255 145 Tool 05/25/2006

jasml-0.10 6,694 4 48 245 Tool 05/23/2006

jasperreports-3.7.3 260,912 66 1,571 17,113 diagram generator/data visualiza-
tion

07/20/2010

javacc-5.0 19,045 7 102 808 parsers/generators/make 10/20/2009

jedit-4.3.2 138,536 28 1,037 656 Tool 05/09/2010

jena-2.6.3 117,117 48 1,196 99 Middleware 06/01/2010

jext-5.0 34,855 37 485 2,169 diagram generator/data visualiza-
tion

07/07/2004

jFin_DateMath-R1.0.1 7,842 11 58 541 SDK 02/19/2010

jfreechart-1.0.13 247,421 69 960 1,181 Tool 04/20/2009

jgraph-5.13.0.0 53,577 32 399 2,996 Tool 09/28/2009

jgraphpad-5.10.0.2 33,431 22 426 1,879 Tool 11/09/2006

jgrapht-0.8.1 28,493 19 299 1,475 Tool 07/04/2009

jgroups-2.10.0 126,255 21 1,093 8,798 Tool 07/12/2010

jhotdraw-7.5.1 104,357 64 968 7,232 3D/graphics/media 08/01/2010

jmeter-2.5.1 113,375 110 909 8,059 Testing 09/29/2011

jmoney-0.4.4 9,457 4 190 713 tool 09/29/2003

jparse-0.96 16,524 3 65 780 parsers/generators/make 07/17/2004

jpf-1.0.2 18,172 10 121 1,271 SDK 05/19/2007

jruby-1.5.2 199,533 77 2,023 17,693 programming language 08/20/2010

jspwiki-2.8.4 69,144 40 405 2,714 Middleware 05/08/2010

jsXe-04_beta 1,448 7 100 703 Tool 04/25/2006

jung-2.0.1 53,617 40 786 3,884 diagram generator/data visualiza-
tion

01/25/2010

junit-4.10 9065 28 204 1,031 Testing 09/29/2011

log4j-1.2.16 34,617 22 296 2,118 Testing 03/30/2010

lucene-3.5.0 214,819 133 1,908 12,486 Tool 11/20/2011

marauroa-3.8.1 26,472 30 208 1,593 Games 07/25/2010

megamek-0.35.18 315,953 37 2,096 13,676 Games 08/31/2010

mvnforum-1.2.2-ga 92,696 29 338 5,983 Tool 08/17/2010

nekohtml-1.9.14 10,835 4 56 502 parsers/generators/make 02/02/2010

openjms-0.7.7-beta-1 68,929 48 515 379 Middleware 03/14/2007

oscache-2.4.1 11,929 13 66 629 Middleware 07/07/2007

picocontainer-2.10.2 12,103 15 208 1,302 Middleware 02/25/2010

pmd-4.2.5 71,486 88 862 5,959 Testing 02/08/2009

poi-3.6 299,402 133 233 19,618 Tool 12/15/2009

pooka-3.0-080505 68,127 28 813 4,551 Tool 05/05/2008

proguard-4.5.1 82,661 33 604 5,154 Tool 07/08/2010

quartz-1.8.3 52,319 44 280 2,923 Middleware 06/22/2010

quickserver-1.4.7 18,243 16 132 1,278 Middleware 03/01/2006

quilt-0.6-a-5 8,425 14 66 641 Testing 10/20/2003

roller-4.0.1 78,591 80 567 5,715 Tool 01/13/2009

squirrel_sql-3.1.2 8,378 3 153 689 Database 06/15/2010

sunflow-0.07.2 24,319 21 191 1,447 3D/graphics/media 02/08/2007

tomcat-7.0.2 283,829 106 1,538 15,627 Middleware 08/11/2010

trove-2.1.0 8,432 3 91 585 SDK 08/14/2009

velocity-1.6.4 5,559 33 388 2,957 diagram generator/data visualiza-
tion

05/10/2010

wct-1.5.2 69,698 85 606 5,527 Tool 08/22/2011

webmail-0.7.10 14,175 16 118 1,092 Tool 10/07/2002

weka-3.7.5 390,008 75 2,045 17,321 Tool 10/28/2011

xalan-2.7.1 312,068 42 1,171 10,384 parsers/generators/make 11/27/2007

xerces-2.10.0 188,289 40 789 9,246 parsers/generators/make 06/18/2010

xmojo-5.0.0 31,037 9 110 1,199 Middleware 07/17/2003

Table B - Metric Names

Quality Dimension Metric Label Metric Name Granularity
Size LOC Lines of Code Project, Package, Class, Method

LOCNAMM Lines of Code Without Accessor or Mutator Methods Class
NOPK Number of Packages Project
NOCS Number of Classes Project, Package
NOM Number of Methods Project, Package, Class
NOMNAMM Number of Not Accessor or Mutator Methods Project, Package, Class
NOA Number of Attributes Class

Complexity CYCLO Cyclomatic Complexity Method
WMC Weighted Methods Count Class
WMCNAMM Weighted Methods Count of Not Accessor or Mutator

Methods
Class

AMW Average Methods Weight Class
AMWNAMM Average Methods Weight of Not Accessor or Mutator

Methods
Class

MAXNESTING Maximum Nesting Level Method
CLNAMM Called Local Not Accessor or Mutator Methods Method
NOP Number of Parameters Method
NOAV Number of Accessed Variables Method
ATLD Access to Local Data Method
NOLV Number of Local Variable Method

Coupling FANOUT - Class, Method
FANIN - Class
ATFD Access to Foreign Data Method

FDP Foreign Data Providers Method
RFC Response for a Class Class
CBO Coupling Between Objects Classes Class
CFNAMM Called Foreign Not Accessor or Mutator Methods Class, Method
CINT Coupling Intensity Method
MaMCL Maximum Message Chain Length Method
MeMCL Mean Message Chain Length Method
NMCS Number of Message Chain Statements Method
CC Changing Classes Method
CM Changing Methods Method

Encapsulation NOAM Number of Accessor Methods Class
NOPA (NOAP) Number of Public Attribute Class
LAA Locality of Attribute Accesses Method

Inheritance DIT Depth of Inheritance Tree Class
NOI Number of Interfaces Project, Package
NOC Number of Children Class
NMO Number of Methods Overridden Class
NIM Number of Inherited Methods Class
NOII Number of Implemented Interfaces Class

Table C - Custom Metrics Names	

Metric Label Metric Name
NODA Number of default Attributes
NOPVA Number of Private Attributes
NOPRA Number of Protected Attributes
NOFA Number of Final Attributes
NOFSA Number of Final and Static Attributes
NOFNSA Number of Final and non - Static Attributes
NONFNSA Number of not Final and non - Static Attributes
NOSA Number of Static Attributes
NONFSA Number of non - Final and Static Attributes
NOABM Number of Abstract Methods
NOCM Number of Constructor Methods
NONCM Number of non - Constructor Methods
NOFM Number of Final Methods
NOFNSM Number of Final and non - Static Methods
NOFSM Number of Final and Static Methods
NONFNABM Number of non - final and non - abstract Methods
NONFNSM Number of Final and non - Static Methods
NONFSM Number of non - Final and Static Methods
NODM Number of default Methods
NOPM Number of Private Methods
NOPRM Number of Protected Methods
NOPLM Number of Public Methods
NONAM Number of non - Accessors Methods
NOSM Number of Static Methods

