
Accepted manuscript (May 2015) – IEEE Software Magazine

Copyright IEEE

 1

Test Better by Exploring: Harnessing Human Skills
and Knowledge

Juha Itkonen
Department of Computer Science, Aalto University
FI-00076 AALTO, FINLAND
juha.itkonen@aalto.fi
+358 505771688

Mika V. Mäntylä
Department of Information Processing Science, University of Oulu
FI-90014 OULU, FINLAND
mika.mantyla@oulu.fi

Department of Computer Science, Aalto University
FI-00076 AALTO, FINLAND

Casper Lassenius
Department of Computer Science, Aalto University
FI-00076 AALTO, FINLAND
casper.lassenius@aalto.fi

Abstract

End users continue to stumble upon software bugs, despite developers’ efforts to build and test
high-quality software. While traditional testing and quality assurance techniques are extremely
valuable, we suggest that more focus should be given to the role of exploration in software
testing. Exploration can bring direct utilization of knowledge and learning to the core of
industrial software testing, helping to earlier reveal more relevant bugs. We describe the
characteristics of exploration, the role of knowledge in software testing, and describe three levels
of practices in exploratory testing. We propose that academics and practitioners focus their
attention to exploiting the strengths of exploration in software testing and reporting existing
practices and benefits form varying contexts, both from industry and academia.

Keywords

D.2.4.i Validation, D.2.5.k Testing strategies, D.2.5.l Test design, D.2.5.q Test management,
D.2.19.c Methods for SQA and V&V, Exploratory testing

Accepted manuscript (May 2015) – IEEE Software Magazine

Copyright IEEE

 2

Introduction

Why do end users keep detecting bugs despite of the vendors’ investments to testing and quality
assurance? We suggest that more focus should be given to the role of exploration in software
testing as a way of better addressing end users’ needs. Traditionally, software testing emphasizes
the need for systematic and documented approaches to detect bugs, using predefined test cases.
Some models assume that when human testers are involved, their main task is to more or less
mechanically execute the test cases and report any deviations from the expected results.
However, testing professionals often see testing in a remarkably different light, describing it as an
intellectually challenging, creative, and professionally demanding task that requires a wide
variety of knowledge and skills [1].

In industrial practice, the contribution of human testers is a highly relevant part of software
development, because most new bugs are found by humans testing the software, especially in the
context of interactive systems. Human testers possess benefits over machines, including
knowledge, creativity, intelligence, the ability to learn and adapt to new situations, and the ability
to efficiently recognize problems.

In this article, we focus on the role of exploration as a facet of software testing. We discuss the
benefits of exploration, the importance of the personal knowledge and skills, and the exploration
practices used in industry. We encourage more research investments to these exploratory and
human aspects in order to leverage what has been found working in practice.

Exploration as a Facet of Software Testing

Exploration occurs when the route to be traversed and the discoveries to be made are not known
in advance. This is also the case in software testing, since the value and goal of testing is to
discover new information about the (unknown) quality of the tested system.

Varying Degrees of Exploration

Software testing involves various degrees of exploring from a completely automated,
confirmatory approach, to pure exploration, as illustrated in Figure 1. Between these two
extremes, there are varying degrees of exploring associated with different types of testing. At one
end of the spectrum, we have confirmatory testing. In this traditional testing paradigm, the aim is
to design and document the test cases beforehand; then the tester’s task is to follow these test
cases accurately during test execution. The expected results are documented as predefined
hypotheses of how the system shall work and the defect detection is based on checking against
the documented results, see sidebar 1. In practice, even this confirmatory approach, if performed
by humans, involves some exploration. However, the fundamental paradigm in confirmatory
testing is to design and document the tests in a separate phase preceding the test execution.

Accepted manuscript (May 2015) – IEEE Software Magazine

Copyright IEEE

 3

Fig. 1 The degree of exploring and approaches to testing

When the degree of exploration increases towards the exploratory paradigm, the tester is put in
the center, rather than the test case documentation. Bach [2] has described this difference in the
terms of testers’ increasing freedom.

Exploratory Testing (ET) has been strongly advocated by the Context-Driven School of Testing
[3]. ET is defined as “a style of software testing that emphasizes the personal freedom and
responsibility of the individual tester to continually optimize the value of her work by treating
test-related learning, test design, test execution, and test result interpretation as mutually
supportive activities that run in parallel throughout the project.” [4] During the last decade, ET
has been recognized as a serious approach, and has gained strong support within the practitioner
community, e.g., in agile contexts.

The exploratory tester uses documentation and tools as much or as little as necessary. The tester
is given a goal and the responsibility to carry out the testing, but no detailed instructions on how
to accomplish the goal. ET can be free of planned structures or fairly structured—the tester might
follow a list of features to be tested, limiting the exploration at the higher level—but ultimately,
the testing of each feature is exploratory. Thus, ET can be structured and planned without
restricting the tester’s freedom to choose the best ways to test within the limits of the structure.

Table 1 compares ET with confirmatory testing. Confirmatory testing emphasizes mechanic,
document-driven repeatability in the test execution. ET highlights knowledge, learning, and
discovery of new information during software testing.

Table 1. Contrasting Exploratory Testing, Confirmatory Testing, and Automation

Accepted manuscript (May 2015) – IEEE Software Magazine

Copyright IEEE

 4

 Exploratory Testing Confirmatory Testing

 Performed by human testers Automated

Testing
philosophy

Testing is a knowledge intensive
and creative activity requiring
skills.

Testing is a mechanic and
repetitive activity that can be
described in explicit instructions.

Testing is automated and
repeatable to provide fast
feedback to development.

Test design Test design and execution are
parallel activities and proper test
design requires exploratory
learning of the tested system.

Test design and execution are
separate and sequential activities.

Test design is challenging and
expensive, but execution is fast
and cheap.

Role of
documentation

Testing requires knowledge and
skills that are difficult to transfer
through documentation.

Testing can be distributed to a
large number of people with low
knowledge and skill levels by
relying on documented tests.

Certain types of tests can be
scripted and effectively
automated.

Knowledge
needs

Software malfunctions in
unpredictable ways and detecting
these bugs requires knowledge of
both the system and the
application domain.

Software bugs can be predicted
and expected outcomes
documented for straightforward
execution-time comparison.

Certain types of bugs can be
effectively detected
automatically.

Repeatability Repeating the same tests over
and over again does not reveal
new bugs or provide new
information of the quality and thus
provides little added value.

Repeatability of tests is important.
Exact test case descriptions
reduce the individual variation in
testing.

Repeatability and execution of
tests in very short cycles is
important to get fast feedback
on regression during
development.

Role of
automation

Automation is one of the testers’
tools, and should be used
whenever reasonable to improve
testing and free human resources
for other types of testing activities.

Groups of human testers can be
used for similar goals as
automation.

Automation is the primary goal
and testing should be
automated as far as possible.

The goals of confirmatory human testing are similar to the automated software testing paradigm.
This actually does not make much sense—confirmatory human testing is slow, laborious, and
error-prone compared to automated tests. Furthermore, confirmatory testing lacks the benefits of
exploration, since it strives for repeated checking of a predefined set of outcomes. This makes it a
bad compromise between two clearly different approaches: exploratory vs. automated
confirmatory, with their unique strengths. Instead of aiming at replacing human testers,
automation is a way to remove repetitive and laborious checking tasks to free up tester’s time for
tasks that require more skill and knowledge.

Applying Knowledge when Exploring

Accepted manuscript (May 2015) – IEEE Software Magazine

Copyright IEEE

 5

Testers’ personal experience and domain knowledge have been recognized as important aspects
affecting the results of testing [5], [6]. Testers apply knowledge to different tasks and for
different purposes, e.g., designing effective tests and recognizing bugs. It has been reported that
application domain experts detect and report more relevant findings than non-experts [7].

A large part of the applied knowledge in software testing is tacit in nature, i.e. knowledge that
cannot or has not been made explicit [8]. The difference in how knowledge is applied in the
confirmatory and exploratory approaches is illustrated in Figure 2. Both approaches require
knowledgeable people with sufficient testing skills. In both approaches the test design activity
involves both tester’s tacit knowledge and available documented, explicit, knowledge that the
tester uses to design the tests. The test design activity is a highly exploratory and creative task
and that should be recognized also in the confirmatory approach. E.g., exploring the actual
system implementation can give much richer knowledge as a basis for test design than only
studying the available specifications. In the exploratory approach, this design knowledge is
applied directly by the tester, and the resulting findings fed directly back to the design and
analysis process, without making it explicit by documentation or transferred to other persons. In
the confirmatory approach, however, test design, execution and reporting are seen as separate
phases. The person with the knowledge (test designer) transfers it in the form of explicit test
cases to another person(s) for test execution, who in turn report their findings for other
stakeholders. These multiple knowledge transfers, illustrated in Figure 2, are highly problematic
and make the confirmatory process inefficient for humans to perform–the more complex the
application domain and technical solution are, the more challenging these knowledge transfers
become.

One important aspect in exploration is the immediate feedback loop from the result of a previous
test to the design of the next test. This makes it possible to guide the testing based on the
discoveries made in interaction with the actual system, and gives the tester the opportunity for
learning and discovery of new, previously unknown knowledge—more so than in the
confirmatory following-the-script approach. This is a benefit highly emphasized by ET advocates
[3], [9].

Accepted manuscript (May 2015) – IEEE Software Magazine

Copyright IEEE

 6

Fig. 2 The difference of confirmatory and exploratory approaches

The exploratory approach uses people with the required knowledge to do the actual testing, e.g.,
individuals with direct knowledge of the customer’s business processes. This helps reveal
problems that would be very obvious to end users, but alien to developers. It is far too common
that the features of a software system have been thoroughly tested, yet nobody has tried to use the
system for real. In addition, exploring is also a good way to gain that required knowledge. One
could argue that it is difficult for people with the right knowledge to find the time to perform
testing. However, it would be even more difficult to get them to document their tacit knowledge
into test cases. Transferring tacit knowledge in explicit form can be extremely expensive or
impossible depending on the type of the knowledge [8], see Sidebar 1.

Levels of Practices in Exploratory Testing

When applying ET, certain management practices are needed. We describe such practices,
distilled from several industrial organizations and sources. During ET, testers apply test design
strategies and techniques as they do in confirmatory testing. In addition, an exploratory tester

Accepted manuscript (May 2015) – IEEE Software Magazine

Copyright IEEE

 7

needs a method or strategy for guiding the testing on a higher level. We have identified practices
on three levels: the organizing level, the session level, and the technique level.

Organizing Level Practices

The most commonly proposed solution to managing ET is Session-Based Exploratory Testing
(SBET) [10]. SBET enables planning, tracking and reporting without sacrificing the flexibility
benefits of ET, see Sidebar 2. At the heart of SBET are restricted, time-boxed testing sessions.
Within the limits of these, typically roughly 2-hour, sessions the tester’s activities are guided by a
brief testing charter, including a mission statement and tested areas, but without further pre-
design of testers actions. Next, we describe some practices for carrying out the actual testing
work during the testing sessions.

Session Level Exploration Strategies

Testers benefit from an exploration strategy during a test session. These strategies are needed to
guide the tester through a part of the tested software so that afterwards it is possible to describe
what was covered and what is still missing. These exploration strategies are not strict paths for
the tester; they provide a guiding principle, and the central characteristic of exploration is that the
tester is encouraged to explore anything that seems interesting, suspicious, or otherwise valuable
to the testing task at hand.

Examples of exploration strategies that we have observed in our studies include exploring weak
areas or simulating a real usage scenario [11]. Exploration strategies can also be based on
documentation such as user guides, specifications, or test data. For example, the functional
specification or release notes can provide a structure for what to cover and how to proceed. The
actual testing activity for each tested function can either be purely exploratory or follow selected
testing techniques. Another proposed group of exploring strategies uses a tour metaphor, in
which a tester explores a software system similarly to how a tourist explores a foreign city [1].

Testing Technique Level Practices

Detailed test design techniques are also applied in ET in order to design the actual tests that are
executed. Some of the techniques are similar to the traditional test design techniques, such as
boundary value analysis, and combination testing. At this level, ET allows the tester to apply the
techniques and strategies best suitable for the specific testing task at hand, without the need for
pre-specifying the steps [11].

The selection of the testing techniques is based on professional expertise. For example, for testing
a given feature the tester might select a pair-wise combinatorial design for testing the interaction
effects of a set of variables, based on the tester’s knowledge of the interactions of those variables
in the system.

Accepted manuscript (May 2015) – IEEE Software Magazine

Copyright IEEE

 8

Finally, oracle heuristics form a characteristic group of practices for ET that guide a tester to
recognize certain types of problems in the system. Confirmatory testing relies on the existence
and correctness of the documented expected outcome for each test. Documented outcomes aim at
making the recognition of a failure a trivial checking activity, which it is not in practice—
software systems fail in numerous, unanticipated ways and anticipating all these in explicit test
case format is impossible. This is why testers need to rely on heuristics and knowledge-based
oracles. The ET approach harnesses the human capabilities, such as tacit domain knowledge, for
efficiently recognizing unanticipated problems in the tested system [5].

Conclusions

Exploration is an essential facet of software testing. It provides benefits for testing systems with
rich user interaction, a complex application domain, or social contexts that require human
expertise to understand. Despite the small amount of research on ET, see sidebar 2, there is
support for the main benefits of the exploratory approach: the efficiency of defect detection, due
to the reduced investment in test case pre-design; the high level of flexibility in testing activities,
with fast testing feedback on new features and new risks; the efficient utilization of testers’
knowledge directly in testing; and finally, the ability to reveal bugs and problems that algorithmic
confirmatory testing cannot discover.

With the benefits, though, come certain challenges. The first challenge is the lack of methodology
and tool support for planning and tracking ET. The second challenge is determining the level and
type of documentation that would best support the exploratory approach, which is practically an
unstudied area in research literature. And finally, the exploratory approach would also need more
emphasis in engineering education and training.

Despite exploration being a widely applied practice in the industry, experienced testers build their
own exploratory practices in many organizations, taking up a lot of time, trial, and error.
Research can help knowledge sharing and accelerate this progress. Thus, we propose the
recognition of the exploratory approach and investment to a research program to study testing
from a behavioral and social sciences viewpoint. Such ideas are currently gaining attention in the
software engineering community [12].

Sidebar 1: Background on Exploration and Knowledge

Software testing provides understanding about the quality of software. Similarly, science creates
understanding, but in a larger context. In science, exploratory research aims at new scientific
discoveries, whereas confirmatory research aims at confirming existing theories [13]. Exploration
refers to activity of examining, analyzing, or investigating something. It can be characterized as a
travel over or through a particular space for the purposes of discovery and adventure. Exploration

Accepted manuscript (May 2015) – IEEE Software Magazine

Copyright IEEE

 9

can be focused on innovation, exhaustive discovery, or it can be limited to searching
systematically for something in particular [13]. Research on information searching also
distinguishes between exploration and lookup; exploratory search is characterized with such
activities as knowledge acquisition, interpretation, synthesis and discovery, whereas lookup
searches incorporate fact retrieval, known item search and verification, see [14].

These views of exploration are applicable to software testing: part of testing is confirmatory in
nature, i.e., checking that previous or existing tests still pass, often referred to as regression
testing in literature. On the other hand, finding new tests and discovering unknown problems is
an exploratory activity where the goal is to reveal new knowledge by proposing new hypotheses
and testing those empirically. These contrasting viewpoints have been raised and discussed in the
ET community under the topic of “testing versus checking” [15]. Thus, it is important to
recognize the differences of the confirmatory and exploratory types of testing and consider when
the approaches are applicable and best supporting each other.

Software quality is an elusive target that is difficult to define, and quality as such is a concept that
different stakeholders can have varying interpretations. Ill-defined areas are good targets for
exploratory methods in general [13]. If it would be possible to accurately define what one means
with software quality and how to measure it, then confirmatory methods should be preferred. If,
on the other hand, the quality definitions or requirements are not straightforward, and rely on
tacit knowledge of number of stakeholders, then exploratory methods are preferred.

One could argue that ET methods are only needed to patch poorly done requirements engineering
and software design. Yet, such argument fails to understand that making all the knowledge
required to evaluate software quality explicit is highly expensive or impossible. Software systems
are used in a social context. According to research, the knowledge which is collective and part of
social relations is the most difficult type of knowledge to make explicit [8]. The implication is
that ET is crucial for systems used in complicated social context, whereas confirmatory approach
excels in verifying algorithmic correctness.

References

[1] J. A. Whittaker, Exploratory Software Testing: Tips, Tricks, Tours, and Techniques to Guide
Test Design. Boston, MA, USA: Addison-Wesley Professional, 2009.

[2] J. Bach, “A Case Against Test Cases,” Quardev Blog, 15-Oct-2007. [Online]. Available:
http://www.quardev.com/blog/a_case_against_test_cases.

[3] J. Bach, “Exploratory Testing,” in The Testing Practitioner, Second., E. van Veenendaal, Ed.
Den Bosch: UTN Publishers, 2004, pp. 253–265.

Accepted manuscript (May 2015) – IEEE Software Magazine

Copyright IEEE

 10

[4] C. Kaner, “Defining Exploratory Testing,” Kaner.com, 14-Jul-2008. [Online]. Available:
http://kaner.com/?p=46.

[5] J. Itkonen, M. V. Mäntylä, and C. Lassenius, “The Role of the Tester’s Knowledge in
Exploratory Software Testing,” IEEE Trans. Softw. Eng., vol. 39, no. 5, pp. 707–724, 2013.

[6] A. Beer and R. Ramler, “The Role of Experience in Software Testing Practice,” in
Proceedings of Euromicro Conference on Software Engineering and Advanced Applications,
2008, pp. 258–265.

[7] A. Følstad, “Work-Domain Experts as Evaluators: Usability Inspection of Domain-Specific
Work-Support Systems,” Int. J. Hum.-Comput. Interact., vol. 22, no. 3, p. 217, 2007.

[8] H. Collins, Tacit and Explicit Knowledge, Reprint edition. Chicago; London: University Of
Chicago Press, 2010.

[9] C. Kaner, J. Bach, and B. Pettichord, Lessons Learned in Software Testing. New York: John
Wiley & Sons, Inc., 2002.

[10] J. Bach, “Session-Based Test Management,” Software Testing and Quality Engineering,
vol. 2, no. 6, 2000.

[11] J. Itkonen, M. V. Mäntylä, and C. Lassenius, “How do testers do it? An exploratory study
on manual testing practices,” in Proceedings of 3rd International Symposium on Empirical
Software Engineering and Measurement, 2009, pp. 494–497.

[12] P. Lenberg, R. Feldt, and L.-G. Wallgren, “Towards a Behavioral Software Engineering,”
in Proceedings of the 7th International Workshop on Cooperative and Human Aspects of
Software Engineering, New York, NY, USA, 2014, pp. 48–55.

[13] R. A. Stebbins, Exploratory Research in the Social Sciences. Thousand Oaks: SAGE
Publications, 2001.

[14] G. Marchionini, “Exploratory search: from finding to understanding,” Commun ACM,
vol. 49, no. 4, pp. 41–46, Apr. 2006.

[15] J. Bach and M. Bolton, “Testing and Checking Refined,” James Bach’s Blog, 26-Mar-
2013. [Online]. Available: http://www.satisfice.com/blog/archives/856.

Sidebar 2: Current Research on Exploratory Testing

A replicated experiment suggested that exploratory testing has same defect detection
effectiveness, but superior efficiency compared to test-case-based testing [1]. An industrial case

Accepted manuscript (May 2015) – IEEE Software Magazine

Copyright IEEE

 11

study identified motivations for using exploratory testing [2]. First, ET was applied to tackle the
combinatorial complexity by applying experience based test selection. Second, ET worked well
with weak or frequently changing specifications and enabled quick feedback from testers to
developers. Finally, ET facilitated learning about the new features of the product. Another
industrial case study [3] highlighted the importance of ET in detecting non-functional aspects
such as attractiveness, and usability. Researchers have proposed a hybrid approach to combine
ET and scripted testing [4] and presented a team ET approach [5]. An industry survey found that
ET is also used in critical domains to a high degree and raised the need for better tool support [6].
In addition, empirical research on the real-world practice of software testing [7], [8] sheds light
on the social and exploratory aspects of testing.

The session based test management (SBTM) has been proposed to bring more accountability to
ET [9]. According to industry reports, SBET enables measurement and control of the ET process
and gives visibility of the work to the team and managers [10]. In medical domain, it was found
that SBET diminished problems of highly compartmentalized testing, excess documentation,
repetitive testing, and emphasized focus on requirements and code coverage instead of defect
discovery [11].

[1] J. Itkonen and M. V. Mäntylä, “Are test cases needed? Replicated comparison between
exploratory and test-case-based software testing,” Empir. Softw. Eng., vol. 19, no. 2, pp. 303–
342, Apr. 2014.

[2] J. Itkonen and K. Rautiainen, “Exploratory testing: a multiple case study,” in Proceedings of
International Symposium on Empirical Software Engineering, 2005, pp. 84–93.

[3] J. Pichler and R. Ramler, “How to Test the Intangible Properties of Graphical User
Interfaces?,” in Proceedings of 1st International Conference on Software Testing,
Verification, and Validation, 2008, pp. 494–497.

[4] S. M. A. Shah, C. Gencel, U. S. Alvi, and K. Petersen, “Towards a hybrid testing process
unifying exploratory testing and scripted testing,” J. Softw. Evol. Process, 2013.

[5] S. Saukkoriipi and I. Tervonen, “Team Exploratory Testing Sessions,” ISRN Softw. Eng., vol.
2012, pp. 1–20, 2012.

[6] D. Pfahl, H. Yin, M. V. Mäntylä, and J. Münch, “How is Exploratory Testing Used? A State-
of-the-Practice Survey,” in Proceedings of the 8th International Symposium on Empirical
Software Engineering and Measurement, 2014, p. 10.

[7] D. Martin, J. Rooksby, M. Rouncefield, and I. Sommerville, “‘Good’ Organisational Reasons
for ‘Bad’ Software Testing: An Ethnographic Study of Testing in a Small Software
Company,” in Proceedings of International Conference on Software Engineering, 2007, pp.
602–611.

Accepted manuscript (May 2015) – IEEE Software Magazine

Copyright IEEE

 12

[8] J. Rooksby, M. Rouncefield, and I. Sommerville, “Testing in the Wild: The Social and
Organisational Dimensions of Real World Practice,” Comput. Support. Coop. Work, vol. 18,
no. 5–6, pp. 559–580, 2009.

[9] J. Bach, “Session-Based Test Management,” Software Testing and Quality Engineering,
2000. [Online]. Available: http://www.satisfice.com/articles/sbtm.pdf.

[10] J. Lyndsay and N. van Eeden, “Adventures in Session-Based Testing,” 27-May-2003.
[Online]. Available: http://www.workroom-productions.com/papers/AiSBTv1.2.pdf.

[11] B. Wood and D. James, “Applying Session-Based Testing to Medical Software,” Medical
Device & Diagnostic Industry, vol. 25, no. 5, p. 90, May-2003.

Accepted manuscript (May 2015) – IEEE Software Magazine

Copyright IEEE

 13

Author biographies
Juha Itkonen is a researcher at Aalto University. His research focuses on exploratory software
testing and human issues in software engineering, including quality assurance in agile contexts.
He has a D.Sc. degree from Aalto University. juha.itkonen@aalto.fi

Mika Mäntylä is a professor of software engineering at University of Oulu. His current research
interests include software defects, behavioral software engineering, and software evolution. He
has a D.Sc. degree from Aalto University. mika.mantyla@oulu.fi

Casper Lassenius is an associate professor at Aalto University. His current research interests
include agile and lean software development, global software engineering, and software quality
assurance. He has a D.Sc. degree from Aalto University. casper.lassenius@aalto.fi

