

The Role of the Tester’s Knowledge in Exploratory Software Testing
Juha Itkonen, Mika V. Mäntylä, and Casper Lassenius

Accepted to IEEE Transactions on Software Engineering, 2012, 20 pages.

© 2012 IEEE. Reprinted with permission.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 1

The Role of the Tester’s Knowledge in
Exploratory Software Testing

Juha Itkonen, Member, IEEE, Mika V. Mäntylä, Member, IEEE, and Casper Lassenius, Member, IEEE

Abstract—We present a field study on how testers use knowledge while performing exploratory software testing in industrial settings.
We video recorded 12 testing sessions in four industrial organizations, having our subjects think aloud while performing their usual
functional testing work. Using applied grounded theory, we analyzed how the subjects performed tests, and what type of knowledge
they utilized. We discuss how testers recognize failures based on their personal knowledge without detailed test case descriptions. The
knowledge is classified under the categories of domain knowledge, system knowledge, and general software engineering knowledge.
We found that testers applied their knowledge either as a test oracle to determine whether a result was correct or not, or for test design,
to guide them in selecting objects for test and designing tests. Interestingly, a large number of failures, windfall failures, were found
outside the actual focus areas of testing as a result of exploratory investigation. We conclude that the way exploratory testers apply
their knowledge for test design and failure recognition differs clearly from the test-case–based paradigm and is one of the explanatory
factors of the effectiveness of the exploratory testing approach.

Index Terms—Software testing, exploratory testing, validation, test execution, test design, human factors, methods for SQA and V&V

F

1 INTRODUCTION

SOFTWARE testing is traditionally considered a process
of executing test cases, which are carefully designed

using test-case design techniques [1], [2], [3], [4]. Test-
case design techniques aim at ensuring systematic cov-
erage, detection of typical error types, and reduction of
redundant testing [1], [2], [5]. The test-case–based testing
paradigm (TCBT) assumes that actual test execution,
even when performed as a manual activity, is a more or
less mechanical task. During execution, the predefined
test cases are run, and their outputs compared to the
documented expected results. However, studies on in-
dustrial practice report that real-world testing seldom
is based on rigorous, systematic, and thoroughly docu-
mented test cases [6], [7], [8].

Although test automation has been the focus of a
great deal of research, manual testing is still widely
utilized and appreciated in the software industry, and
is unlikely to be replaced by automated testing in the
foreseeable future [6], [9], [10], [11], [12]. In many soft-
ware development contexts, the manual testing effort of
professional testers and application domain experts is
crucial to ensuring that products fulfill the needs of the
users or please the markets. In this context, exploratory
software testing (ET) has been proposed as an effective
testing approach.

The exploratory testing approach differs significantly
from traditional software testing in that it is not based
on predesigned test cases. Instead, it is a creative,
experience-based approach in which test design, execu-
tion, and learning are parallel activities, and the results

Authors are with the Software Process Research Group, Department of
Computer Science and Engineering, Aalto University School of Science,
P.O. Box 15400, 00076 Aalto, Finland. E-mail: {juha.itkonen, mika.mantyla,
casper.lassenius}@aalto.fi

of executed tests are immediately applied for designing
further tests [13]. Exploratory testing is a recognized
testing approach [14], but has commonly been referred
to as ad hoc testing or error-guessing [1], [2], [14]. Practi-
tioners, however, recognize that exploratory aspects are
fundamental to most manual testing activities [10], [15],
[16], [17]. There are a growing number of practitioner
reports and studies on the benefits of exploratory testing
[13], [18], [19], [20], [21]. In these reports, ET is commonly
described in the context of system-level testing of inter-
active systems through the GUI and from the end user’s
point of view.

In studies of manual testing and, in particular, in the
ET context, the experience and especially the application
domain knowledge of testers have been recognized as
important aspects affecting the tester’s behavior and
results [12], [16], [22], [23].

In this paper, we use the term knowledge to refer to the
tester’s personal knowledge in a rather wide meaning.
Using the terminology of Robillard [24], we include both
topic, i.e., meaning of words, and episodic, i.e., experience
with knowledge, types of knowledge, and, to some
extent, tacit knowledge.

Knowledge can be applied to different exploratory
testing tasks and purposes. First, knowledge can be
used as information to guide exploratory test design.
Second, knowledge can be used to recognize failures, i.e.,
as an oracle to distinguish between a correct, expected
outcome and an incorrect, defective outcome [14]. Third,
knowledge, together with the observed actual behavior
of the tested system, can be used to create new, better
tests during exploratory testing.

In this paper, we present a study in which we exam-
ined how testers provoke and recognize software failures
in real-world exploratory testing work. We provide a

2 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

detailed analysis of the actual failure incidents during
functional software testing in four software development
organizations. We focus on the types of knowledge that
testers apply when recognizing failures and how they
apply this knowledge to recognize failures (as a test
oracle) and to design tests to provoke failures. In addi-
tion, we analyze the types of failures that are recognized
based on the different knowledge types.

We use the term failure as defined by the IEEE: “the in-
ability of a system or component to perform its required
functions within specified performance requirements”
[25] in a broad sense, including any failure of the system
to satisfy the user’s or customer’s needs or expectations.
The term fault is used in this paper where the distinction
between the fault and failure is essential, i.e., when
referring to the actual “incorrect step, process, or data
definition in a computer program” [25].

Recently, researchers in the empirical software engi-
neering research community have called for research on
“testing as it is carried out in real-life circumstances” and
studies that focus on how testing unfolds in industrial
practice, instead of trying to demonstrate the superiority
of methods or technologies [12], [26], [27]. With this
paper, we contribute to that line of research by reporting
on how software development professionals recognize
software failures in practice, and the role of personal
knowledge in exploratory testing.

In the next section, related work is reviewed. The
research goals and questions, as well as a presentation of
the research methods, are covered in Section 3. Results
are presented and discussed in Section 4. A short sum-
mary and a discussion of the limitations of this study are
presented in Section 5, followed by the conclusions and
recommendations for future work in the last section.

2 RELATED WORK

The context of this study is the exploratory software
testing approach, and our research focuses on the role
of knowledge in testing and failure recognition and the
types of recognized failures. Thus, we begin the review
of related work with the exploratory testing literature.
Then we present the role of experience and knowledge
in software testing in general, and continue with moti-
vating the role of knowledge as a test oracle. Finally, we
conclude this section by covering research on existing
software failure classifications.

2.1 Exploratory Software Testing
Exploratory testing (ET) is an experience-based testing
approach that differs fundamentally from the highly
document-driven test-case-based testing approach. Ex-
ploratory testing can be defined as: “simultaneous learn-
ing, test design, and test execution; that is, the tests are
not defined in advance in an established test plan, but
are dynamically designed, executed, and modified” [14].

ET is an approach, not a specific testing technique,
such as boundary value analysis or pair-wise testing.

Many test design techniques can be applied also in an
exploratory way, since the difference is that in ET test
design, execution, result interpretation, and learning are
not temporally disconnected as separate phases, but hap-
pen more or less in parallel. The goal is not to transfer
the knowledge and experience between persons in a
form of documented test cases, but to use knowledgeable
individuals to perform test design, execution, and inter-
pretation simultaneously. Thus, instead of focusing only
on predesigned test cases that are run in a repetitive way,
reproducing tests and confirming existing information,
ET leverages the knowledge of testers to create varying
and diverse tests on the fly in order to reveal as many
yet unknown problems in the software as possible.

The term “exploratory testing” was introduced by
Kaner et al. [3]. The ET approach has been acknowledged
in software testing books since the 1970s [1], but mostly
referred to as an “ad hoc approach” or error-guessing
without any concrete description of how to perform it.
Only a few scientific papers on exploratory testing have
been published, but it has been well covered in some
specialized books, e.g., [10], [17], and discussed briefly
in generic testing books, e.g., [4], [28], [29]. James Bach
described exploratory testing in more detail [13], and
Tinkham and Kaner [15] covered the need for question-
ing skills and the heuristic nature of ET.

Practitioner reports on exploratory testing claim it is
both effective in detecting failures (or bugs) and cost-
efficient [13], [18], [19], [20], [30]. These reports, however,
are personal experience reports without any scientifically
documented empirical basis. Practitioner literature also
describes how to manage ET using session-based test
management [19], [30], which is an approach in which
testing is managed as time-boxed (few hours) sessions,
higher-level guidance and goals, regular debriefings, and
logging instead of test suites and test cases. Another
example is the tour-based approach [17] that utilizes a
tour metaphor and uses different types of tours through
the tested system to guide exploratory testing activities.

Some scientific case studies and experiments studying
the effectiveness and efficiency of ET have been pub-
lished during the last decade. Itkonen and Rautiainen
[16] studied the perceived benefits of the ET approach in
three organizations. Houdek et al. [31] studied defect de-
tection effectiveness in the executable specification con-
text, comparing systematic testing and experience-based
ad hoc simulation, and Itkonen et al. [32] performed
a student experiment comparing the failure detection
effectiveness of ET and TCBT. In an experiment do
Nascimento and Machado [33] compared the exploratory
and model-based testing approaches to feature testing
in the mobile phone applications domain. In the results
of these studies, exploratory testing was found to be
as effective as TCBT [31], [32], [33], and to require less
effort than the testing approaches it was compared to
[31], [33]. While few in number, these studies support
the hypothesis that ET could be an effective and efficient
testing approach in certain contexts.

ITKONEN et al.: THE ROLE OF THE TESTER’S KNOWLEDGE IN EXPLORATORY SOFTWARE TESTING 3

Studies on how exploratory testing is applied in prac-
tice in software development organizations also exist.
Itkonen and Rautiainen [16] reported how three orga-
nizations applied exploratory testing, including related
motivations, benefits, and challenges. In another study,
Itkonen et al. [34] describe empirically observed ET
practices. Pichler and Ramler [35] applied ET for testing
a highly interactive GUI editor and developed software
tools to support exploratory GUI testing. Researchers
have also determined that the ET approach seems to be a
good match with agile development processes [36] and,
e.g., Tuomikoski and Tervonen [21] describe positive
experiences of using team exploratory testing sessions
as part of the agile Scrum development process. Martin
et al. [26] give a detailed description of a “systems
integration testing” approach that is highly exploratory
in their ethnography of testing in a small agile company,
while Kasurinen et al. [37] observed exploratory testing
as part of a more generic risk-based approach to testing.
These few empirical studies give some examples of how
ET is applied in industrial practice.

Other studied aspects of ET include the effect of
individual characteristics on ET, including the effect of
learning style on testing [38], and the effect of personality
traits on exploratory testing performance, showing that
extrovert personalities might be more likely to excel in
exploratory testing [39].

In conclusion, exploratory testing has been promoted
in the practitioner literature, and scientific studies of ET
are emerging. Studies comparing ET with other testing
approaches support the effectiveness and efficiency of
the ET approach. Empirical studies of industrial practice
propose the applicability of the ET approach in the
context of system-level functional testing from the user’s
viewpoint, highly interactive GUI testing, and enhance-
ment of the testing practices of agile development. To our
knowledge, there are no empirical studies on the details
of the actual exploratory testing practices and activities,
other than our previous work [34].

2.2 Experience and Knowledge in Software Testing

Experience and knowledge have been studied in the
contexts of software engineering [40] and software de-
sign [41], [42]. Sandberg [43] studied human competence
at work in a different engineering field. Practitioners
have reported the benefits of experience-based testing
approaches, e.g., in the financial [44] and medical [20],
[45] domains, but these reports are not based on scientific
research. Scientific research on the role of experience
and knowledge in the software testing context is still
rare, but some studies have been published that focus
specifically on the subject [12], [22], [23], [46]. In these
studies, the term experience was defined as “practical
knowledge that is developed in direct observation or
participation in activities” [12], or as the amount of
professional experience [22]. Next, we describe these
studies in more detail.

Beer and Ramler [12] studied the role of experience
in the development of test cases, regression testing, and
test automation. They found in their case studies that
domain knowledge, in addition to testing knowledge, is
crucial in testing. They describe the typical knowledge
development path of senior testers, which started with
strong domain knowledge. Testing experience was later
gained through working in testing, attending seminars,
and working with external consultants. They conclude
that “test design is to a considerable extent based on
experience and experience-based testing is an important
supplementary approach to requirements-based testing”
[12]. In all three cases, test cases were designed before the
actual testing, which means that their research did not
give any insight into the exploratory testing approach.

In a survey on the effect of experience and individual
differences in software testing, Merkel and Kanij [46]
found that testing practitioners consider both testing and
domain experience important factors affecting perfor-
mance. Testing-specific training or certification was not
considered important, but the respondents considered
the individual traits of testers to be highly influential on
tester performance. Kettunen et al. [23] also report do-
main knowledge as the most emphasized area of testers’
expertise and highlight the role of technical knowledge,
particularly in the agile development context.

Poon et al. [22] experimentally compared the types
and amounts of mistakes inexperienced and experienced
testers make in test case identification. They found
large variations among individual subjects, especially
in the case of inexperienced ones. Experienced subjects
identified more test categories and made fewer mis-
takes; in particular, the number of missing categories in
complex cases was considerably lower for experienced
subjects. However, experienced testers made more of
certain kinds of mistakes. In addition, the contribution of
experience to performance decreases when the complex-
ity of the tested functionality increases. Using checklists
reduced the number of missing categories and all types
of mistakes. Poon et al. [22] conclude that software
development experience cannot replace the need for a
systematic methodology and suggest involving testers
with varying experience levels in industrial settings.

The effect of domain knowledge on fault and failure
recognition has been identified in the software testing,
spreadsheet error finding, and usability inspection con-
texts. Multiple studies report the importance of domain
knowledge in testing [12], [16], [23], [46]. In the context of
usability inspections, Følstad [47] studied work-domain
experts as usability evaluators and found that the find-
ings of work-domain experts were classified as more
severe and given higher priority by developers [47].
Galletta et al. [48] studied error-finding performance in
the spreadsheet context. They compared fault identifi-
cation performance of domain area (accounting) experts
versus novices, and system (spreadsheet software) ex-
perts versus novices. They found that both types of
expertise increased fault identification performance, but

4 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

the performance of those with both types of expertise far
exceeded the performance of other groups.

2.3 Knowledge as a Test Oracle

One way of applying knowledge in software testing
is to use it as a test oracle. A test oracle is a concept
referring to a method used to distinguish between a
correct and an incorrect result during software testing
[2], [14], [49], [50]. Failure recognition is one of the most
crucial activities in testing, and the existence of a test
oracle is recognized as a fundamental requirement in all
kinds of testing [49], [50], [51], [52].

The challenge of finding a reliable oracle is referred
to as “the oracle problem.” The TCBT paradigm aims
to solve the oracle problem by predefining the expected
result in detail: “In real testing, the outcome is predicted
and documented before the test is run” [2]. In practice,
requirements, specifications, and thus test cases are sel-
dom perfect in terms of comprehensiveness and accu-
racy. From the empirical research on real-world testing
activities, it seems that a human oracle is in many cases
the way test results are evaluated in practice (see, e.g.,
the ethnographic descriptions in [26], [27]). In industrial
practice, the recognition of failures is left as a human
decision [50], [51]. Thus, the oracle problem is highly
relevant in manual testing, and typically solved using
the personal knowledge of testers and varying types of
documentation.

The challenge of using a human oracle is that humans
are fallible, i.e., testers do not always recognize a failure,
even when a test case reveals it. In an experiment by
Basili and Selby [53], subjects recognized only 70% of
observable failures. On the other hand, human testers
are able to detect incorrect results using experience based
partial oracles, even when they cannot know the exact
correct result [54].

In the context of exploratory testing, consistency
heuristics have been proposed to work as experience-
based oracles [10], [55]. These are a set of rules for check-
ing for the consistency of functionality against various
targets, such as the history of the product, comparable
products, and users’ expectations. The core idea in ET is
that the tester can and should use any available sources
of information in the testing [10], [13], which suggests
that the oracle in ET can be any knowledge, documen-
tation, model, or software available to the tester.

Existing research on the role of knowledge and expe-
rience in software testing and failure and fault recog-
nition in general raises the hypothesis that knowledge
has an important effect on failure and fault recogni-
tion performance and that domain knowledge is more
important than testing experience. To our knowledge,
the use of personal knowledge as a test oracle has not
been studied in the context of manual testing with the
intent of understanding, describing, or improving the
way humans recognize failures. Existing studies in the
software testing context are based on interviews in case

studies and surveys, and the results do not provide
insight into how testers actually work and apply their
knowledge. The types of knowledge used and how they
are applied in failure recognition when performing ET
remain an unstudied area, and in this paper, we present
a detailed analysis of how and what types of personal
knowledge testers apply to recognize failures.

2.4 Failure Type Classifications
In this study, we focused on failure incidents that ex-
ploratory testers recognized by analyzing the externally
visible symptoms of the failures. Commonly cited clas-
sifications usually classify faults based on technical, of-
ten source-code level, characteristics, e.g., [56], and are
not suitable for this study. For a summary of existing
functional fault classifications, see [57]. In this study,
our target was to study the symptoms that a tester,
or end user, perceives when the failure occurs. Some
failure classifications classify failures with respect to
the symptoms [58], [59]. However, in [58], all user-
observable failures are classified in a single class, and in
[59], the classification only focuses on technical crashes,
deadlocks, and error messages and does not describe the
failure symptoms of functional behavior.

Some failure classifications that characterize the symp-
toms, however, can be found. One such classification
was used in a study of medical device failures [60].
In this study, Wallace and Kuhn analyzed software-
related failures of medical devices that led to recalls
by the manufacturers and presented a thirteen-class
classification of the failure symptoms. The classification
is somewhat specific to the medical device domain and
not descriptive of the actual symptoms. The classes are
also rather generic and briefly described (e.g., “System:
the total system”).

Classifying failure incidents from the tester’s view-
point is a problem similar to classifying usability prob-
lems from the user’s viewpoint. In both cases, a classi-
fication should capture the externally visible symptoms
of something that is missing or wrong with the software
system. An example of failure classification in the us-
ability testing context is the Classification of Usability
Problems (CUP) scheme [61]. The usability problem
classification, even though similar to the tester’s failure
classification, includes usability-specific classes that are
not applicable in the context of externally visible failure
symptoms that were our focus. One generic and simple
classification dimension, which has been used in testing
technique experiments [53], [62] and is visible as part of
the usability problem [61] and fault classifications [63],
is the omission versus commission dichotomy, which
simply separates failures based on whether something
is missing or wrong. We choose to take this simple
dichotomy as the basis for our symptom analysis and
propose a more detailed preliminary symptom-based
failure classification.

We also analyzed the difficulty of provoking the fail-
ures. One characteristic of failure that is directly related

ITKONEN et al.: THE ROLE OF THE TESTER’S KNOWLEDGE IN EXPLORATORY SOFTWARE TESTING 5

to the provocation difficulty is the number of interacting
conditions that together cause the failure. This character-
istic can be analyzed by using the failure-triggering fault
interaction (FTFI) number [64]. This original term by
Kuhn et al. is rather misleading considering the common
meaning of the term ‘fault’. We define the concept,
using the terminology applied in this paper, as failure-
triggering condition interaction number (FTCI). The FTCI
number refers to the number of interacting variables
or conditions that together cause a certain failure to
occur. In 1-way faults, only one condition triggers the
failure, while 2-way faults would need two interacting
conditions to occur together to trigger a failure.

3 RESEARCH GOALS AND METHODS

The research presented in this paper is a field study
in which the testing practices of eight software de-
velopment professionals in four software development
organizations were studied. Our research methodology
consists of empirical participant observations [65] as
the primary data collection method and qualitative data
analysis using applied grounded theory. We also present
quantitative summaries of the recognized failures in
the observed sessions. Next, we describe the research
objectives and questions, as well as the methodology
employed.

Our research approach was both exploratory and de-
scriptive. In the area of exploratory testing, existing
research does not provide a basis for strong theoretical
hypotheses. Instead, the objective of this study was to
understand the phenomenon of failure recognition in ex-
ploratory software testing. We aimed at describing how
testers recognize failures as they occur in exploratory
testing and at drawing hypotheses grounded on our
observational data. We studied the types of knowledge
involved and characterized the observed failure types.
The high-level research objective was to understand how
failures are recognized by testers performing exploratory soft-
ware testing, and the role of knowledge in it. The research
questions were:

RQ1: What types of knowledge do testers utilize for pro-
voking and recognizing failures when performing
exploratory testing?

RQ2: How do testers apply their knowledge when perform-
ing exploratory testing?

RQ3: What types of failures do testers recognize using
knowledge in exploratory testing?

As the analysis for RQ 1 and RQ 2 was qualitative
and requires lengthy descriptions, we present the results
regarding the first two research questions together in
Section 4.1. The quantitative analysis for RQ 3 is pre-
sented separately in Section 4.2.

3.1 Data Collection Methods

We collected the data using participant observation [65]
because we wanted to understand the actual testing

tasks the subjects performed in their natural working
environments. In direct observation, “the inquirer has
the opportunity to see things that may routinely es-
cape awareness among the people in the setting” [66].
Because participant observation can mean many things
depending on the source (see, e.g., [66], [67], [68]), we
describe our approach using the six dimensions of field-
work variations presented by Patton [66]: 1) The role
of the observer was onlooker. The observer sat beside
the subject for the entire testing session and did not
participate in the actual testing activities. Verbal commu-
nication occurred between the observer and subject as
the subject was thinking aloud, and the observer asked
occasional clarifications. 2) The perspective of the observer
was outsider dominant. The observer was not part of the
organization nor involved in the product development.
The observer was familiar with the organization and the
tested software products through existing long research
cooperation. 3) The observation was conducted by a single
researcher. 4) The observer and his role as a researcher
were fully disclosed to the subjects. 5) The duration of
the observation was one or two 1–2.5-hour observation
sessions per subject. 6) The focus of the observations was
on individual test execution tasks of single testers in
the context of functional testing in exploratory testing
sessions. Any activities outside the observed testing
sessions were excluded from the study.

The context of the observations was professionals
performing their actual testing tasks in their normal
working environments. Most of the sessions took place
in front of the subject’s personal workstation. A few
sessions were observed in small teamwork rooms at the
request of one of the companies. A single subject at a
time was observed performing individual testing tasks.
The total number of observed sessions was 12.

We used comprehensive video and audio recording of
the sessions, augmented with field notes. Video-based
field observations have been used, e.g., in studying pro-
grammer behavior [69], and pair and side-by-side pro-
gramming [70], [71], [72]. We performed the recording
with two cameras. One recorded the subject’s computer
screen, as well as the audio of the discussion. The other
camera was used to film an overall view of the tester
in the working environment to capture all activities
that were not observable on the computer screen, e.g.,
reading paper documentation and taking notes with pen
and paper. The field notes were recorded in written
format using a laptop computer. In addition, the test doc-
umentation that was used during the observed sessions
and all defect reports were recorded to support analysis.

Since much of the behavior that we were interested
in happens inside a tester’s head, we had to include
some way of understanding what the observed tester
was doing and thinking during the testing. For this
purpose, we used the think-aloud method [66], meaning
that we asked the subjects to think aloud, i.e., to describe
what they were thinking while testing. To keep the
testing session as natural as possible, the researcher did

6 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

not enforce continuous verbalization, but only briefly
encouraged the subject to verbalize every now and then.
The goal of the think-aloud method was not to perform
direct verbal protocol analysis [73], but instead to use
the subject’s verbalizations in the analysis as part of the
video recordings. We conducted short (about 30 min)
interviews after each observation. The topics covered
were the subject’s background, and a discussion of how
typical, for the subject, the observed session was overall,
and in terms of the revealed failures and issues. In the
interviews, we used a general interview guide approach
[66].

3.2 Development Organizations and Subjects

The study was carried out in four organizations in three
medium-sized software product companies. The compa-
nies were selected based on the use of the ET approach
and accessibility through existing research collaboration.
A summary of the characteristics of the organizations
and subjects involved in this study is presented in
Table 1.

Company A is a worldwide market leader of software
systems in its engineering domain. Companies B and
C have strong market positions in Scandinavia and
the Baltic countries. All companies are profitable and
growing, and have been in business for more than 10
years, two of them over 20 years.

The products of all of the companies were relatively
mature, with more than 10 years of development each.
In all cases, the customers of the studied companies
were engineering organizations. All tested systems were
applications or systems with rich graphical user inter-
faces targeted for professional use, meaning that the
end users were domain experts, mainly engineers in dif-
ferent fields. All products were highly business-critical
for their customers, and failures in the software could
cause major financial losses or severely harm the core
business processes of the customer organizations. The
products of companies A and B were software systems
used for designing physical structures, which means
that software failures could indirectly cause life-critical
consequences. In addition, one of the tested products in
company A is directly life-critical.

Only company C was using a separate testing or-
ganization. The other organizations did not have any
separate, independent testing organizations. In these
cases, a few people took the managerial responsibility
of planning and managing the testing activities, and the
actual testing tasks were carried out by people in varying
(non-tester) roles in the organization.

The subjects of this study were selected using pur-
poseful sampling [66] among software development pro-
fessionals who had functional testing as one of their
duties. We selected eight subjects with different roles and
backgrounds, two from each organization. The subjects
were high-performing testers, according to the subjective
evaluation of their test managers. This means that their

testing contributions were respected in their organiza-
tions, but does not indicate superior performance with
any objective metrics. Three of the observed profession-
als had testing and quality assurance as their primary
role, whereas the rest were application or domain experts
(see Table 1). In all organizations, the managers highly
appreciated the testing contribution of these application
domain experts and considered it crucial for revealing
high-priority failures from the viewpoint of end users.
The subjects had an average of 5.3 years of domain ex-
perience and 7 years of software engineering experience.

3.3 Data Analysis

Grounded theory [74] (GT) is a suitable research method
for qualitative analysis of data in this type of research.
Grounded theory is a method for generating theory
from data instead of using data to confirm existing
theories, i.e., the research is theory-generating. We had
no strong existing theories about failure recognition or
the role of knowledge in exploratory software testing,
or even about manual testers’ test execution activities
in general. The overall approach to data analysis was
“Straussian” grounded theory [74], [75]. We applied the
GT methodology in the context of video data analysis,
as we describe in the next subsection.

3.3.1 Qualitative Data Analysis

The research data consisted of video-recorded testing
sessions, and the unit of analysis was a single failure inci-
dent. We used the Noldus Observer XT software, which
is an effective software package specifically designed
for coding and analysing video data. Using rich video
data as primary documents creates certain challenges in
applying a GT approach [72].

We performed an applied GT analysis in four phases.
First, we performed open coding, focusing on the activ-
ities of the testers. In this phase, all observation sessions
were coded in full length. This coding was performed
by applying the codes directly in the video recordings.

Second, based on our research questions, we selected
all video excerpts that were coded to include the recog-
nition of a failure. In the second coding round, we aimed
at coding the selected excerpts from the perspectives of
failure recognition and knowledge used when provoking
and recognizing failures. We soon realized that directly
coding the video material was not feasible, since the con-
cepts of failure recognition and how the tester applied
the knowledge were not short isolated passages. Instead,
it seemed that the concepts most often spanned the
whole test execution episode, which might last anywhere
from a few minutes to half an hour.

Third, because of the aforementioned challenge, we
transcribed all the selected episodes to text. In the
transcriptions, we transcribed not only the think-aloud
protocol, but also described with sufficient detail the
behavior of the tester, the general approach to testing, the

ITKONEN et al.: THE ROLE OF THE TESTER’S KNOWLEDGE IN EXPLORATORY SOFTWARE TESTING 7

Table 1
Development organizations and subjects

Company A Company B, Unit 1 Company B, Unit 2 Company C

of employees >100 >400, Unit: >200 >400, Unit: <100 >100

Customers Hundreds Thousands About 100 Hundreds

Product 3D modelling for structural
engineering

3D modelling for structural
engineering and
construction information

Network management for
energy distribution
networks and civil
engineering

Data management and
simulation for free energy
markets

Customization No (COTS) No (COTS) Yes Yes

End Users Engineers Engineers, architects Company staff, engineers Company staff

Independent
testing org.

No No No Yes

Subjects (#: role) 2: Quality manager and
customer service

2: Senior software
specialist and technical
customer support

2: Software developer and
customer service
consultant

2: Test manager and
software tester

of sessions 4 4 2 2

context, and the observed symptoms of the recognized
failure itself.

Fourth, we applied open coding to the transcripts of
the test execution episodes. This led to over 50 codes,
representing concepts that emerged from the data, which
we classified in categories. During this coding and fur-
ther analysis, we alternated between open and axial
coding. The purpose of axial coding is to reassemble data
that were fractured during open coding. It is a process
of relating categories to subcategories along the lines
of their properties and dimensions [74]. As new con-
cepts emerged, they were compared and grouped with
similar concepts, and categories were formed around
groups of concepts describing similar findings. When
the categories and classes emerged in the analysis, the
transcriptions were analyzed again against those new
concepts in a cyclic manner to confirm the findings.
The detailed coding of the transcribed episodes was
performed using the ATLAS.ti software package.

3.3.2 Failure Type Analyses

We discovered that there are only a few failure type
classifications available in the literature (see Section
2.4). However, we took the generic omission versus
commission classification that has been used in failure
and fault classifications earlier [53], [61], [62] as a basis
and employed our qualitative analysis approach (see
Section 3.3.1) and open coding to create a finer failure
classification under the two main classes.

In addition, we analyzed all failure incidents using the
failure-triggering condition interaction (FTCI) number
(see Section 2.4). For this purpose, we performed one
more coding round in which we focused purely on this
aspect and coded all the failure incidents using the FTCI
classification. The FTCI number for each observed failure
was determined by observing the failure occurrence on
the video recording. The FTCI number could be analyzed

based on how the tester interacted with the system, in-
vestigated the failure, and commented on the triggering
conditions. For example, in the case of the failure related
to the collapsing hierarchical view, described in Section
4.1.1.1, the FTCI number was 2: Triggering the failure
required the tester to first open the hierarchy levels in
the view, and second, to toggle the sorting order. If the
number of interacting conditions that were triggering a
failure could not be determined based on the data, the
incident was coded as “unclear.”

4 RESULTS AND DISCUSSION

Altogether, our data contained the recognition of 88
failures in 12 observation sessions. These were all distinct
failures in terms of the observable symptoms from the
testers’ viewpoint, i.e., data did not include duplicate
recognitions of the same failures. We did not have the
longitudinal follow-up data on how the reported de-
fects were processed and resolved. In the following, we
present the results in two subsections. First, we present
the results of our analysis on the role of knowledge in
ET and a categorization of knowledge types in Section
4.1. Second, we present a preliminary failure type classi-
fication and analyze the failure provocation difficulty in
Section 4.2. We present the discussion together with the
results in separate subsections.

4.1 The Role of Knowledge in Recognizing Failures
Our analysis revealed three types of knowledge that
testers utilized to recognize failures in the observed
sessions: domain knowledge, system knowledge, and
generic software engineering knowledge. The knowl-
edge types are summarized in Table 2. The knowledge
types are applied together when recognizing a certain
failure. In the categorization, each of the failure inci-
dents was categorized in exactly one category indicating
the dominant knowledge type. This means that, e.g.,

8 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

failures in the domain knowledge category oftentimes
additionally required some level of system knowledge
to be recognized.

In many cases, knowledge was applied straightfor-
wardly as a test oracle. However, in some cases, knowl-
edge was used as a basis for a more comprehensive tactic
to guide test design, i.e., the tester chose what and how
to test based on his or her knowledge. (see Table 2). Us-
ing knowledge for test design was shown, for instance,
when a tester designed a targeted attack to investigate
certain risks that he or she identified based on earlier
experience. Another typical example was simulating an
experience-based usage scenario when testing.

4.1.1 Domain Knowledge
Application domain knowledge was applied to recog-
nize failures in 20 of 88 failure incidents. A failure
belongs to the domain knowledge category when the
recognition requires knowledge of the application domain
rules, customers’ (including users’) processes or needs, or
the operational usage context. The use of domain knowl-
edge was mainly indicated through the verbal comments
of the observed tester. An incident was categorized
as domain knowledge when the tester reasoned about
the failure by referring to concepts and rules of the
domain or the circumstances of the real use of the
system, e.g., the authentic activities of the users, the
operational environment, the users’ processes and goals,
or the effects of using realistic data. It is very difficult
to draw a clear line between domain knowledge and
system knowledge, since almost all testing requires some
amount of system knowledge and domain knowledge
to be performed. Domain knowledge was divided into
two main perspectives: the users’ perspective and the
application domain perspective.

4.1.1.1 The users’ perspective: The users’ perspec-
tive includes knowledge of the practical procedures of
real use and real users of the system together with a
good understanding of the real operational context of
the system. This also included knowledge of the higher
level needs and goals of the users, i.e., for what purposes
the system serves as part of the users’ own work. This
knowledge category was further divided into three sub-
types: episodic knowledge of usage procedures and con-
text, conceptual knowledge of the information content
and presentation in the usage context, and knowledge
of problems in customer cases.

Episodic knowledge of usage procedures and context cov-
ers the tester’s practical knowledge of how the users
perform their tasks using the system. This kind of
knowledge is difficult for the practitioners to articulate
or describe, but they can perform the actual work ac-
tivities using the system based on this knowledge. In
these cases, testers were usually experienced users of
the system themselves, which allowed them to recognize
problems that restricted their usage procedures or were
in conflict with their practical knowledge of the users’
activities. In these cases, the testers also needed a deep

system knowledge of the features, in most cases, based
on personal experience as a user of the system; however,
the actual failures were identified by reflecting on the
system’s behavior with domain knowledge of realistic
usage tasks and context.

For example, the tester realized that in a hierarchical
view of data objects, the view is collapsed every time
the sorting order or criterion is changed. The tester
commented:

“this [behavior] is unacceptable, because collapsing the
hierarchy heavily distracts the user’s attention. And users
rarely use this feature to edit complicated data hierarchy,
but if mistakes are made, fixing them is costly . . . ”

In another case, a tester found that a copy function for an
entity did not copy the longest attribute, which typically
was only slightly modified for new copies. This severely
reduced the utility of the function. These cases illustrate
how seemingly minor usability glitches are revealed as
real problems when they are understood in a realistic
usage context.

Episodic knowledge was applied by using the tested
features for activities that simulated realistic usage tasks.
This can be described as using knowledge for test design,
because the tester’s knowledge of the real usage guided
the testing and the tester’s strategy of selecting test
scenarios, instead of simply acting as an oracle. Another
usage context was using the system to prepare tests and
data as part of the testing activity, which essentially
meant using the system for realistic tasks, and was
also an approach to use domain knowledge for test
design. This way, the testers recognized that features
were inadequate for real use, even though they were
implemented and technically correct to some extent.

The conceptual knowledge of the information content and
presentation in the usage context refers to testers’ domain-
specific knowledge of the information content of the
system. The knowledge included understanding the pre-
sentation of results or outputs in the realistic context of
the users’ needs and goals. When testers relied on the
knowledge of the information content or presentation,
they recognized that the system presented inadequate
or deficient data or presented data in a form that is
not useful for the users, i.e., users would need more
data, different data, or the data must be presented in
a different way, to be fully useful to the users. Testers
often referred to what the users would actually do with
the outputs of the system and indicated the importance
of particular data for the users. Testers judged problems
in data presentation as unacceptable in real use, even
though the features might seem technically correct.

For example, the most essential and critical data for
the users were buried in the middle of a lengthy report
that the system produced, rather than being highlighted
at the beginning. The tester reflected on his experience of
how the report would be used in practice and realized
that the form of the report did not support the users’
needs.

Testers recognized limitations and inadequacies re-
lated to realistic data and usage context that would make

ITKONEN et al.: THE ROLE OF THE TESTER’S KNOWLEDGE IN EXPLORATORY SOFTWARE TESTING 9

Table 2
Categories of knowledge used for recognizing failures in software

Knowledge category and perspective Knowledge type and how it was applied

Domain
knowledge

Users’ perspective Episodic knowledge of usage procedures and context
• Simulating realistic usage tasks (design)
• Using the system to prepare tests and data (design)

Conceptual knowledge of the information content and presentation in usage context
• Evaluating test results and outputs (oracle)

Knowledge of problems in customer cases
• Testing for specific risks (design)

Application domain
perspective

Conceptual knowledge of the subject matter
• Evaluating test results and outputs (oracle)

Practical knowledge of the subject matter and tools
• Creating reference results for tests (oracle)

System
knowledge

Interacting features and
system perspective

Knowledge of system’s working mechanisms, logic, and interactions
• Simulating realistic usage tasks (design)
• Observing the overall response of the system to changes in configuration, state, or data

(oracle)
• Recognizing failures outside the actual testing scope, e.g., in other features (oracle)
• Comparing to similar features (oracle)

Knowledge of past failures
• Recognizing familiar symptoms (oracle)
• Testing for frequently occurring failure types (design)

Individual features and
functional perspective

Knowledge of features and views of the system
• Visual inspection of GUI or a report (oracle)
• Comparing to earlier behavior (oracle)
• Recognizing failures outside the actual testing scope, e.g., in other features (oracle)

Knowledge of the detailed technical aspects
• Systematic searching for errors in logs (design)
• Investigating error messages or suspicious results and log messages (oracle)

Generic
knowledge

Generic correctness
perspective

Knowledge of software user interfaces and presentation
• Visual inspection of GUI or a report (oracle)
• Evaluating test results and outputs (oracle)
• Recognizing failures outside the actual testing scope, e.g., in other features (oracle)

Usability perspective Practical knowledge of usability of software systems
• Recognizing failures outside the actual testing scope, e.g., in other features (oracle)

Direct failure
perspective

Practical knowledge to recognize crashes and error messages (oracle)

the tested functions useless or severely restrict their ben-
efits. For example, in an engineering software, the tester
recognized that in a certain view mode, the software
showed all the dimension texts for a construction model.
The tester realized that with a realistic (large) model,
the entire view would be filled by dimension readings
that obscure the actual model. In this case, the tester
understood the real usage context of the feature and
could recognize this problem immediately, even though
it was not obvious when using simple and small models
as test data.

Conceptual knowledge was applied as an oracle when
evaluating test results and the outputs of the system. The
testers evaluated the results against the needs and goals
of the end users based on their knowledge of the real
usage context of the system.

The knowledge of problems in customer cases was applied
when testers performed exploratory tests based on their

knowledge of specific real cases of how the customers,
in practice, use or are forced to use the system. This
knowledge was related to the identified risks based on
past problems of real customers.

As an example, one tester explored the forward com-
patibility of a new feature. The tester saved a complex
data model using the previous version of the software
and then opened the model using the new version. The
goal was to test whether the version under test could
import and use the previous-version data model. The
tester commented:

“Generally, we recommend that customers use the same
version of the software within one project, but in practice
customers have certain situations where they must upgrade
the software in the middle of the project and continue work-
ing with the same models even though it is not officially
supported. And we always say to customers that you can
do it and the models can be converted to new versions.”

In this case, the failure was obvious, but the practical do-
main knowledge about the customer’s working context

10 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

made the tester look for such failures in the software.
The tester applied the knowledge of real customer

cases to aid in test design by constructing tests to
evaluate a specific risk, i.e., evaluating how a new or
changed feature works in problematic situations that the
tester knows real customers have faced before—and will
face in the future. This could be described as using the
knowledge to address a specific risk.

4.1.1.2 Application domain perspective: The ap-
plication domain perspective represents knowledge of
the subject matter in the application domain area and
includes incidents in which the tester applies knowledge
of a more theoretical nature. This knowledge is related
directly to the concepts, theories, rules, and technical
details of the application domain and not to the usage
context. We divide this perspective into two types: con-
ceptual knowledge of the subject matter, and practical
knowledge of the subject matter and tools.

Conceptual knowledge of the subject matter. Testers iden-
tified implementation errors that would be hard to rec-
ognize without a deep understanding of the domain-
specific details behind the features. For example, a tester
found out that a view-filtering feature in an engineering
software used the wrong part number value to filter
the visible parts in the view. The tester reasoned based
on his personal domain knowledge that the filtering
should be performed on the other part number. The
tester commented:

“In principle the filtering works technically correctly, but
not as desired.”

The tester explained that his long experience helped
him recognize and understand the behavior, and that it
would be difficult for a novice to find the issue.

In another case, a tester recognized that the engineer-
ing software produced control files for the wrong types
of parts. The control files used to instruct automatic
machines manufacturing steel parts were also produced
for concrete parts. This failure seemed to be obvious for
the tester based on her application domain knowledge.
The tester commented:

“At these moments one thinks that perhaps the developers
should know something about the application domain, or
someone has been specifying this feature with blinders on.”

Practical knowledge of the subject matter and tools. Testers
utilized their domain knowledge to perform equivalent
operations using other tools to verify the results pro-
duced by the application under test. For example, they
performed reference calculations that they compared to
the system’s output.

4.1.1.3 Discussion: The use of domain knowledge
shows the power of the exploratory approach to testing
and describes how the testers are able to use their
practical knowledge in testing in ways that would be
difficult to document as test cases. The failures identified
by domain knowledge are related to how the features
are used in practice and how they support the users’
actual tasks. In our data, the importance of customers’
perspective was strongly emphasized. One could argue

that such failures are due to poor specifications and
requirements engineering practices. However, in many
software development contexts, requirements are not
specified in such a form that these problems could
be resolved in requirements engineering. The problems
might manifest themselves only when an experienced
user of the system tries to use it for realistic tasks, and
may not be possible to recognize without simulating
the real usage context. In addition, the above quotes
indicate that testers rely even more on their personal
knowledge than the documented specifications. This
was also indicated by the testers’ preference for asking
developers or other people instead of trying to find the
information in documentation when they were uncertain
of the intended or correct behavior of the system.

4.1.2 System Knowledge

System knowledge was utilized in 41 of 88 failure
incidents. A failure belongs to the system knowledge
category when the recognition requires specific knowledge
of the features or technical details of the tested system,
but not a specific understanding of the application domain
and usage contexts. We found two main perspectives of
applied system knowledge: interacting features and sys-
tem perspective, and individual features and functional
perspective (see Table 2).

4.1.2.1 Interacting features and system perspective:
The testers’ knowledge and understanding of the system
and its features can be further divided into knowledge
of the system’s working mechanisms, logic, and interac-
tions; and knowledge of past failures.

Knowledge of the system’s working mechanisms, logic, and
interactions. Testers know how the features work together
and the fundamental working logic of the system. The
tester understands how the system is supposed to react
to certain kinds of changes in input data or configuration
and can recognize failures based on that understanding.
The focus is not necessarily on the accuracy of the details,
but rather on the general picture of how the system is
supposed to react, if the system reacts at all, and if the
reaction is correct. For example, a tester was testing a
system that simulated real-life situations based on an
engineering model. In this case, the tester recognized
the system’s failure to react correctly to changes in the
simulation parameters and properties of the model. The
system either did not react at all or reacted only partially.

Another example of common failures was situations
in which system indicators incorrectly showed data or
calculations as being up-to-date. Testers identified fail-
ures by making operations that revealed inconsistencies
between the status indicators and the actual status of
the system. For instance, an application indicates that a
report item is up-to-date, but after the view is refreshed,
the contents of the item are completely different.

A distinct type of applying system knowledge was
recognizing inconsistent behavior by comparing features
within the same system. Inconsistencies occurred in the

ITKONEN et al.: THE ROLE OF THE TESTER’S KNOWLEDGE IN EXPLORATORY SOFTWARE TESTING 11

way different types of data were processed, in the func-
tioning of similar features, and in the order of applied
actions. An example of the inconsistency in functioning
of similar features was a case where a cross-reference
linking feature was not present in a new feature, and the
tester knew that such linking is always used in similar
features of the product.

The knowledge of the main working logic of a system
also enables testers to recognize unintentional and false
changes in the system state that their testing activities
should not have caused. Testers had a deep understand-
ing of the system’s behavior and how things affect each
other and thus could recognize when something in the
system changed without reason. For example, testers
recognized that in a graphical view of an engineering
model, some properties had suddenly changed without
the tester taking any explicit actions to perform such
changes. Another typical example was that testers recog-
nized unwanted changes after log-out, application shut-
down, or other resetting actions in the system.

Knowledge of the working mechanisms, logic, and in-
teractions was applied by observing the overall response
of the system to changes in the configuration, state,
or data or by simulating realistic usage scenarios. This
knowledge was also applied to recognize failures that
occurred in areas not directly in the testing focus, e.g.,
unintentional changes. Finally, system knowledge was
applied as a consistency heuristic when testers compared
a new feature to similar features and recognized failures
based on the inconsistency between the new feature and
similar features of the same system.

Knowledge of past failures. Knowledge of past system
failures was used either as an oracle to help recognize the
symptoms of a failure, or to focus testing on revealing
certain types of failures and, thus, to guide test design.
For example, a problem with an empty date field that
was erroneously printed in a report as a default value
of “1.1.1970” alerted the tester, because she had seen
this same problem before in other parts of the system.
In another example, a tester tested input fields with
maximum length inputs and searched for symptoms of
buffer overflow. He quickly discovered that the end of
the input string appeared in a field in another dialogue.
The tester had experience with similar buffer overflow
failures previously found in the same system, and he
utilized that knowledge to discover other similar situa-
tions.

4.1.2.2 Individual features and functional perspec-
tive: The individual features and functional perspective
describes the testers’ knowledge of isolated features and
how system knowledge is applied to evaluate individual
features, views, or reports of the system locally, without
comparison or consideration of the system’s workings as
a whole. This perspective is divided into knowledge of
the features and views of the system, and knowledge of
detailed technical aspects.

Knowledge of the features and views of the system. Testers
had knowledge of what features and functions are

available and how data are presented for users in the
views of the system. Testers recognized visible failures
and omissions based on this understanding of what
elements should be in the application user interface and
how things usually look in the application. Examples of
failures revealed using this knowledge type are noticing
images and icons missing from the GUI dialogues and
recognizing that a result was missing in an application
that shows a large number of values after calculations.
Another common example in this category was cases
in which a feature or function did not work at all, or
a certain capability was missing. For example, a tester
tried to input data into a table in the tested application
and found that he could not edit the table directly.

Testers recognized failures based on their understand-
ing of the earlier behavior of the system. If a current
function clearly deviated from the earlier behavior with-
out a good reason, the testers interpreted it as a failure.
For example, the tester had a clear idea of how fitting a
work area of a graphical view to the objects on the area
should work. When the area-fitting function left the area
too big, it became immediately clear to the tester that this
was a failure.

This knowledge was applied in a rather straightfor-
ward manner: First, a simple visual inspection of the
system’s user interface, or a report, was a common way.
Second, it was applied as part of other testing tasks,
whenever a tester encountered obvious problems. Third,
the tester compared features to the earlier behavior.
It was clear that on many occasions, a tester could
recognize a failure based on an observed change in a
feature without being able to exactly specify the correct
function.

Knowledge of detailed technical aspects includes testers
utilizing their knowledge to interpret error and log
messages and to use the command shell or equivalent
tools to check results and investigate the internal status
of the system. Testers applied this knowledge as an
oracle when recognizing error messages or abnormal log
entries in the application command shell or log window.
They knew that some types of run-time errors generate
messages in these logs and applied the knowledge by
systematically checking logs for such messages. Testers
used command shell tools and application-specific script
languages to access the internal data and to verify test
results. Technical tools and technical knowledge were
also applied to investigate further observed symptoms of
recognized failures and to better understand what was
happening in the system.

4.1.2.3 Discussion: In addition to domain knowl-
edge, system knowledge emerged as important in ex-
ploratory testing. An intimate knowledge of the work-
ings of system was helpful for finding problems, as was
knowledge of past failures. System knowledge was used
to recognize “strange” behavior, such as inconsistencies
or unintentional side effects, or to test for commonly oc-
curring problems, such as buffer overflows. In addition
to the system-wide perspective, the detailed knowledge

12 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

Table 3
Failure examples in the generic knowledge category

Generic
correct-
ness

• Typos, e.g., excessive control characters or badly
formatted text.

• Functional failures that are easily identifiable on
GUI level, e.g., multiplied menu items in a
context menu.

• Layout problems in reports and printouts, e.g., ta-
bles or diagrams placed over the page margins,
truncated diagrams, paging problems, missing
content, extra pages.

Usability • Usability problems that make using a feature
difficult or restrict the user unnecessarily, e.g.,
GUI element collapses to too small a size and
cannot be resized, faulty or misleading error
messages, lack of user interface feedback.

Direct
failures

• Explicit error message dialogs that pop up on top
of the application window and are clearly tech-
nical failures rather than informative messages
for the user.

• Crashes, e.g., desktop application crashes and
server-side errors in Web applications.

of individual features and the functional perspective
also provided important clues for testing. This included
both looking for consistency in behavior, as well as
inspecting logs and the internal state of the system.
While it might be possible to describe the expected
results in test cases for most of the problems identified
using this perspective, in many cases, it would require
predicting and documenting a vast amount of potential
failures and things that could go wrong. Indeed, one of
the strengths of ET is the human capability to recognize a
wide variety of problems when they occur without the
need of predicting them beforehand and the ability to
drill down and investigate a problem in greater detail
as testing progresses.

4.1.3 Generic Software Engineering Knowledge

The generic software engineering knowledge category
included 27 of 88 failure incidents. A failure belongs to
the generic knowledge category if it is such a generic
software failure that recognition does not require specific
understanding of the tested system or its application domain.
These failures would be obvious to recognize for most
software testers or software engineering professionals. In
practice, the failures in this category were also obvious
to the researcher who observed the testers.

The knowledge perspectives for this category were:
generic correctness, usability, and direct failures. The
subcategories are further characterized in Table 2, and
examples of failure types are listed in Table 3. Generic
software engineering knowledge was applied mainly by
visual inspection, evaluation of results or outputs, or as
part of other testing activities when unexpected failures
occurred.

The generic knowledge was applied without the
testers paying much attention to describing the findings
or how they recognized the failures. They seemed to

think that the failures in this category were rather obvi-
ous. This means that there was not much to analyze from
the knowledge viewpoint, in these cases. For example,
when the tested software crashed or a layout of a view
was obviously flawed, it was rather straightforward to
see how the failure was recognized.

4.1.4 Discussion on the Role of Knowledge in ET

In this section, we present an overall discussion of our
findings regarding the role of knowledge in exploratory
testing. First we discuss the the identified knowledge
types. Second, we discuss the ways knowledge was
applied during testing, and, third, we give a more
detailed discussion of the interesting windfall failure
phenomenon that we identified.

4.1.4.1 Knowledge types: Testers were able to rec-
ognize a large number of failures in the observed ses-
sions without any explicit descriptions of the expected
results of the tests that they executed. The results show
that testers utilize three different types of knowledge
for recognizing failures. This supports the practitioners’
reasoning for using exploratory testing. The analysis
of the knowledge types emphasizes the power of ET.
In particular, domain knowledge was applied to reveal
failures that could probably not be related to any ex-
plicit specification. Specifications cannot be precise and
comprehensive enough to describe all types of relevant
failures that occur in practice. Testing in an exploratory
context does not mean checking against a specification
but rather testing against implicit expectations. The ex-
pectations became explicit when faced with a concrete
context and system behavior during testing.

In earlier research, it has been recognized that the ET
approach is motivated in development organizations by
stating that testing requires such a deep understanding
of the application domain of the system that it could
only be tested by people with deep domain knowledge
[16]. The results of this study support this finding by
describing in detail the types of knowledge testers utilize
in recognizing failures.

Our findings resemble the main concepts that Sand-
berg [43] identified when studying the work of engine
optimizers: separate qualities, interacting qualities, and
the customers’ perspective. It seems that both in do-
main knowledge and system knowledge categories, the
knowledge divides into focused knowledge of separate
features or details and holistic knowledge of interactions
or the usage context (see Table 4). It is an interesting
question whether testers with more experience and ex-
pertise would be more capable of applying this holistic
type of knowledge and whether less experienced testers
would rely on focused knowledge on individual details.
Sandberg did not identify this type of change in the
conception of work when novices gain more expertise
[43].

Based on our knowledge analysis, we state the follow-
ing hypothesis:

ITKONEN et al.: THE ROLE OF THE TESTER’S KNOWLEDGE IN EXPLORATORY SOFTWARE TESTING 13

Table 4
Focused and holistic knowledge types

Domain
knowledge

System knowledge Use

Focused Appliction domain
perspective

Individual features
and functional
perspective

Oracle

Holistic User’s perspective Interacting features
and system
perspective

Design
Oracle

H1: Exploratory testing is more efficient than test-case–
based testing in recognizing functional failures since
the testers are able to use different types of personal
knowledge in designing tests and recognizing fail-
ures on the fly, rather than restricting their focus to
predefined tests.

4.1.4.2 Application of the knowledge: Based upon
our analysis, we differentiated two main approaches
to applying personal knowledge to testing. First, the
most common way of applying knowledge was using
knowledge as a test oracle (see Table 2). Applying knowl-
edge as an oracle differs clearly from the traditional
test-case–based paradigm, in which the expected result
is specified prior to test execution. The testers took a
wider, system perspective or compared features with
other functionality, which is similar to earlier findings on
comparison techniques applied in manual testing [34]. A
comparison to most prior work on software test oracles
(see Section 2.3) is difficult because researchers have not
studied personal knowledge as a test oracle. Weyuker
[54], however, described her personal experiences of
how testers can apply knowledge as a partial oracle
that is very similar to our findings. Weyuker uses the
term “partial oracle” to describe how testers are able to
recognize false test results without knowing the exact
correct outcome. This aspect is visible also in our results
in the form of the testers’ ability to recognize failures,
even though they do not have exactly specified expected
results for their tests.

Our work contributes to the body of software engi-
neering knowledge by using empirical results to broaden
the perspective of test oracles to consider the use of
the tester’s personal knowledge as an oracle. We also
provided a detailed description of the knowledge types
and how the knowledge was applied as an oracle.

Second, our analysis revealed several more compre-
hensive approaches to applying the tester’s knowledge
for test design in ET, instead of just for oracle purposes
(see Table 2). In these cases, knowledge was applied
to real-time test case selection, design, and execution,
including using the knowledge as a test oracle. These
findings are concrete examples of how the exploratory
testing approach is applied in practice.

When considering holistic versus focused knowledge
(see Table 4), it seems that focused knowledge was
more often applied as a pure oracle, whereas holistic
knowledge was applied both for test design and oracle

purposes. Based on this finding, we propose that effec-
tive ET requires holistic knowledge of the tested system,
as well as the users and usage scenarios and context.

4.1.4.3 Windfall failures: One of the most signif-
icant findings related to the way testers applied their
knowledge was the recognition of windfall failures. We
define a windfall failure as a failure that occurred when
testers exercised other features or areas of the system than
the actual target of the testing session. In our qualitative
coding process, concepts related to these windfall fail-
ures emerged frequently, which motivated us to make
a selective coding round focusing on this phenomenon.
We found that testers often needed to, for example, set
up some data or applicable situations for their actual
testing activities, or use other features of the system
during the testing for various reasons such as further
investigation of recognized failures. Testers also occa-
sionally performed ad hoc exploratory testing activities
for many features outside the actual focus of the testing
session. Many times, testers recognized failures during
these activities.

A more detailed analysis revealed that 20% (18 of the
total 88) of the observed failures were categorized as
windfall failures. Most of the windfall failures were un-
expected error messages, extraneous, or incorrect func-
tions. The windfall failures were recognized based on
generic (61%) or system knowledge (39%).

Testers recognized failures as part of all their activities
besides testing the actual target feature, in test data
preparation, ad hoc exploring, and other situations. It
is important to note that windfall failures were related
not only to test preparation activities, but also to ad
hoc exploration and following hunches, both of which
are core activities of ET. The relatively high number of
windfall failures (20% of all) and their important role
emerged clearly from our data. This finding supports the
claims that the ET approach enables the tester to explore
the system functionality in a versatile and creative way.
These findings indicate that the testers were able to cover
a wider range of essential features during their testing
sessions, even though they were primarily focusing on a
certain feature or area of the application. In addition, all
windfall failures were recognized based on system and
generic knowledge, which means that windfall failures
were not related to the tester’s experience with the
domain, but rather to the varied usage of the system.
The windfall failures also seem to be related to realistic
usage situations, which makes them relevant to the
product. Based on these findings, we state the following
hypothesis:

H2: A major factor explaining the efficiency of ex-
ploratory testing is the large number of failures
(windfall failures) incidentally found outside the ac-
tual target features of the testing activities.

14 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

Table 5
Failure types in knowledge categories (percentages of

observed failures in each knowledge category)

Failure type Domain System Generic All

Commission
Presentation and layout 15 % 17 % 37 % 24 %
Error message 5 % 12 % 26 % 14 %
Extraneous functionality 10 % 2 % 7 % 5 %
Inconsistent state 5 % 17 % 0 % 9 %
Incorrect results 45 % 20 % 4 % 21 %

Commission total 80 % 68 % 74 % 74 %

Omission
Presentation and layout 5 % 2 % 4 % 3 %
Missing function 0 % 5 % 0 % 2 %
Lack of feedback 0 % 7 % 11 % 7 %
Lack of capability 15 % 17 % 11 % 14 %

Omission total 20 % 32 % 26 % 26 %

4.2 Failure Symptom Classification and Provocation
Difficulty

The second part of our analysis focused on the observ-
able symptoms and provocation difficulty of the failures
that the testers recognized. Based on this analysis, we
present a preliminary classification of visible failure
symptoms in Subsection 4.2.1 and an analysis of failure
provocation difficulty in Subsection 4.2.2.

4.2.1 Symptom Classification

Based on on our analysis of failure types, we created
a preliminary classification of visible failure symptoms,
which we consider a valuable additional contribution
from this research. We divided the failures into omis-
sion and commission failures, meaning that the failure
manifests itself either as an incorrect behavior, or as a
missing feature or capability in the system. The percent-
age distribution of the failure incidents to failure types
in each knowledge category is presented in Table 5.

4.2.1.1 Commission failures: We further classified
the commission failures into five subclasses.

Presentation and layout includes symptoms visible in
the outputs or result presentations of the system. The
failures were observed, e.g., on screen or in report print-
outs either in files or on paper.

Error message includes failures recognized based on
explicit error messages. The error messages can either
be immediately visible to the end user or hidden. Im-
mediately visible messages are obvious, shown to the
user as pop-up windows or another clear mechanism.
Hidden messages are logged in the system log window
or file, and the tester must look there specifically for the
error messages to recognize the failure.

Extraneous functionality includes failures recognized by
extra and unnecessary system behavior that is harmful
or distractive for the users’ goals. The failures typically
occurred when one function was being tested and the
system performed some, usually small, harmful side

effect in addition to the behavior that the tester was
expecting.

Inconsistent state includes failures that manifest as
inconsistencies of the system’s internal state or logic.
The tester identified these failures by recognizing an
inconsistent state of the data, status indicators, or other
systems properties. In this failure class, the symptoms
are related to interaction between different functions or
different parts of the system. Typically these failures are
not recognized as a result of a certain single function;
instead, testers recognize the inconsistency after some set
of operations. Such failures typically require extensive
investigation to isolate the actual cause.

Incorrect results include failures that show directly as
an incorrect result of a function or functions that the
tester executes. In this class, the symptoms are directly
connected to a specific function and its results, compared
to the inconsistent status class in which the symptoms
are related to interaction of different functions or parts
of the system.

4.2.1.2 Omission failures: The omission failure
class consists of four subclasses.

Data presentation and layout includes failures that the
tester recognizes as missing elements such as headings,
backgrounds, icons, and images in the outputs or result
presentations of the system.

Missing function includes failures that appear as func-
tions that do not perform the intended operation at all
and do not trigger explicit error messages. Another type
of failure in this class was that the function cannot even
be found in the system.

Lack of feedback includes failures in which the tester
does not obtain the expected or assumed feedback from
the system. These failures were related to immediate
feedback issues such as selection feedback and cursor
feedback in certain events. Another group of lacking
feedback was situations in which the user would need
a more informative error messages or other instructions
to understand what is wrong with the input or how to
proceed correctly.

Lack of capability includes failures in which the tester
determines that some aspect of a function or part of a
feature is missing. Examples include completely missing
parts of calculation results, partially incomplete features,
or missing documentation. In addition, missing special
case handling was an example of this class, in which
failures were recognized as missing handling logic for
extreme or exceptional cases.

4.2.1.3 Discussion: We analyzed the relationship
between the failure type and knowledge categories using
cross-tabulation, shown in Table 5. A few interesting
relationships should be noted. First, the commission:
presentation and layout as well as the error message
classes seem to mostly require only generic knowledge to
be recognized. This relation is plausible since these kinds
of failures are not system-specific, and are recognizable
without deep domain or system knowledge. Second, the
inconsistent status failure type seems to be typical for

ITKONEN et al.: THE ROLE OF THE TESTER’S KNOWLEDGE IN EXPLORATORY SOFTWARE TESTING 15

the system knowledge category. This relationship can
be explained by noting that inconsistent status failures
are typically related to the internal logic of the tested
system, which matches with the subcategory knowledge
of the system’s working mechanisms, logic, and interac-
tions. Third, incorrect results relates heavily to domain
knowledge. This is explained by the need for concep-
tual knowledge of the subject matter to recognize the
incorrect results. Finally, in the omission failure classes,
the missing capability failure class was related to both
domain and system knowledge. The missing capabilities
were omissions that restricted the usefulness of the
features in real use or were system-specific omissions
in the details of specific features.

Our failure symptom classification (see Table 5) fo-
cuses purely on the observable symptoms from the users’
viewpoint and is directly related to the testers’ oracle
decisions. Compared to the existing failure classification
by Wallace and Kuhn [60], we find that their classifi-
cation includes a few classes–namely “data”, “quality”,
and “timing”–which refer to relevant symptom types
that did not emerge in our analysis. Bondavalli and
Simoncini [58] also identified the timing failure class.
Our classification is a preliminary contribution to clas-
sifying software failures based on visible symptoms.
The classification increases the knowledge of different
symptoms that can be used to better recognize failures as
they occur. An improved classification could also serve
as a checklist for exploratory testing and even motivate
development of testing techniques targeted to specific
types of symptoms.

4.2.2 Failure Recognition Difficulty

In order to understand the provocation difficulty of the
failures and how knowledge types relate to recognizing
failures that are complicated or straightforward to pro-
voke, we analyzed all failure incidents using the FTCI
number (see Section 2.4). In this analysis, all observed
failure incidents were classified based on the FTCI num-
ber. The FTCI number essentially refers to the complexity
of the provocation of a failure in terms of the number
of inputs or other conditions that interact together in
order to provoke the actual failure. This is one aspect of
detection difficulty, but does not take into account, e.g.,
how obvious or unusual the provocation conditions are.

The results are presented in Table 6. We identified the
number of affecting failure parameters or conditions for
each failure and categorized the failure incidents as 1-
way, 2-way, 3-way, or always failures. The always class
includes failures that do not require any tester’s actions
or inputs to provoke the failure, e.g., GUI problems that
are recognizable without performing any functions. In
addition, we used an unclear category when the number
of affecting conditions could not be determined based
on the data.

We can see that in our data, 45% of the failure incidents
were 1-way failures, 26% were 2-way, and only 7% were

Table 6
FTCI number distribution of failures

FTCI number Domain System Generic Total

Always 5 % 12 % 4 % 8 %
1-way 75 % 34 % 44 % 45 %
2-way 15 % 37 % 19 % 26 %
3-way 5 % 5 % 7 % 7 %
Unclear 0 % 12 % 26 % 14 %

of failures 20 41 27 88

3-way failures. Eight percent of the failures were in the
always class, and 14% were unclear.

When comparing the FTCI distribution and the knowl-
edge categories, we found that in our observation
data, failures related to domain knowledge were more
straightforward to provoke (80% always or 1-way), and
failures related to system knowledge or generic soft-
ware development knowledge were more complicated
to provoke (46% and 48% always or 1-way, respectively)
in terms of the number of interactions. However, the
provocation difficulty distribution of generic knowledge
category included 26% unclear cases, making such data
rather unreliable.

In addition, 33% of the windfall failures were 1-way,
28% 2-way, and 6% 3-way; 33% were unclear. This
distribution is not significantly different from the ones
in other categories.

4.2.2.1 Discussion: The FTCI analysis in Table 6
reflects how complex a failure is to trigger in terms of the
number of interacting variables or features. Our analysis
showed a similar n-way distribution (see Table 6) that
has been reported in other studies in which empirical
failure data have been analyzed [60], [64]. Our results
show that a high proportion of recognized failures in
the ET sessions were straightforward to find (53%), in
terms of the FTCI numbers, or required only generic
software engineering knowledge (30%). While we do not
know to what extent this distribution is a consequence of
exploratory testing as an approach, and to what extent
it reflects properties of the tested systems, we assume
that this finding mostly reflects ET as an approach, and
speculate about its meaning in the following.

First, our finding contradicts the general claim that ET
would require a high level of testing experience to be ef-
fective. Even though our subjects were regarded as high-
performing testers in their organizations, it seems that
the testing performance was not based on complicated
test design, but more on the tester’s knowledge. Our
findings from an ET context raise an initial hypothesis:

H3: A large fraction of the failures in software applica-
tions and systems do not require complicated test
designs or descriptions to be provoked and recog-
nized.

Second, it raises a question of if, and how much, the
trivial failures and easily spotted problems actually mask
more complicated domain or system-specific issues from
surfacing during testing.

16 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

Third, based on the large proportion (80%) of 1-way or
always failures in the domain knowledge category (see
Table 6), we state a hypothesis:

H4: The majority of failures recognized by the ET
approach, and related to domain knowledge are
straightforward to provoke, whereas failures related
to system knowledge or generic software develop-
ment knowledge are more complicated to provoke,
in terms of the number of interacting conditions.

This finding can be explained either by the relatively
straightforward nature of domain-related failures or by
the low level of testing skills of testers with domain
knowledge. However, we did not recognize such differ-
ences between individuals in our data. Also, the domain
knowledge might be applied at a superficial level, which
might explain the fact that such a small number of 2- and
3-way failures was recognized.

This finding supports having domain experts conduct
ET, since a large number of domain-specific failures can
be recognized without complicated test designs. Such
domain experts are people who are not in testing roles
in development organizations, but who have strong do-
main knowledge or close customer contact. Our findings
are partly similar to the results of Følstad [47], who
found that domain experts were capable of revealing
severe and relevant findings in usability inspections. The
importance of this finding is emphasized when consid-
ering the practical contribution of domain experts in
finding and reporting software failures that was reported
in a case study of three software product organizations
[76].

Our findings do not mean that testing skills and ex-
pertise would not be beneficial for ET. Indeed, ET would
probably be even more effective when the practitioners
have a higher degree of testing expertise. However,
these findings are important for two reasons. First, the
results show that ET can produce results efficiently even
without a high level of testing expertise, given that the
testers posses the required knowledge for revealing and
recognizing the failures. On the other hand, the results
show that there is a large number of straightforward or
otherwise obvious failures to be found, which suggests
that, in practice, different types of testing are needed
with different levels of test design and approaches to
knowledge utilization.

5 SUMMARY

In this section, we present a brief summary of the results
under each research question, followed by answers to
each question. In addition, we present the limitations
and threats to the validity of our study.

5.1 Knowledge Types in Exploratory Testing

Our first research question was: What types of knowl-
edge do testers utilize for provoking and recognizing failures
when performing exploratory testing? We identified and
categorized the knowledge utilized in a hierarchical

taxonomy consisting of three main categories: domain
knowledge, system knowledge, and generic software engineer-
ing knowledge (see Table 2). Furthermore, we divided
the knowledge types into focused and holistic. Focused
knowledge refers, e.g., to the understanding of individ-
ual features, and theoretical concepts of the application
domain. Holistic knowledge deals, e.g., with interacting
features, and larger usage scenarios.

5.2 Application of Knowledge
The second research question was: How do testers ap-
ply their knowledge when performing exploratory testing?
Based upon our analysis, we differentiated two main
approaches. First, the most common way of applying
knowledge was using knowledge as a test oracle (see
Table 2). Applying knowledge as an oracle differs clearly
from the traditional test-case–based paradigm in which
the expected result is specified prior to test execution.
Second, knowledge was used for on-the-fly test design. It
seems that focused knowledge was used more as a test
oracle, whereas holistic knowledge was applied both for
test design and as an oracle.

Another important finding was that many failures
are recognized in areas not directly under study, as a
consequence of exploratory testing activities. We refer
to these failures as windfall failures, as they represent
unexpected positive outcomes of ET.

5.3 Failure Types Recognized in ET Sessions
Finally, the third research question was: What types of
failures do testers recognize using knowledge in exploratory
testing? We analyzed the types of identified failures from
two different viewpoints: the failure symptoms, and the
provocation difficulty.

We constructed a preliminary failure symptom classi-
fication based on our data (see Table 5). The classification
describes typical failure symptoms for the identified
knowledge categories. These results can be used for
developing checklists and targeted exploratory testing
techniques for provoking and recognizing failures that
are manifested as specific types of symptoms.

The FTCI analysis showed that the majority of the
identified failures were relatively straightforward to re-
veal. In addition, the failures that were found using
domain knowledge were often even more straightfor-
ward to reveal than the other failures. This contradicts
the assumption that ET requires a high level of testing
expertise in order to be effective.

5.4 Validity Threats
We analyzed 12 exploratory testing sessions in four soft-
ware development organizations. The external validity
of our results is limited by the context in which our
observations were made. The results would mainly be
generalizable to functional testing in similar contexts
with exploratory software testing approaches.

ITKONEN et al.: THE ROLE OF THE TESTER’S KNOWLEDGE IN EXPLORATORY SOFTWARE TESTING 17

In hypotheses generating qualitative studies, theoreti-
cal saturation is important for internal validity in terms
of completeness and accuracy of the theory. We can
state, based on our data, that the identified knowledge
categories seem to be saturated in the context of our
subject organizations, since all categories were observed
in multiple cases. A few of the detailed knowledge
types (knowledge of problems in customer cases; and
practical knowledge of the subject matter and tools) were
observed only in one case. Practical limitations restricted
the number and selection of development organizations
and subjects that we could include in the analysis; thus,
we are not able to claim full theoretical saturation.

Due to the low number of subjects and the fact that we
used purposeful sampling, the presented quantitative re-
sults are not representative sample of software industry
and must not be used to draw statistical conclusions.

Threats to construct validity of this study are the ef-
fects of the observer’s presence, the amount and quality
of the verbal protocols, and the selection of the observed
testers and individual testing sessions. The observer’s
presence affected the subject’s way of working. Based
on our interviews, we assume that in comparison to
their normal working conditions, the subjects worked
more intensively and were more focussed on their testing
tasks, which they performed without any interruptions.
Many subjects also commented that they seemed to find
a larger number of failures and issues than usual. The
amount of verbal think-aloud protocol varied between
the subjects, because of their individual characteristics.
The selection of subjects was based on interviews with
their managers, and the criterion was to select good
testers in the context of the organization in question. The
individual test sessions were selected for observation
based on availability.

In addition, coding and main analysis of the data
were performed by the first author alone, which may
have introduced the risk of researcher bias. The actual
faults and the properties of the tested software systems
naturally had an effect on the results of this study, but
the similarity of the failure type distributions compared
to earlier published failure data [60], [64] supports the
assumption that the tested systems were not anomalous
in terms of the fault distributions.

Since this study focused mainly on the knowledge in
the failure recognition part of testing, we feel it is appro-
priate to remind the reader that the effect of knowledge
in the test design activity and in the exploratory testing
approach as a whole still remains open. We cannot draw
conclusions, based on this analysis, about the knowledge
that is required to design effective tests in order to
provoke failures, but we presented examples of such
application of knowledge in test design, where testers
applied their knowledge for targeted attacks to certain
risks.

Based on our data, we were not able to analyze
whether the revealed failures in the observed sessions
were a representative sample of the actual failure distri-

bution, in terms of failure types and provocation diffi-
culty, in the tested products. Unfortunately, longitudinal
follow-up data on how the reported defects were later
processed and resolved were not available to us, which is
an important topic to be studied in future research, since
ET seems to produce relatively high numbers of findings,
but the question of how important and beneficial these
findings are remains unanswered.

6 CONCLUSIONS AND FUTURE WORK

In this article, we reported the results of an empirical
observation study of the role of testers’ knowledge in
provoking and recognizing failures in the context of ex-
ploratory software testing in industry. Our results show
that testers are capable of recognizing different types
of software failures based on their personal knowledge
without detailed test case descriptions. Testers apply
knowledge of the system under test and its application
domain, including users’ needs and goals. The knowl-
edge covers not only individual features, but also, and
even more importantly, interactions of many features
and the workings of the system as a whole.

Personal knowledge is applied for testing in a dis-
tinctly different fashion than how the test-case–based
paradigm understands the software testing activity. Our
results show that the ways of applying knowledge in
exploratory testing involve evaluating the overall behav-
ior of the system, comparing the features with other
features, and applying knowledge of earlier versions.
Knowledge is sometimes applied for test design to de-
sign targeted attacks to known risks or customer prob-
lems.

When the knowledge is applied to test design, it
is similar to traditional test design. However, in the
exploratory approach, testers are able to learn how the
tested software works during the testing and combine
that new knowledge with some experience-based knowl-
edge of past failures, or real use scenarios to design
new tests based on their knowledge. This test design
happens in parallel with the testing, not as a separate
test design and documentation round. The knowledge
is also applied to generate the expected results as part
of the testing activity. In addition, a significant share
of findings in exploratory testing seems to emerge as
a result of exploratory testing activities of parts of the
software that are not in the actual focus of the current ET
activity. This further emphasizes the diverse and creative
opportunities of the exploratory testing approach.

Based on the combined analysis of the knowledge and
failure data, we state four testable hypotheses.

H1: Exploratory testing is more efficient than test-case–
based testing in recognizing functional failures since
the testers are able to use different types of personal
knowledge in designing tests and recognizing fail-
ures on the fly, rather than restricting their focus to
predefined tests.

H2: A major factor explaining the efficiency of ex-
ploratory testing is the large number of failures

18 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

(windfall failures) incidentally found outside the ac-
tual target features of the testing activities.

H3: A large fraction of the failures in software applica-
tions and systems do not require complicated test
designs or descriptions to be provoked and recog-
nized.

H4: The majority of failures recognized by the ET
approach, and related to domain knowledge are
straightforward to provoke, whereas failures related
to system knowledge or generic software develop-
ment knowledge are more complicated to provoke,
in terms of the number of interacting conditions.

In conclusion, our results on the one hand suggest
that the exploratory testing approach could be effective
even with low levels of testing experience. On the other
hand, it seems that the exploratory testing approach is
an effective way of involving the knowledge of domain
experts, who do not have testing expertise, in testing
activities.

This research adds to the body of knowledge on
empirical understanding of software failure types in
industrial software systems. We present a preliminary
failure symptom classification based on the externally
visible symptoms, i.e., those seen and experienced by
testers or users. This classification can be used to guide
testers and to create focused failure-driven exploratory
testing techniques. The classification increases under-
standing of software failures from the viewpoint of the
effects the failures have on end users. The classification
is preliminary and needs to be further improved and
extended with more failure data from different contexts.

6.1 Future Work
More research is needed to better understand various
aspects of the ET approach and the role of experience
and knowledge in it. In this study, we focused on
knowledge in failure recognition and stated multiple
testable hypotheses that should be tested in other studies
on ET. The exploratory testing strategies and techniques
should be studied in greater depth in future research. We
plan to continue studies on how testers apply heuristics
and knowledge to design tests and to interpret and
investigate results and failures.

ACKNOWLEDGMENTS

The authors would like to thank the subjects and partic-
ipating companies for providing access to the field set-
tings. This research was partly funded by Tekes (Finnish
Funding Agency for Technology and Innovation) and
SoSE (Graduate School on Software Systems and Engi-
neering).

REFERENCES

[1] G. J. Myers, The Art of Software Testing. New York: John Wiley &
Sons, 1979.

[2] B. Beizer, Software Testing Techniques. New York: Van Nostrand
Reinhold, 1990.

[3] C. Kaner, J. Falk, and H. Q. Nguyen, Testing Computer Software.
New York: John Wiley & Sons, Inc., 1999.

[4] L. Copeland, A Practitioner’s Guide to Software Test Design. Boston:
Artech House Publishers, 2004.

[5] J. B. Goodenough and S. L. Gerhart, “Toward a theory of test data
selection,” IEEE Transactions on Software Engineering, vol. 1, no. 2,
pp. 156–173, 1975.

[6] C. Andersson and P. Runeson, “Verification and validation in
industry - a qualitative survey on the state of practice,” in Proceed-
ings of International Symposium on Empirical Software Engineering,
2002, pp. 37–47.

[7] S. Ng, T. Murnane, K. Reed, D. Grant, and T. Chen, “A preliminary
survey on software testing practices in australia,” in Proceedings
of Australian Software Engineering Conference, 2004, pp. 116–125.

[8] E. Engström and P. Runeson, “A qualitative survey of regression
testing practices,” in Proceedings of 11th international conference on
product-focused software process improvement, 2010.

[9] M. Fewster and D. Graham, Software Test Automation. Harlow,
England: Addison-Wesley, 1999.

[10] C. Kaner, J. Bach, and B. Pettichord, Lessons Learned in Software
Testing. New York: John Wiley & Sons, Inc., 2002.

[11] S. Berner, R. Weber, and R. K. Keller, “Observations and lessons
learned from automated testing,” in Proceedings of International
Conference on Software Engineering, 2005, pp. 571–579.

[12] A. Beer and R. Ramler, “The role of experience in software
testing practice,” in Proceedings of Euromicro Conference on Software
Engineering and Advanced Applications, 2008, pp. 258–265.

[13] J. Bach, “Exploratory testing,” in The Testing Practitioner, 2nd ed.,
E. van Veenendaal, Ed. Den Bosch: UTN Publishers, 2004, pp.
253–265.

[14] A. Abran, J. W. Moore, P. Bourque, R. Dupuis, and L. L. Tripp,
Guide to the Software Engineering Body of Knowledge 2004 Version.
Los Alamitos, CA, USA: IEEE Computer Society, 2004.

[15] A. Tinkham and C. Kaner, “Exploring exploratory testing,” in
Software Testing Analysis & Review Conference (STAR) East, Orlando,
FL, United States, 2003, p. 9.

[16] J. Itkonen and K. Rautiainen, “Exploratory testing: A multiple
case study,” in Proceedings of International Symposium on Empirical
Software Engineering, 2005, pp. 84–93.

[17] J. A. Whittaker, Exploratory Software Testing: Tips, Tricks, Tours, and
Techniques to Guide Test Design. Upper Saddle River, NY: Addison-
Wesley Professional, 2009.

[18] J. Våga and S. Amland, “Managing high-speed web testing,” in
Software Quality and Software Testing in Internet Times, D. Meyer-
hoff, B. Laibarra, R. van der Pouw Kraan, and A. Wallet, Eds.
Berlin: Springer-Verlag, 2002, pp. 23–30.

[19] J. Lyndsay and N. van Eeden, “Adventures in
Session-Based testing,” http://www.workroom-
productions.com/papers/AiSBTv1.2.pdf, May 2003.

[20] B. Wood and D. James, “Applying Session-Based testing to med-
ical software,” Medical Device & Diagnostic Industry, vol. 25, no. 5,
p. 90, May 2003.

[21] J. Tuomikoski and I. Tervonen, “Absorbing software testing into
the scrum method,” in Proceedings of 10th International Conference
on Product-Focused Software Process Improvement, 2009.

[22] P. Poon, T. H. Tse, S. Tang, and F. Kuo, “Contributions of tester
experience and a checklist guideline to the identification of cate-
gories and choices for software testing,” Software Quality Journal,
vol. 19, no. 1, pp. 141–163, 2011.

[23] V. Kettunen, J. Kasurinen, O. Taipale, and K. Smolander, “A study
on agility and testing processes in software organizations,” in
Proceedings of 19th international symposium on software testing and
analysis, 2010, pp. 231–240.

[24] P. N. Robillard, “The role of knowledge in software develop-
ment,” Communications of the ACM, vol. 42, no. 1, pp. 87–92, 1999.

[25] “Ieee standard glossary of software engineering terminology,”
IEEE Std 610.12-1990, p. 83, 1990.

[26] D. Martin, J. Rooksby, M. Rouncefield, and I. Sommerville,
“’Good’ organisational reasons for ’Bad’ software testing: An
ethnographic study of testing in a small software company,” in
Proceedings of International Conference on Software Engineering, 2007,
pp. 602–611.

[27] J. Rooksby, M. Rouncefield, and I. Sommerville, “Testing in the
wild: The social and organisational dimensions of real world
practice,” Computer Supported Cooperative Work, vol. 18, no. 5–6,
pp. 559–580, 2009.

[28] J. A. Whittaker, How to Break Software A Practical Guide to Testing.
Boston: Addison Wesley, 2003.

ITKONEN et al.: THE ROLE OF THE TESTER’S KNOWLEDGE IN EXPLORATORY SOFTWARE TESTING 19

[29] L. Crispin and J. Gregory, Agile testing: A practical guide for testers
and agile teams. Boston: Addison-Wesley, 2009.

[30] J. Bach, “Session-Based test management,” Software Testing and
Quality Engineering, vol. 2, no. 6, 2000.

[31] F. Houdek, T. Schwinn, and D. Ernst, “Defect detection for
executable specifications — an experiment,” International Journal
of Software Engineering and Knowledge Engineering, vol. 12, no. 6,
p. 637, Dec. 2002.

[32] J. Itkonen, M. V. Mäntylä, and C. Lassenius, “Defect detection
efficiency: Test case based vs. exploratory testing,” in Proceedings
of International Symposium on Empirical Software Engineering and
Measurement, 2007, pp. 61–70.

[33] L. H. O. do Nascimento and P. D. L. Machado, “An experimental
evaluation of approaches to feature testing in the mobile phone
applications domain,” in Workshop on Domain specific approaches to
software test automation, 2007, pp. 27–33.

[34] J. Itkonen, M. V. Mäntylä, and C. Lassenius, “How do testers do it?
An exploratory study on manual testing practices,” in Proceedings
of 3rd International Symposium on Empirical Software Engineering and
Measurement, 2009, pp. 494–497.

[35] J. Pichler and R. Ramler, “How to test the intangible properties
of graphical user interfaces?” in Proceedings of 1st International
Conference on Software Testing, Verification, and Validation, 2008, pp.
494–497.

[36] J. Itkonen, K. Rautiainen, and C. Lassenius, “Toward an under-
standing of quality assurance in agile software development,”
International Journal of Agile Manufacturing, vol. 8, no. 2, pp. 39–49,
2005.

[37] J. Kasurinen, O. Taipale, and K. Smolander, “Test case selection
and prioritization: Risk-based or design-based?” in Proceedings
of International Symposium on Empirical Software Engineering and
Measurement, 2010, p. 10.

[38] A. Tinkham and C. Kaner, “Learning styles and exploratory
testing,” in Pacific Northwest Software Quality Conference (PNSQC),
2003.

[39] L. Shoaib, A. Nadeem, and A. Akbar, “An empirical evaluation of
the influence of human personality on exploratory software test-
ing,” in Proceedings of IEEE 13th International Multitopic Conference,
2009.

[40] R. T. Turley and J. M. Bieman, “Competencies of exceptional
and nonexceptional software engineers,” Journal of Systems and
Software, vol. 28, no. 1, pp. 19–38, Jan. 1995.

[41] B. Adelson and E. Soloway, “The role of domain experience in
software design,” Software Engineering, IEEE Transactions on, vol.
SE-11, no. 11, pp. 1351–1360, 1985.

[42] S. Sonnentag, “Expertise in professional software design: A pro-
cess study.” Journal of Applied Psychology, vol. 83, no. 5, pp. 703–
715, 1998.

[43] J. Sandberg, “Understanding human competence at work: An
interpretative approach,” Academy of Management Journal, vol. 43,
no. 1, pp. 9–25, 2000.

[44] M. Kharlamov, A. Polovinkin, E. Kondrateva, and A. Lobachev,
“Beyond brute force: Testing financial software,” IT Professional,
vol. 10, no. 3, pp. 14–18, 2008.

[45] C. Engelke and D. Olivier, “Putting human factors engineering
into practice,” Medical Device & Diagnostic Industry, vol. 24, no. 7,
Jul. 2002.

[46] R. Merkel and T. Kanij, “Does the individual matter in software
testing?” Swinburne University of Technology, Centre for Soft-
ware Analysis and Testing, Technical Report 2010-001, May 2010.

[47] A. Følstad, “Work-Domain experts as evaluators: Usability in-
spection of Domain-Specific Work-Support systems,” International
Journal of Human-Computer Interaction, vol. 22, no. 3, p. 217, 2007.

[48] D. F. Galletta, D. Abraham, M. E. Louadi, W. Lekse, Y. A. Pollalis,
and J. L. Sampler, “An empirical study of spreadsheet error-
finding performance,” Accounting, Management and Information
Technologies, vol. 3, no. 2, pp. 79–95, 1993.

[49] W. Howden, “Theoretical and empirical studies of program test-
ing,” IEEE Transactions on Software Engineering, vol. 4, no. 4, pp.
293–298, 1978.

[50] L. Baresi and M. Young, “Test oracles,” University of Oregon,
Dept. of Computer and Information Science, Eugene, Oregon,
U.S.A., Tech. Rep. Technical Report CISTR- 01-02, Aug. 2001.

[51] J. A. Whittaker, “What is software testing? and why is it so hard?”
IEEE Software, vol. 17, no. 1, pp. 70–79, 2000.

[52] A. Memon, I. Banerjee, and A. Nagarajan, “What test oracle
should i use for effective GUI testing?” in Proceedings of 18th
International Conference on Automated Software Engineering, 2003,
pp. 164–173.

[53] V. R. Basili and R. W. Selby, “Comparing the effectiveness of soft-
ware testing strategies,” IEEE Transactions on Software Engineering,
vol. 13, no. 12, pp. 1278–1296, 1987.

[54] E. J. Weyuker, “On testing Non-Testable programs,” The Computer
Journal, vol. 25, no. 4, pp. 465 –470, 1982.

[55] M. Bolton, “Testing without a map,” Better Software, Jan. 2005.
[56] R. Chillarege, I. Bhandari, J. Chaar, M. Halliday, D. Moebus,

B. Ray, and M. Wong, “Orthogonal defect classification-a concept
for in-process measurements,” IEEE Transactions on Software Engi-
neering, vol. 18, no. 11, pp. 943–956, 1992.

[57] M. V. Mäntylä and C. Lassenius, “What types of defects are
really discovered in code reviews?” IEEE Transactions on Software
Engineering, vol. 35, no. 3, pp. 430–448, 2009.

[58] A. Bondavalli and L. Simoncini, “Failure classification with re-
spect to detection,” in Proceedings of 2nd IEEE Workshop on Future
Trends of Distributed Computing Systems, 1990, pp. 47–53.

[59] D. Cotroneo, S. Orlando, and S. Russo, “Failure classification and
analysis of the java virtual machine,” in Proceedings of 26th IEEE
International Conference on Distributed Computing Systems, 2006, pp.
17–26.

[60] D. R. Wallace and D. R. Kuhn, “Failure modes in medical device
software: An analysis of 15 years of recall data,” International
Journal of Reliability, Quality and Safety Engineering, vol. 8, no. 4,
pp. 351–371, 2001.

[61] E. T. Hvannberg and L. Law, “Classification of usability problems
(CUP) scheme,” in Proceedings of the 9th International Conference on
Human-Computer Interaction, 2003, pp. 655—662.

[62] N. Juristo and S. Vegas, “Functional testing, structural testing
and code reading: What fault type do they each detect?” in
Empirical methods and studies in software engineering: experiences from
ESERNET. Springer, 2003.

[63] B. Freimut, “Developing and using defect classification schemes,”
Fraunhofer IESE, Kaiserslautern, Research Report IESE-Report,
072.01/E, 2001.

[64] D. Kuhn, D. Wallace, and A. Gallo, “Software fault interactions
and implications for software testing,” IEEE Transactions on Soft-
ware Engineering, vol. 30, no. 6, pp. 418–421, 2004.

[65] C. Seaman, “Qualitative methods in empirical studies of software
engineering,” IEEE Transactions on Software Engineering, vol. 25,
no. 4, pp. 557–572, 1999.

[66] M. Q. Patton, Qualitative Research and Evaluation Methods, 3rd ed.
Thousand Oaks: Sage, 2002.

[67] C. Seaman and V. Basili, “Communication and organization:
An empirical study of discussion in inspection meetings,” IEEE
Transactions on Software Engineering, vol. 24, no. 7, pp. 559–572,
1998.

[68] T. C. Lethbridge, S. E. Sim, and J. Singer, “Studying software
engineers: Data collection techniques for software field studies,”
Empirical Software Engineering, vol. 10, no. 3, pp. 311–341, 2005.

[69] H. Wu, Y. Guo, and C. B. Seaman, “Analyzing video data: A
study of programming behavior under two software engineering
paradigms,” in Proceedings of International Symposium on Empirical
Software Engineering and Measurement, 2009, pp. 456–459.

[70] A. Höfer, “Video analysis of pair programming,” in Proceedings of
International workshop on scrutinizing agile practices or ’shoot-out at
the agile corral’, 2008, pp. 37–41.

[71] L. Prechelt, U. Stärk, and S. Salinger, “7 types of cooperation
episodes in Side-by-Side programming,” Freie Universität Berlin,
Institut für Informatik, Berlin, Germany, Technical Report B-08-17,
Dec. 2008.

[72] S. Salinger, L. Plonka, and L. Prechelt, “A coding scheme develop-
ment methodology using grounded theory for qualitative analysis
of pair programming,” Human Technology, vol. 4, no. 1, pp. 9–25,
May 2008.

[73] J. Hughes and S. Parkes, “Trends in the use of verbal protocol
analysis in software engineering research,” Behaviour & Informa-
tion Technology, vol. 22, no. 2, p. 127, 2003.

[74] A. L. Strauss and J. M. Corbin, Basics of qualitative research:
techniques and procedures for developing grounded theory. Thousand
Oaks, CA, USA: SAGE Publications, 1998.

[75] J. C. van Niekerk and J. D. Roode, “Glaserian and straussian
grounded theory: Similar or completely different?” in Proceedings

20 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

of Annual Research Conference of the South African Institute of
Computer Scientists and Information Technologists, 2009, pp. 96–103.

[76] M. V. Mäntylä, J. Itkonen, and J. Iivonen, “Who tested my
software? Testing as an organizationally cross-cutting activity,”
Software Quality Journal, vol. 20, no. 1, pp. 145–172, 2012.

Juha Itkonen works as a post-doc researcher
at the Department of Computer Science and
Engineering, Aalto University School of Science,
Finland. He received his D.Sc. degree in 2012
from Aalto University. His research focuses on
experience-based and exploratory software test-
ing and human issues in software engineer-
ing, including quality assurance in agile context.
He conducts empirical research relying both on
qualitative and quantitative methods and prefers
research in industrial context.

Mika V. Mäntylä is a post-doc researcher at
Aalto University, Finland. He received a D. Sc.
degree in 2009 in software engineering from
Helsinki University of Technology, Finland. In
2010 he was a visiting scholar at Simula Re-
search Laboratory, Oslo, Norway. In 2011-2012
he was a post-doctoral researcher at Lund Uni-
versity, Sweden. His previous studies have ap-
peared in journals such as IEEE Transaction on
Software Engineering, Empirical Software Engi-
neering Journal and Information and Software

Technology. His research interests include empirical software engineer-
ing, software testing, human cognition, defect databases and software
evolution.

Casper Lassenius is a professor (pro tem) at
Aalto University School of Science, Department
of Computer Science and Engineering. His re-
search interests include software product devel-
opment, agile methodologies, and global soft-
ware development. He has a PhD in Computer
Science from Helsinki University of Technology,
Finland. He is a member of IEEE and ACM.

	IEEE TSE copyright
	Knowledge in ET_Itkonen_2012

