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Software evolvability – the ease of  further developing software – is an important quality attribute greatly dictating 
the future potential of  any software system. Recent trends such as agile software development and extreme 
programming have highlighted refactoring – modifying the internal structure of  software without affecting its 
observable behaviour – as a key factor for ensuring software evolvability. To help software developers in making a 
refactoring decision, descriptions of  bad code, so called code smells have been proposed. Although humans play an 
important role in making refactoring decisions, most of  the work around refactoring has focused on tools and 
metrics, instead of  empirical work with humans. Therefore, we studied refactoring decisions and the evaluation 
of  the existence of  code smells at the source code method level. 

Two experiments were made with a different sample of  students in each. The participants evaluated the existence 
of  certain code smells for 10 methods, stated whether each method should be refactored or not, and provided 
rationales for their refactoring decisions. We studied the interrater agreement, i.e. the extent to which evaluators 
agree. Furthermore, we studied the explaining factors of  the evaluations with three approaches. First, with 
regression analysis we studied how the measures of  the evaluated code and the background of  the evaluators 
affected the evaluations. Second, we analyzed the information of  the refactoring decision rationales. Third, we 
used the information discovered in the rationales to explain the refactoring decision with regression analysis.   

The results showed high interrater agreement for the simple code smells, and low agreement for the more 
complex smell and the refactoring decision. The code metrics explained over 70% of  the variation regarding the 
simple code smell evaluations, but only about 30% of  the refactoring decision. Surprisingly, the demographics 
were not useful predictors neither for evaluating the code smells nor the refactoring decision. The best predictors 
of  the refactoring decision were the rationales of  the refactoring decision, i.e. the qualitative data, explaining over 
70% of  the variation, and the evaluations of  the code smells explaining more than 60% of  the variation. The 
analysis of  qualitative data showed that the method under study affects the contents of  the rationales. In other 
words with different methods we would have obtained different rationales. The qualitative data indicates that 
automatic detection of  some code problems would require new code metrics, and some problems could not be 
detected at all.  

The results suggest code metrics tools usage as an effective approach in highlighting straightforward problems in 
the code. The low interrater agreement of  the refactoring decisions, the poorly performing code metric based 
regression models of  the refactoring decisions, and the fact that some refactoring decision rationales are difficult 
or impossible to measure, indicate difficulty in building tool support simulating real-life subjective refactoring 
decisions. The main outcome of  this study is that commonly used code metrics alone are not sufficient 
predictors for refactoring decisions and that qualitative data offers far superior insight of  refactoring decisions. 
Therefore, we need to make further studies on the qualitative elements of  software evolvability. Hopefully, with 
qualitative studies we can discover the true evolvability problems in code, define new code metrics, and, thus, 
enable creation of  effective tool support simulating real-life subjective refactoring decisions. 

Keywords: 
software engineering experiment, software evolvability, software maintainability, subjective evaluation, interrater 
agreement, regression analysis, qualitative analysis, coding paradigm 
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Ohjelmiston jatkokehitettävyys on tärkeä laatuominaisuus, joka vaikuttaa ratkaisevasti ohjelmistojärjestelmän 
tulevaisuuden mahdollisuuksiin. Erityisesti ketterä ohjelmistokehitys korostaa refaktoroinnin – ohjelmiston 
rakenteen muokkaamisen muuttamatta sen ulkoista toimintaa – tärkeyttä ohjelmiston jatkokehitettävyyden 
varmistamisessa. Koodihajuja, jotka ovat kuvauksia huonosta ohjelmakoodista, on esitetty ohjelmistokehittäjien 
avuksi heidän päättäessään ohjelmakoodin refaktoroinnista. Ihmiset ovat avainasemassa refaktorointipäätöksissä, 
mutta alueen aiempi tutkimus on silti keskittynyt pääasiassa työkaluihin ja koodimittareihin eikä empiiristä 
tutkimusta ihmisten roolista ole juurikaan tehty. Työssä tutkittiin ihmisten refaktorointipäätöksiä ja arvioita 
koodihajujen esiintymisestä ohjelman metoditasolla.  

Työssä tehtiin kaksi koetta kahdella eri otoksella opiskelijapopulaatiosta. Koskien kymmentä metodia osallistujat 
arvioivat koodihajujen esiintymistä ja refaktoroinnin tarvetta sekä perustelivat refaktorointipäätöksensä. Kokeen 
tuloksista analysointiin arvioijien keskinäistä samanmielisyyttä. Lisäksi selvitimme kolmella eri tavalla arvioinnin 
tulokseen vaikuttuvia tekijöitä. Ensin tutkimme regressioanalyysillä kuinka hyvin mittaukset arvioidusta  koodista 
ja arvioijan taustatiedot pystyivät selittämään refaktorointipäätöstä. Seuraavaksi tutkimme mitä asioita laadullinen 
aineisto, eli refaktorointipäätösten perustelut, sisälsi. Lopuksi tutkimme kuinka hyvin refaktorointipäätösten 
perusteluista löytyneet eri asiat pystyivät selittämään refaktorointipäätöstä.   

Tulokset osoittivat, että arvioiden keskinäinen yhdenmielisyys oli korkeaa yksinkertaisissa koodihajuissa ja matalaa 
kompleksisissa koodihajuissa ja refaktorointipäätöksissä. Koodimittaripohjaiset regressiomallit selittivät yli 70% 
yksinkertaisten koodihajujen arviosta, mutta vain 30% refaktorointipäätöksistä. Yllättäen arvioitsijoiden 
taustatiedot eivät vaikuttaneet koodihajuarvioihin tai refaktorointipäätöksiin. Parhaiten refaktorointipäätöstä 
selittivät refaktorointipäätöksen perustelut kattaen yli 70% variaatiosta ja koodihajuarviot kattaen yli 60% 
variaatiosta. Analysoidessamme refaktorointipäätösten perusteluita huomasimme, että arvioitava metodi vaikuttaa 
suuresti perusteluiden sisältöön. Eli erilaisilla arvioitavilla metodeilla olisimme saaneet huomattavasti toisenlaisia 
perusteluita. Perusteluiden analyysi myös osoitti, että löytääksemme automaattisesti osan koodiongelmista niille 
pitäisi luoda uusia lähdekoodimetriikoita ja osaa koodiongelmista ei voitaisi löytää koodimittareilla lainkaan.  

Tulosten perusteella näyttää siltä, että koodimittarityökalun käytöllä voidaan tehokkaasti löytää suoraviivaisia 
ongelmia koodista. Refaktorointipäätösten matala arvioijien välinen yhdenmielisyys ja heikosti menestyneet 
koodimittaripohjaiset regressiomallit, sekä mahdottomuus mitata kaikkia refaktorointipäätöksen perusteluita 
saattavat estää tosielämän subjektiivisia refaktorointipäätöksiä simuloivan työkalun toimivuuden. Tutkimuksen 
päätulos on, että yleisesti käytetyt koodimetriikat eivät yksinään ole riittävän hyviä ennustamaan 
refaktorointipäätöstä. Kvalitatiivinen aineisto mahdollistaa paremman refaktorointipäätösten ennustamisen. Näin 
ollen on tarve jatkotutkimukselle, joka keskittyy ohjelmiston jatkokehitettävyyden tutkimiseen laadullisten 
menetelmien kautta. Laadullisen tutkimuksen avulla voimme tunnistaa todellisia ongelmia koodissa, kehittää 
uusia koodimittareita ja näin ollen mahdollistaa työkalutuen, joka simuloi tosielämän refaktorointipäätöksiä.   
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ohjelmistotuotannon koe, ohjelmiston jatkokehitettävyys, ohjelmiston ylläpidettävyys, subjektiivinen arviointi, 
vastaajien välinen yhdenmielisyys, regressioanalyysi, laadullinen analyysi 
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1 Introduction 

1.1 Motivation and Background 
Software evolvability – the ease of  further developing software – is an important quality 
attribute greatly dictating the future potential of  any software system. In the past, there was 
a strong emphasis on up front design for ensuring software evolvability. However, recent 
trends such as agile software development and extreme programming have highlighted 
refactoring – modifying the internal structure of  software without affecting its observable 
behaviour – as a key factor for ensuring software evolvability. For example, Microsoft has 
recognized the constant need to modify existing software structure to ease future develop-
ment. Therefore, Microsoft’s Office division determined that 20% of  development effort 
should be budgeted to code modification (Cusumano and Selby 1995 pp. 280-281). 

An important issue concerning software evolvability is the decision when to perform 
refactoring. It seems likely that wrong refactoring decisions can do more harm than good. 
Fowler and Beck have come up with a term called code smell (Fowler and Beck 2000) to help 
software developers in recognizing problematic code. These code smells are general 
descriptions of  bad code that are supposed to help software developers decide when the 
code needs refactoring. Fowler and Beck (2000) claim that exact criteria for refactoring 
decisions cannot be given: “no set of  metrics rivals informed human intuition”.  

Thus, humans play an important role in making software-refactoring decisions. Still, most 
of  the work around refactoring has focused on tools and metrics, see (Mens and Tourwe 
2004) for details. There are a limited number of  empirical studies and controlled experi-
ments studying subjective software evolvability evaluation, i.e. refactoring decisions and the 
evaluation of  the existence of  code smells. We studied this topic at the source code method 
level. Two experiments were made with a different set of  students in each. The participants 
evaluated the existence of  certain code smells for each method and then stated whether the 
method should be refactored or not. In the second experiment, the participants additionally 
stated the rationale for the refactoring decision. Our first objective was to assess the 
interrater agreement, i.e. the extent to which evaluators agree. High interrater agreement is 
a positive indication of  the reliability of  the subjective evaluations. Lack of  interrater 
agreement can mean that some evaluators are mistaken in their evaluations. The second 
objective was to study how factors, such as the evaluated code itself  and the background of  
the evaluators, affect the evaluations. An analysis of  these factors can help us find predic-
tors for the code smell evaluations and the refactoring decisions, which can be used, e.g. in 
building tool support. The third objective was to study the qualitative reasons for refactor-
ing, i.e. the refactoring decision rationales. From the qualitative information, we can 
perhaps exact criteria to help developers in creating more evolvable code. Qualitative 
information can also help in creating new metrics that could measure the refactoring need.   

This work builds on our previous study (Mäntylä et al. 2003; Mäntylä 2003; Mäntylä et al. 
2004) of  subjective evaluation of  software evolvability. This study tries to fix many of  the 
shortcomings of  our previous studies, particularly those that were concerned with the 
statistical power, and the reliability of  the procedures performed by informants.    
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1.2 Terminology 
In this work, software evolvability stands for the ease of  further developing a software element. This 
term was chosen over more traditional term software maintainability for the reasons 
covered in Section 2.1.  

Subjective evaluation or perceived evaluation means an evaluation performed by an individual. In 
real world, such evaluations are performed for example by ski jumping, beauty contestant, 
and wine tasting judges. In context of  this work, subjective evaluation is performed on 
source code.    

1.3 Research Problem and Scope 
The objective of  this research is to study empirically the subjective evaluations of  software 
evolvability. The research problem is: 

Do human evaluations of  software evolvability differ from one another, and what are the explaining factors 
behind the evolvability evaluations? 
The research problem is answered by studying the following research questions, which are 
further elaborated in Section 3.1  

Research question 1: Is there an interrater agreement in subjective evolvability evaluations?  
Research question 2: How much of  the evolvability evaluation of  a software element can be explained 
by the software element and the informant? 
Research question 3a: What factors act as the rationales for the refactoring decision, could these 
factors be automatically detected, and what would be the effect of  the improvement suggestion factors to 
common source code measures? 
Research question 3b: Can the factors of  the rationales predict the refactoring decision, and, if  yes 
what are the most important factors?  
The data needed to answer the research questions is provided by two experiments. Details 
of  the experiments are in Section 3.2. These research questions are studied within follow-
ing scope  

Evolvability evaluation, including both the evaluation of  bad elements in the code and the decision whether 
to improve the code by refactoring, of  software methods based principally on the software structure using 
human evaluations.  
The scope is discussed in Section 2.3, which also provides on overview of  the research area 
demonstrating the areas outside of  the scope of  this work.  

1.4 Structure and Outline of  the Thesis 
Rest of  the thesis is organized as follows. Chapter 2 discusses different viewpoints of  
software evolvability, present the scope of  the work, and introduce the relevant prior work. 
Chapter 3 elaborates the research questions and the methodology utilized to provide 
answers to the research questions. Chapter 4 presents he results of  that are used to answer 
the research question. Chapter 5 answers the research questions, asses the limitations of  the 
study. Finally, Chapter 6 presents the conclusion of  the study and provides direction for 
future work.   
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2 Background 

This chapter positions the work by introducing the term software evolvability, and 
highlighting different viewpoints to software evolvability and to software evolvability 
evaluation. The scope of  the work is presented at end of  Section 2.3. Relevant prior work 
is summarized in Section 2.4. Finally, Section 2.5 points out the gaps in existing literature.    

2.1 Software Evolvability 
In this study, we use the term software evolvability to denote “the ease of  further developing a 
software element”. Traditionally, the term software maintainability has been used to represent this 
quality attribute, and IEEE (IEEE 1990) has defined software maintainability as follows: 
The ease with which a software system or component can be modified to correct faults, improve performance 
or other attributes, or to adapt to a changed environment. Additionally, Pigoski (Pigoski 1996) 
quotes several sources that contain almost similar definitions for the term software 
maintainability. 

Our definition of  software evolvability is more restrictive than the definition of  software 
maintainability, which typically includes the ease of  fault correction (corrective mainte-
nance) and adaptation (adaptive maintenance). The term software evolvability has a close 
match with the term perfective software maintenance, which according to the IEEE standard 
glossary of  software engineering terminology (IEEE 1990) is defined as: software maintenance 
performed to improve the performance, maintainability, or other attributes of  a computer program. 
Historically, software maintainability has a strong link to the maintenance phase of  the 
software lifecycle. However, the term software maintenance poorly describes what typically 
happens after initial software deployment. The word maintainability is derived from the verb 
“maintain”, which according to Merriam-Webster’s dictionary1 can be defined as: “To keep 
in an existing state (as of  repair, efficiency, or validity); To preserve from failure or decline (maintain 
machinery).” Thus, the word maintainability refers to our ability to keep software in an 
existing state or to preserve it from decline. The problem with this definition is that 
software is not consumed or worn down by use. However, most software systems, and 
software products in particular, are subject to lots of  changes after their initial deployment. 
A large part of  these changes are extensions to the existing system (sometimes referred to 
as perfective maintenance). Whereas the term maintenance may have been representative 
and useful in the 1970s, it fits poorly with modern iterative development processes and the 
constant evolution of  contemporary software systems. 

We think that the term software evolution better describes what happens after the initial 
software deployment/release, an idea also supported by Sommerville (Sommerville 2001). 
Rajlich and Bennett (Rajlich and Bennett 2000) propose an improvement to the traditional 
develop and maintain model by presenting a life cycle model that also describes the phases 
after the software has been released. In Rajlich’s and Bennett’s model, software evolution is 
also seen as an important phase in the software lifecycle. 

                                                 

1 http://www.m-w.com/ 
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The term software maintenance also offers a poor match with the development and release 
of  software products. In software system development, where typically a custom-made 
system is delivered to a single client, the maintenance phase can be clearly identified after 
the software has been delivered to the customer. In software product development, the 
development is evolutionary and there are several deliveries to different customers. In the 
software product business there is a constant need to further develop the product because 
of  the continuous competition for customers, i.e., a company will add new features to their 
product to attract new customers. Therefore, we do not think that the term software 
maintenance is appropriate in the software product context to describe all the modifica-
tions made to a software product after it has been initially shipped. 

Since using the term software maintenance or the verb maintain to refer to the modifica-
tions made to the software offer a poor match with the real world phenomena, we have 
chosen to use the term software evolvability rather than the traditional term software 
maintainability to describe the ease of  developing a software element further. The term 
software evolvability could be substituted with perfective software maintainability, but for 
the reasons listed in this section, we have opted not to do this. 

2.2 Viewpoints to Software Evolvability 
We have identified four viewpoints to software evolvability, as shown in Table 1. Firstly, we 
may study factors that affect software evolvability, e.g., why a piece of  software has become 
poorly evolvable. The list of  those factors is likely to be extensive, covering issues from the 
programming language used and the motivation of  the developers to the business goals 
and the organization of  the developing company. Some work in this area has been done by 
Oman et al. (Oman et al. 1991)2, who listed different factors affecting software evolvability. 
Lehman (Lehman 1980) has proposed laws that affect software evolution, some of  which 
also affect software evolvability. 

Secondly, we can look at how evolvable a piece of  software is at the moment. Evolvability 
can be evaluated by looking at the software element itself, as well as its documentation. 
Software evolvability is likely to be dependent on the evaluator. For example, the evolvabil-
ity of  a software element can be high to the original developer, but at the same time, a new 
developer who lacks proper knowledge of  e.g. the used development paradigm can 
experience great difficulties. Another way to evaluate the evolvability is through automatic 
program analysis. We discuss evolvability evaluation in more detail in Section 2.3. 

Thirdly, we can study the improvement of  software evolvability. This improvement is often 
referred to by terms such as restructuring, refactoring, or re-engineering. In some cases, even 
rewriting is used to improve evolvability. If  we look at the definitions of  software restruc-
turing (Arnold 1989) and software refactoring (Fowler 2000), we can see that they both 
essentially mean modification to the internal software structure to make the software easier to understand 
and modify. Re-engineering (Chikofsky and Cross 1990) on the other hand means the 
examination and alteration of  software to reconstitute and implement it in a new form. Generally re-
engineering is used to refer to big system alterations, whereas refactoring and restructuring 
mean small changes in the code. Often improvement of  software evolvability is not studied 

                                                 

2 Unfortunately, this report has not been accessible to us, as our library was not able to obtain a copy of  the 
report even from abroad. A brief  summary of  the work can be found from (Pigoski 1996) in page 288. 
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in isolation. In many re-engineering case studies, improvement in the software evolvability 
is only one of  several goals. 

Fourthly, we can study the effect of  the current state of  software evolvability concerning 
some other attributes like development efficiency or the number of  errors introduced by 
source code modification. This is perhaps the most widely studied viewpoint to software 
evolvability. Several well-constructed studies (Bandi et al. 2003; Li and Henry 1993; 
Rombach 1987) show that using source code metrics for evolvability evaluation can predict 
the future development effort. Those studies act as motivators for this work. 

Table 1 summarises the four viewpoints to software evolvability. The table also provides a 
general research question that each viewpoint tries to solve. The focus of  this paper is on 
the evaluation of  software evolvability. 

Table 1. Viewpoints to software evolvability 

Affecting factors: Which factors can explain the current level of  evolvability? 

Evaluation: How can we evaluate software evolvability? 

Improvement: How can we improve software evolvability? 

Effect: What difference does evolvability make (e.g. in terms of  development effort)?

2.3 Approaches to Software Evolvability Evaluation and the Scope of  
the Work 

Different approaches to software evolvability evaluation are presented in this section. First, 
we discuss the level at which the evaluation can be performed. Second, we compare human 
and machine based evaluation. Third, we look at factors in the software that affect software 
evolvability. Finally, we present the scope of  this work.   

2.3.1 Level of  evaluation 
Software evolvability evaluation can be performed at several levels. We can evaluate 
evolvability at level of  software architecture that consists of  systems and sub-systems. We 
can study the evolvability at sub-system level and look at the package and class structure. 
Furthermore, we can study the structure of  interacting classes that work together to 
implement certain functionality (e.g. design patterns typically consists of  few interacting 
classes). Still, we can delve even more to the details and study the evolvability of  individual 
classes and methods.  

Software evolvability can be studied at various abstraction levels, and this effects the 
elements we wish to study. For example if  we study software at architectural level, we are 
not well served by looking at the source code, but we should focus on the documentation 
of  the software architecture. Studying the evolvability of  an individual method is probably 
most efficiently done by looking at the actual source code rather than the method docu-
mentation. Thus, the level of  software evolvability evaluation greatly affects the artefacts 
we wish to study.  
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This work focuses on software evolvability at the level of  individual source code routines / 
methods.  

2.3.2 Evaluation method 
After selecting the level of  abstraction where software will be studied, one must also 
choose the evaluation method. Evaluation can be subjective performed by humans, or 
objective and performed automatically using program analysis. In this section, we discuss 
methods for evaluating software evolvability. We identify two fundamentally different 
evaluation approaches: subjective evaluation performed by humans, and objective metric-
based evaluation performed dominantly by program analysis tools. Differences between 
human evaluation and program analysis are highlighted to conclude the section. 

The IEEE standard for software maintenance (IEEE 1998) includes a general process 
framework for performing software maintenance. In the framework, quality — including 
software evolvability — is evaluated subjectively by humans in process control points that 
consist of  review, inspection, and verification tasks, and objectively by measures that 
consist, e.g. of  code size and complexity, and error rates. Thus, the standard recognizes the 
value of  subjective human-based evaluation and objective metric-based evaluation, but still 
leaves most practical issues open. 

Widely studied source code or design metrics (Briand et al. 1997; Briand et al. 1999; 
Chidamber and Kemerer 1994; Halstead 1977; Harrison et al. 1998; Henderson-Sellers 
1996; Hitz and Montazeri 1996; Lorenz and Kidd 1994; McCabe 1976; Succi et al. 2005), 
which can be gathered using program analysis, have traditionally played a big role in 
evaluating software evolvability. Code metrics have been used and created to form a set of  
metrics that are able to measure evolvability (Bansiya and David 2002; Chidamber et al. 
1998; Szulewski and Budlong 1996). Code metrics have been combined to create polyno-
mial equations whose outcomes give a single measure of  evolvability (Coleman et al. 1994; 
Muthanna et al. 2000). Finally, some researchers have reported success in using code 
metrics to predict maintenance effort (Grady 1994; Li and Henry 1993). Naturally, the 
quantitative data should always be interpreted by humans — a fact that undoubtedly 
introduces some level of  subjectivity — but regardless of  this there are significant 
differences between using subjective, qualitative evaluations and objective, quantitative 
metrics as the basis for evolvability analysis. 

Considerably less work has been done studying the use of  subjective human evaluation of  
software evolvability. This topic is interesting because ultimately the developer decides 
whether software evolvability should be improved or not. Human evaluations are always 
subjective and thus dependent on the individual doing the assessment. Consequently, one 
can expect there to be different, even conflicting opinions between the evaluators. This 
evaluator effect can be reduced, e.g. by using evaluation criteria. Subjective human evaluations 
of  software evolvability using code smells can be compared to the judges’ evaluations in 
figure skating or ski jumping competitions. 

The differences between program analysis and human evaluations are shown in Figure 1. 
The figure indicates that program analysis offers a quantitative and objective way to analyse 
software quality. Human evaluations on the other hand are always more or less subjective, 
but they offer qualitative information about the software that cannot easily be obtained by 
program analysis tools. Humans can also consider aspects that are not included in the 
predefined metrics calculated by tools. Management might be in favour of  using program 
analysis tools, since human opinions could be unreliable. Developers, on the other hand, 
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can think that metrics are spurious and that you cannot assess the context of  each software 
element by using measurement. 

 

Program Analysis Human Evaluations

QualitativeQuantitative

SubjectiveObjective

Code Metrics Bad Smells in Code

“Humans are unreliable” “Metrics are phony”

DevelopmentManagement

HumansTools

 
Figure 1. Differences between automatic program analysis and human evaluations 

In this study, we focus one the human evaluations because less work has been done in that 
area. However, we will also contrast the human evaluations with source code metrics to 
study the link between subjective human evaluations and automatic program analysis based 
on code metrics.   

2.3.3 Bases for evaluation 
Software evolvability is also affected by other factors than software structure. Better 
documentation increases software evolvability. For example, documentation of  software 
architecture raises software evolvability, because it makes software easier to understand and 
further develop. Even when we study software at the source code level we cannot think 
that the evolvability could be just determined based on the software structure. Factors like 
code commenting, naming of  code elements, and layout of  source code also affect 
software evolvability.   

This work will try to focus studying the software structure at a method level. Our aim is to 
study software evolvability based on source code structure. However, issues concerning 
layout, naming, and commenting will be studied because it is not practical or even feasible 
to study source code structure without concerning these dimension as well.  
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2.3.4 Scope 
Now that we have seen concepts around software evolvability, we can look at the scope of  
this work:  

Evolvability evaluation, including both the evaluation of  bad elements in the code and the decision whether 
to improve the code by refactoring, of  software methods based principally on the software structure using 
human evaluations.  

2.4 Human Based Software Evolvability Evaluation 
As previously mentioned, several studies have established the link between software 
evolvability and source code metrics. Recent studies (Balazinska et al. 2000; Ducasse et al. 
1999; Kataoka et al. 2001; Simon et al. 2001; Tourwé and Mens 2003) have focused on 
automatically detecting poor structures in software or have used historical data to detect 
spots where refactorings had been performed (Maruyama and Shima 1999). For more 
information on this type of  work we point the reader to (Mens and Tourwe 2004). Many 
of  the studies mentioned are actually more focused on evolvability improvement than its 
evaluation. We have been able to find only a limited number of  studies in which subjective 
evolvability evaluations have been studied or compared with automatic program analysis. In 
this section, we introduce the relevant prior work we have identified discussing perceived 
evolvability evaluations.  

2.4.1 Subjective evolvability criteria 
To make it easier for a software developer to decide whether a certain piece of  software 
needs refactoring (software evolvability improvement) or not, Fowler and Beck (Fowler and 
Beck 2000) propose a list of  22 bad code smells. Fowler and Beck introduce code smells as 
a more concrete indication of  the need for refactoring than “some vague idea of  pro-
gramming aesthetics”. They also claim that no set of  precise metrics can be given to 
identify the need for refactoring. Thus, the code smells can be seen as a compromise 
between precise source code metrics and totally unguided subjective evaluation. In their 
experience, Fowler and Beck say that when it comes to making refactoring decisions, no set 
of  metrics rivals informed human intuition. The code smells have been developed based on 
Fowler’s and Beck’s industrial experience in several software projects that according to 
them varied from successful to nearly catastrophic. 

Some code smells represent two extremes of  the same attribute. For example, the size of  a 
class could be an attribute. Too much of  it leads to a smell called “Large Class” and too 
little to the “Lazy Class” smell. The code smells are some-what vaguely defined. For 
example, the following is said about the Large Class smell: “When a class is trying to do too 
much it often shows up as too many instance variables”, ”...common prefixes or suffixes 
for some subset of  the variables in a class suggest the opportunity for a component.”, “As 
with a class with too many instance variables, a class with too much code is prime breeding 
ground for duplicated code, chaos and death”, “If  you have five ten hundred line methods 
with lots of  code in common, you may be able to turn them into five ten line methods with 
another ten two-line methods extracted from the original”, “If  your large class is a GUI 
class, you may need to move data and behaviour to a separate domain object. This may 
require keeping some duplicate data in both places and keeping the data in sync.”  

Structures similar to code smells are described by Brown et al. (1998), who discuss software 
anti-patterns. These anti-patterns describe code problems on class to architectural levels. 
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Some of  them are similar to code smells, e.g., God Class is equal to a Large Class smell and 
Lava Flow is a synonym for Dead Code. However, the scope of  their work is quite wide as 
they also discuss problems in software processes, badly behaving developers, and many 
other areas. 

The widely recognized software development book “Code Complete” (McConnell 2004) 
discusses the characteristics of  high-quality routines and reasons for creating a class. To 
summarize, we list the properties of  high-quality routines, reasons for creating a class, and 
classes to avoid as described by McConnell. 

• High-quality routines: sufficient reason for existence, contains no code that would 
benefit from extraction into routines of  their own, descriptive names following the 
naming conventions, high cohesion, low coupling, length that is determined natu-
rally, proper number and usage of  parameters.  

• Reasons for creating a class: model real-world objects, model abstract objects, re-
duce complexity, isolate complexity, hide implementation details, limit effects of  
changes, hide global data, streamline parameter passing, make central points of  
control, facilitate reusable code, plan for family of  programs. 

• Avoid classes that: are too big (God Classes), only contain data but no behaviour, 
only contain behaviour but no data. 

A comparison indicates that most of  these ideas by McConnell can also be found in the 
work of  Fowler and Beck (Fowler and Beck 2000) that introduced the idea of  code smells. 

The Air Force Operation Test and Evaluation Center (AFOTEC) pamphlet (AFOTEC 
1996) provides a rich set of  instructions for evaluating software maintainability. According 
to the pamphlet, the evaluation is performed by five evaluators that should have no 
relationship to the software to ensure they are unbiased. As it is seldom humanly possible 
to evaluate an entire software system, the evaluation is performed on selected source code 
samples that are representative of  the system. The evaluation is performed by agreeing or 
disagreeing, using a six-point ordinal-scale, with statements that cover different aspects of  
software maintainability, based on the source code and available documentation. Before the 
actual evaluation, a calibration run is done to ensure that the evaluators have a “uniform 
interpretation of  how each statement applies to the system”. However, the pamphlet 
particularly stresses that the evaluators should never be forced to change a score they have 
given. Thus, the purpose is to achieve agreement through discussion on the interpretation 
of  the statements, while the answers are still allowed to vary between evaluators. After the 
calibration, the team proceeds to the actual evaluation. The statements are grouped into 
four categories: software documentation, module source listing, computer software unit, 
and implementation. Some example statements include: Program initialisation is adequately 
described, Identifier names are descriptive of  their use, and Dataflow in this unit is logically 
organized. To summarize, the AFOTEC pamphlet offers perhaps one of  the most 
complete guides to performing human-based software maintainability evaluations. 

All the references discussed in this section provide examples of  criteria that could be used 
when making subjective evolvability evaluations on software. In addition, the AFOTEC 
pamphlet offers a set of  instructions and a process for performing software evolvability 
evaluation with a team of  evaluators. 
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2.4.2 Studies of  subjective evolvability evaluation 
Shneiderman et al. (1980 pp. 134-138)) report results from using peer reviews in software 
code quality evaluation. They conducted three peer review sessions that each had five 
professional programmers with a similar background and experience as the participants. 
Each programmer provided one of  their best programs which were then evaluated by the 
four other participants. The review was performed by answering 13 questions on a seven-
point ordinal scale. The questions varied from blank line usage and the chosen algorithm to 
the ease of  further development of  the program. The results showed that in half  of  the 
evaluations three out of  four programmers agreed on the subjective evaluations (answers 
differed by one at the most). Still, in 43,1% of  the evaluations the difference between all 
four evaluators was two or less. The researchers tried to explain this by speculating that the 
subjects misunderstood the questions or the scale. However, the research does not account 
for factors such as differences in the developers’ opinions about the program design, 
structure, and style that might explain the results. 

Kafura and Reddy (1987) studied the relationship between software complexity metrics and 
software maintainability. Maintainability was measured using system expert evaluations. 
However, no details are given on how these evaluations were collected from the individuals 
and no data is provided of  the evaluations. Therefore, it is difficult to assess the study any 
further. Nevertheless, the researchers conclude that the expert evaluations on maintainabil-
ity were in conformity with the source code metrics. 

Shepperd (1990) validated the usefulness of  information flow metrics on software 
maintainability by collecting the opinions of  the maintainers for 89 modules of  airspace 
software that totalled around 30 000 lines of  code. Each maintainer of  the maintenance 
team was individually asked to classify each module from one to four on an ordinal scale on 
the perceived difficulty of  some hypothetical maintenance task. In 73% of  the individual 
classifications, the differences per module were one or less and thus the researchers 
concluded that there was a strong correspondence between the individual ratings. However, 
as no detailed data is given it is difficult to assess the study in more detail. 

Software Engineering Test Lab at the University of  Idaho report on the construction of  a 
maintainability index (Coleman et al. 1994; Coleman et al. 1995; Oman and Hagemeister 
1994; Welker et al. 1997). In their work, the researchers used source code metrics to create 
polynomial regression models that measured software maintainability. They calibrated the 
maintainability models based on how well they correlated with the subjective evaluations of  
the software maintainers. To do this the researchers acquired source code and the main-
tainers’ opinions on eight industrial software systems ranging from 1000 to 10 000 lines of  
code (Oman and Hagemeister 1994). After calibration, they performed a validation study 
where they again acquired opinions and the source code on six industrial systems ranging 
from 1000 to 8000 lines of  code. In the validation study, they also saw discrepancies where 
one engineer was more lenient and the other ones more critical towards the systems they 
were evaluating. Although the study (Oman and Hagemeister 1994) does not directly 
indicate this, it seems that there was only the opinion of  a single individual per software 
system that was used in the initial creation of  the metric and the validation performed. 
Thus, this makes it difficult to study the differences in human maintainability evaluations. 
After performing tests on several industrial systems, the researchers concluded that the 
automatic assessment corresponds well to the subjective view of  the experts (Welker et al. 
1997). 
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Siy and Votta (2001) studied data of  130 code inspection sessions. Traditionally code 
inspections have focused on the error data i.e. the problems in the code that will cause 
failure in operation. Based on their data, Siy and Votta point out that only 18% of  the 
issues identified were true defects, 22% were false positives, and 60% were “soft mainte-
nance-issues”. We are interested in the “soft-maintenance issues” since they are quite close 
to our topic, software evolvability. The researchers grouped together the maintenance 
issues, which had similar goals. They came up with four groups, namely: Documentation, 
Style, Portability, and Safety. Documentation contained issues dealing with the documenta-
tion in the code. Style issues were related to author’s personal programming style, and the 
suggestions were optional changes to make the code more readable. Portability contained 
issues that might cause problems in other environments. Safety contained additional checks 
against things that “should really never happen”. The distribution of  the maintenance 
issues were 47% documentation, 46% style, 5% portability, and 2% safety issues. Style 
issues had a sub-category called clean-up which contained modifications to the code 
without “changing the meaning of  the program”. The purpose of  those modifications was 
to prepare the code for subsequent evolution. This sub-category is closest to our scope i.e. 
subjective software evolvability evaluation based software structure. The study does not 
have evolvability evaluations, i.e. in scale evolvable not evolvable. Thus, there can be no 
analysis of  interrater agreement, or factors explaining the evaluations. However, it presents 
important qualitative data of  the issues affecting software evolvability. 

Kataoka et al. (2002) studied the usefulness of  improving software quality with refactoring 
and report on a comparison between human evaluation and software metrics. According to 
the researchers, the subjective evaluation of  an expert on the effectiveness of  refactorings 
correlated quite well with improvement in the coupling metrics. The drawback in the study 
is that the data set consists of  only five refactoring cases and that only one developer 
evaluated the effectiveness of  the refactorings. 

Genero et al (2002) studied the maintainability of  UML-class diagrams. The researchers 
show that subjective evaluation of  understandability, analyzability, and modifiability of  
UML-diagrams correlated (Spearman correlation between 0,529 and 0,943) with various 
class level metrics. The study had 17 subjects and 28 UML-diagrams. Number of  classes 
and number of  attributes had the highest correlations (Spearman correlation between 0,892 
and 0,943) with the evaluated quality attributes understandability, analyzability, and 
modifiability. In a follow up study Genero et al. (2004)3 show that subjective complexity 
evaluation has a weak correlation (Kendall’s Tau) with time required to understand (0,242), 
or modify (0,147 and not significant) the UML-diagram.  Somewhat larger correlation 
(0,539) is found between subjective evaluations and objective code metrics based diagram 
classification. Genero’s studies appear to be constructed with empirical rigor, but their 
reporting is far from perfect. However, these studies are made with UML-diagrams and not 
with the actual source code. Other shortcoming from our point of  view is that they do not 
provide any results on the interrater agreement of  the subjective evaluations.   

Mäntylä et al. (2003; 2004) studied code smell evaluations of  twelve industrial developers. 
They discovered the developers make conflicting evaluations of  the source code. They also 
discovered inconsistencies when comparing the evaluations to source code metrics. The 
weaknesses of  the study are that the developers’ evaluations were based on recollection of  
                                                 

3 Unfortunately, this report is missing the section (section 5.2) that contains the results concerning the 
correlations between subjective and objective complexity. In the report, only a table that contains the 
correlations is available. Therefore, there is a possibility that we have interpreted their results incorrectly.   
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the modules they had primarily worked with, and the large size of  the evaluated modules 
(between 15 and 65 thousand lines of  code). 

2.5 Gap in Existing Work 
In this chapter, we have laid the foundation for the work that will be presented in the 
upcoming chapters. Section 2.1 presents the reasons for using the term software evolvabil-
ity over the traditional term software maintainability. In Section 2.2 we introduced four 
viewpoints: factors effecting, evaluation of, improvement of, and the effect of  software 
evolvability. Section 2.3.1 discusses the different levels (architectural level, class level, 
method level, etc) that can be used when evaluating software evolvability. Section 2.3.2 
showed different evolvability evaluation methods focusing on the differences of  human 
evaluations and the source code metrics provided by program analysis. Section 2.3.3 
discusses that evolvability is not completely grounded on software structure, but there are 
other factors, like documentation and layout, effecting on evolvability. Based on our review 
Section 2.3.4 sets the scope for this work on the software evolvability evaluation grounded 
mainly on software structure performed by humans at the method level. Then Section 2.4 
presents the relevant prior work based on the scope of  the work.  

Section 2.4 shows that there exists limited amount of  studies where subjective evaluation 
of  software evolvability would have been studied in controlled settings, analyzed with 
statistically solid methods, and with relevant amount of  individuals. In addition, many of  
the prior studies have been made with programming languages that are currently fading 
away (C, Pascal, and COBOL) from the main stream of  software development.   

Thus, to better utilize the subjective evolvability evaluations in software development we 
need to understand subjective evolvability evaluations and its strength and weaknesses. This 
need is increased by the fact that there are claims and suggestions made on the subjective 
evaluation of  software evolvability without proper scientific studies.  
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3 Methodology  

This chapter presents the research problem of  the work that is then further divided to 
different research questions in Section 3.1. Then two experiments are presented in Section 
3.2 that provide the data to answer the research questions. Section 3.3 shows the data 
analysis methods utilized.  

3.1 Research Problem & Questions 
Based on the scope of  this work, presented in Section 2.3.4, and the limited amount of  
prior work in this area, presented in 2.4, we selected the following research problem:  

Do human evaluations of  software evolvability differ from one another, and what are the explaining factors 
behind the evolvability evaluations? 
The research problem clearly has two parts. First, it inquiries whether there are differences 
between human evolvability evaluations. This problem is called interrater agreement, and it 
is studied in research question 1 that is presented in Section 3.1.1. Second, it is desirable to 
explain the factors behind the evolvability evaluations. The second part of  the research 
problem is more interesting as it may explain some of  the results of  the first part. There-
fore, the factors explaining the evolvability evaluations were studied with two different 
complimenting approaches. Regression analysis was used to provide numeric estimates of  
the evolvability evaluation variation explained by the different measurable characteristics of  
the informants or the source code. Qualitative analysis was used to study the rationales of  
the informants’ evolvability evaluations. Researcher questions for regression analysis and 
qualitative analysis are presented in Sections 3.1.2 and 3.1.3 respectively 

3.1.1 Interrater agreement  
When studying interrater agreement we must first consider whether there should be 
interrater agreement between informants. If  we ask people for the best way to spend their 
holiday, we might not expect high interrater agreement, as people are likely to favour 
different holiday plans. However, we might expect high interrater agreement when we look 
at the judges of  figure skating or ski jumping contests. In those cases, it is essential that 
these professional judges have some sort of  interrater agreement. Although, historically 
this has not always been the case as the level of  agreement between the ski jumping judges 
has been found non-significant in the past (Vasama and Vartia 1979). Thus, the purpose of  
our interrater agreement analysis is to study the amount of  agreement between different 
informants on their evolvability evaluations.  

Research question 1: Is there an interrater agreement in subjective evolvability evaluation?  
The hypothesis is that for all the three code smells (Long Method, Long Parameter List, 
Feature Envy) evaluated and for the refactoring decision there should be high interrater 
agreement.  
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3.1.2 Factors explaining evaluations — regression analysis 
The purpose of  regression analysis is to discover how much of  the variation in evolvability 
evaluation, which was the dependent variable, could be explained by the independent 
variables. There should be two primary sources causing variation in the evaluation. First, 
the independent variables measuring the characteristics of  a software element could affect 
the evaluations. Second, the independent variables describing the informant who made the 
evaluations could affect the evaluations.  

Research question 2: How much of  the evolvability evaluation of  a software element can be explained 
by the software element and the informant? 
The hypothesis is that characteristics of  the evaluated element and the evaluators’ demo-
graphics can explain most of  the variation in the evaluations. The software element 
characteristics are expected to have major impact while the demographic data would have 
minor impact. 

3.1.3 Factors explaining evaluations — qualitative analysis 
Qualitative analysis tries to find the factors affecting the evolvability evaluations by looking 
at the rationales provided by the informants for each evaluation. It differs from the prior 
two analysis methods by not being a statistical method. In general, qualitative analysis often 
tries to discover a new hypothesis or a theory that could be tested in future studies, or used 
to explain the reasons behind the measures. 

In this study, qualitative analysis tries to explain the refactoring decisions, and this way it 
complements the regression analysis. Using regression analysis is based on the assumption 
that the evolvability evaluations have a linear relationship with the measurable properties of  
the source code or of  the informant. Qualitative analysis goes beyond this and provides a 
viewpoint inside of  an informant’s head by studying the rationales for the evolvability 
evaluation i.e. we can see what each informant thought was good or bad in each software 
element. Qualitative analysis could also provide some insight to the statistical results of  the 
interrater agreement analysis. 

Research question 3a: What factors act as the rationales for the refactoring decision, could these 
factors be automatically detected, and what would be the effect of  the improvement suggestion factors to 
common source code measures? 
This research question is of  explorative nature and it tries to bring out new qualitative 
information. Thus, we do not have any hypothesis for the result.  

To demonstrate the usefulness of  the factors we needed to study the effect these factors to 
the refactoring decision e.g. if  factor X is discovered will this indicate that the refactoring 
decision will be positive.  

Research question 3b: Can the factors of  the rationales predict the refactoring decision, and, if  yes 
what are the most important factors? 
Our hypothesis is that the factors discovered in the rationales should be able to explain 
most (at least 70%) of  the variations in the refactoring decision. Naturally, we cannot 
hypothesis on the possible factors, as they are the answers to research question 3a.  
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3.2 Description of  the Experiments 

3.2.1 Introduction 
The goal of  the experiments was to study subjective evaluations of  software evolvability. 
Therefore, a repeatable experimental setting was created where the subjective evaluations 
could be studied in controlled manner.  

Two separate experiments with considerable differences were made. We shall refer to them 
as Experiment A and Experiment B. Both experiments had the same goal as they tried to 
provide answers to the research problem. Experiment A provided data for the research 
questions 1 and 2 and Experiment B provided data for research questions 1, 2, and 3.    

Experiment A was made first and Experiment B was performed a year later. Experiment B 
can be though as a successor experiment that tried to provide answers to some of  the 
questions that were created by the results of  Experiment A.  

Both experiments had the same software elements for the evolvability evaluation. Identical 
documentation of  the software was also provided. However, other things as the experiment 
material, viewpoints to software evolvability, informants, training, and organization of  the 
experiment differed. The details of  these differences are highlighted in the upcoming 
subsections describing the experiments.   

3.2.2 Software under study 
To study the subjective evaluations of  software evolvability, a small application consisting 
of  9 classes and approximately 1000 NLOC of  code was created. The application was 
programmed in Java programming language. The application was created solely for the 
purposes of  the experiments. Thus, while creating the application, we purposefully 
programmed some pieces of  the software more poorly than we could have. This way we 
tried to ensure fluctuation in the software evolvability. 

Although, the application was created for this experiment it also has a meaningful task it 
tries to accomplish. The application is able model a family tree contain relationships 
between spouses, and parents and children. The family tree modelling was chosen because 
the domain knowledge required in understanding the application is simple. In fact, all 
humans can be thought to posses the domain knowledge needed to understand the 
concepts of  close family relationships like father and son.  

Screenshots of  the application are in Figure 2 and in Figure 3. In the figures, we can see the 
two views that the application offers. The view shown on Figure 2 can be used to add, 
delete, and modify people and their information. Figure 3 shows the view where one can 
modify the relationships between the people.   
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Figure 2. Persons view of  the application 

 
Figure 3. Relationships view of  the application 

The UML diagram of  the application is in Figure 4. From the figure, we can see the classes 
and their relationships and positions in the package structure. The 10 methods that are 
visible in the diagram were evaluated in the experiments. FamilyFrame class in the view 
package is the main GUI-class for the application. PersonTableModel and Relation-
TableModel contain data that is showed by FamilyFrame class with java.swing.JTable 
classes. The data of  the application is in the model package classes Person, Relation, 
RelatioSpouse, and RelationParentChild. The io package contains DiskManager class that is 
responsible for providing the input output operations for the application. However, 
currently only reading and writing to disk are supported.  
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Figure 4. UML-diagram of  the application 

3.2.3 Viewpoints of  subjective evaluations 
In both experiments, the subjective evaluations were targeted to the method level. The ten 
methods that were studied in the experiments from the application are show in Figure 4 
and their source code is listed in Listing 1 to Listing 10 in pages 36-49. 

Experiment A. To get different viewpoints of  the subjective evaluations, four questions 
of  each method were presented. Three of  the four questions focused on the existence of  
the following code smells (Fowler and Beck 2000): Long Method, Long Parameter List, and 
Feature Envy, which were chosen because they can be studied at the method level. The 
fourth question asked if  the method was in such a bad shape that it should be refactored to 
remove the smells. 

Long method means that a method is too long and tries to perform many possibly 
unrelated operations. This means that the method has low cohesion and makes it difficult 
to reuse. Long parameter list means that a method is taking too many parameters. Long 
parameter lists are difficult to understand and they are continuously changing, as the data 
needed by the method is varying. Feature envy means that a method is more interested in 
other classes than the class it is currently located. A method with the Feature Envy smell 
should be moved to a class that the method is mainly operating with. 

Experiment B. In the second experiment no predetermined viewpoints for subjective 
evolvability evaluations were given i.e. the existence of  the smells was not asked. Instead, 
the informants were asked only if  the method was in such a bad shape that it should be 
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refactored. In addition, the informants were asked to provide their rationale for the 
previous answer i.e. why the method should be refactored or why not. 

3.2.4 The informants of  the experiment 
The informants of  the experiments A and B were students participating in Software 
Testing and Quality Assurance course at Helsinki University of  Technology (HUT) in fall 
semesters 2003 and 2004. Thus, each experiment had a unique set of  similar informants. 
Below the informants of  both experiments are introduced and Table 2 in page 19 summa-
rizes the most important demographic variables. From Table 2  we can see that informants 
in both experiments were indeed very similar. 

Experiment A. In fall 2003, the course had 82 students, with 51 of  them that participated 
in the experiment. We rewarded the participating students by giving them extra points that 
made up 6 percentage of  their total grade. From these 51 students we removed five 
outliers, whose answers indicated that they had not paid attention, when the instructions 
were given4. After removing these five outliers 46 students were left, and they made up the 
informants of  this experiment.     

The informants were studying for a master’s degree that requires the minimum of  180 
credits. On the average the students had, 115 credits, which means that they had completed 
approximately two thirds of  their studies. The standard deviation of  the students’ credits 
was 31,2 with minimum of  34 and maximum of  187,5. Majority of  the students (41 of  the 
46) had between 70 and 158 credits. Years studied by the informants can be seen as 
irrelevant and even misinforming, because the study times at HUT fluctuate greatly; some 
students may complete their master’s in less than two years starting from undergraduate 
level while others have studied over ten years. Normally it takes little longer than 6 years to 
get a master’s degree starting from undergraduate or freshman level. 

Students at HUT also work during the studies. Therefore, we asked how much work 
experience the informants had in software development. The mean work experience was 
1,5 years with the standard deviation of  1,76. The minimum software development work 
experience was zero while the maximum was seven years. There were 13 informants (28%) 
with no software development work experience, but 27 (58%) of  the students had year or 
more work experience in software development. We must make note here that the work 
experience length between the informants might not be completely accurate, as we do not 
know whether the informant had been working full time or part time while gaining the 
work experience in software development. 

Majority of  the informants (37) were studying in the department of  Computer Science and 
Engineering. Other student were studying in the department of  Department of  Electrical 
and Communications engineering (4), department of  Automation and System Technology 
(2), department of  Industrial Engineering and Management (2), and department of  
Engineering Physics and Mathematics (1). 

Experiment B. In fall 2004, 37 students participated in the experiment. The students were 
again rewarded with few extra points except that in Experiment B the extra points were 
given based on their rationales they provided in the experiment. One student’s answers 
                                                 

4 For example some students claimed that a method had somewhat long parameter list smell, when it had 
zero parameters. This happened regardless from our threats of  forfeiting the extra points if  the student 
would give such incomprehensible and false answers.  
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were removed as outlier as he/she could not provide reasonable rationales for his/her 
answers. 

The informants were studying for master’s degree that requires the minimum of  180 
credits. The students had an average of  125 credits. Standard deviation was 38,3 with 
minimum and maximum of  6 and 199. 86% (31/36) of  the students had between 80 and 
160 credits. The mean programming related work experience was 1,9 years with the 
standard deviation 2,91. The median of  work experience was one year. The minimum work 
experience was 0 years and maximum was 15 years. Eight students had no work experience 
(22%). However, 21 students (58%) had year or more programming related work experi-
ence. 

No information of  the students’ department was asked in Experiment B as it was discov-
ered irrelevant in Experiment A. Instead, in Experiment B we asked students grades in 
HUT’s programming courses. This information was not asked in Experiment A. Four 
students (11,1%) had not taken any programming courses that were asked in the survey. 
However, 28 (77,8%) students had taken advanced course in object-oriented programming, 
which is thought after the Basics programming courses.   

Table 2. Informants of  the experiments 

 Experiment 
A 

Experiment 
B 

N 46 36 

Credits (mean) 115,24 124,54 

Work Experience yeas (mean / median) 1,585 /  1 1,875 / 1 

Proportion of  informant with year or more work 
experience 

58,7% 58,3% 

 

3.2.5 Source code metrics 
Source code metrics was used to analyze the evaluated software elements. Here we briefly 
introduce the metrics and the results of  the measurements. The most utilized source code 
metric is undoubtedly Lines of  Code (LOC), and this metric was also used in this study. We 
adopted the basic version of  the Lines of  Code measure and calculated it simply as the 
number of  lines in the method including blank and comment lines. Number of  Parameters 
(Par) was measured as it was seen a potential predictor to Long Parameter List smell. 
Conditional statements are essential in all computer programming, and therefore we 
decided to measure Cyclomatic Complexity (CC), which is based on interpreting programs 
as graphs. CC measures the number of  linearly independent graphs (McCabe 1976). 
Cyclomatic complexity is equal to graph’s edges minus nodes plus 2. For illustrative 
example, see Figure 5.  
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Figure 5. Program with cyclomatic complexity 2 = 4 – 4 + 2 

We measured coupling with the Number of  Remote Methods called (NORM) and the 
number of  couplings to different objects (CBO). Coupling is created with a field reference 
or by a method call. This measure was first introduced by Chidamber and Kemerer 
(Chidamber and Kemerer 1994). Finally, we measured fan-out (FO) that in object-oriented 
context means the number of  reference types used in field declaration, formal parameters, 
throws declaration, and local variables. No simple types (in this case basic java data types, 
but also String class) or super types of  the object are counted. The results of  measuring the 
methods selected for evaluation are in Table 3. 

With this metrics selection, we tried to get a few well-known metrics in order to study their 
relationships to evolvability evaluations. Researchers have come up with hundreds of  other 
code metrics as well, but have mostly failed to show their relationships with the real world. 
Thus, the purpose was not to research a vast amount of  different metrics, but rather pick 
few of  the most recognized and see if  they could be useful in explaining the evolvability 
evaluations.  

Table 3. Measures from the methods selected for evaluation 

Methods Metrics 
 LOCa Parb CCc CBOd NORMe FOf

FamilyFrame.FamilyFrame 84 0 1 13 17 3 

Person.dateOfBirthEquals 24 1 2 1 3 1 

PersonTableModel.personMatch 19 6 1 1 6 2 

DiskManager.readFromDisk 67 1 11 5 16 4 

FamilyFrame.addRelationClicked 20 3 6 4 6 1 

PersonTableModel.applyChangesToPerson 11 4 1 2 5 1 

Person.getChildren 9 0 3 4 7 3 

DiskManager.writeToDisk 48 1 7 6 23 7 

Person.illegalRelation 46 1 12 5 8 3 

PersonTableModel.searchPersons 21 5 3 2 5 4 
a Lines of code, b Parameter, c Cyclomatic complexity, d Coupling between objects, e 

Number of remote methods called, f Fan-out 

int max = a;

if  (a < b)

max = b;

return max;
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3.2.6 Experiment material 
Experiment A Part of  the demographic data was collected at beginning of  the course with 
web-based survey. Questions concerning the rest of  the demographics, the source code to 
be evaluated, and the subjective evaluations about the source code were collected with a 
survey form. The survey form had 12 pieces of  printed A4 paper with the landscape layout 
so that two pages resided at the each page side by side. To get a better idea of  the survey 
form we refer to Figure 6 and Figure 7, which represent to example pages. However, all the 
experiment forms were unique as the methods evaluated appeared in random order for 
each of  the informants.  

 
Figure 6. First page of  the survey form 
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Figure 7. A sample page with code and the subjective evaluations of  the survey form 

In addition to the survey forms, the informants also received descriptions of  the smells and 
the UML-figure of  the software that can be seen on Figure 4. The description of  the 
smells that were handed out to the informants are in below:  

Long Method 
 Long methods are difficult to understand 
 Long methods have low cohesion. Low cohesion means that method tries to do several things rather 

than performing just a single task. 
 Long methods are difficult to reuse 

Long Parameter Lists 
 Method that has too many parameters suffers from this smell 
 Long Parameter Lists are hard to understand  
 Long Parameter Lists are constantly changing as more data is needed 

Feature Envy  
 Method with this smell is more interested in other class(es) than the one it is in 
 E.g. if  method invokes several getter and setter methods of  other classes it is envying data  
 Violates the key idea of  OO: data and logic are in the same place 

For each method the informants evaluated how much of  the smells as described in above 
existed on the methods. The questions was Do these smells existing in the method below? and it 
was evaluated with ordinal scale from one to seven with one standing for Not at all and 
seven standing for Yes very much. In addition to that, a question about refactoring was 
presented Would you refactor the method to remove the smells (in order to keep the software easy to 
understand and develop further). This was answered with five point ordinal scale where each 
option had a different meaning: 1-No, 2-Unlikely, 3-Maybe in the future, 4-Yes if  the method needs 
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to be further development, 5-Yes, immediately. To get a better idea how the questions were 
presented we refer to Figure 7. In Experiment A the instruction were given during the 
lecture look for next sub-section for more details.  

Experiment B. Experiment B was entirely web-based. The instructions of  the experiment 
consisted of  the following: explanation of  the task, explanation of  refactoring, grading of  
the experiment, estimated effort required, information about how the experiment informa-
tion may be used, description of  the evaluated software (including screen shots see Figure 2 
and Figure 3, UML-model diagram see Figure 4, source code5, runable application). All this 
except the description of  the software which was shown in Section 3.2.2, can be found in 
Appendix B. First, the informants answered demographic questions. Then the methods to 
be evaluated were presented with the question Would you refactor the method <in question> in 
order to keep the software easy to understand and develop further? For the answers there were five 
options 1-No, 2-Unlikely, 3-Maybe 4-Yes, later when the method needs further development, 5-Yes, 
immediately. With the questions, there was a link to source code of  the method. The 
rationale for the evaluation was asked with a question: Explain your choice? If  refactoring is 
needed, explain what and how the method should be refactored. If  the method is OK, explain what 
desirable qualities the method possesses. If  you answered Maybe also give your rationale. Screen shot of  
an example evaluation page can be seen in Figure 8. 

                                                 

5 Interested readers may request the source code of  the  application from the author 
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Figure 8. Screen shot of  an evaluation page of  single method 

3.2.7 Training 
Experiment A To make sure that all the informants had the required information about 
the software to be studied, the smells to be evaluated, and the benefits of  refactoring, an 
approximately 20 minute lecture was given on these issues. Additionally, the lecture covered 
general information about the subjective evaluations as well as some ideas why good 
software structure could be important, also the exercise organization, and the amount and 
the criteria for receiving the extra-points was given. The lecture slide outline can be found 
in Appendix A. 

Experiment B. In the second there was no training lecture given before the informants 
provided their evaluations. As explained in Section 3.2.5 the informants had received 
information about the software to be studied and the benefits of  refactoring. Comparison 
to Experiment A Experiment B had no smells or any other evolvability flaws that the 
informants were to search from the software.   
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3.2.8 During the experiment 
Experiment A The experiment was run as a single lecture session, which took altogether 
about 70 minutes. The session was held in a lecture hall with seats approximately for 
hundred individuals. First, we gave the informants the training as described in 3.2.7 after 
that the experiment material as described in 3.2.5 was handed out. Time to evaluate each 
method was forced to five minutes to guarantee that all the informants used the same 
amount of  effort in evaluating each method. This meant that none of  the informants was 
allowed to proceed until we gave them the instruction to do so. After the experiment, the 
informants evaluated the usefulness of  the experiment (or exercise as it was presented to 
them). Finally, the informants returned the survey forms.  

Experiment B Each informant participated in the experiment through a web-based 
survey. The informants were able to browse back forward through they answers during the 
experiment. In the instructions an estimate of  the experiment duration was given. During 
the experiment, the time the informants used to complete the entire survey was tracked by 
the web-based survey system utilized in the experiment.  

3.2.9 Pre-validating the experiment 
Experiment A As we would only get a one shot of  the experiment with the given group 
of  students, we tried to make the experiment as good as possible. For instance, the 
experiment material that was introduced in 3.2.5 was reviewed together with our colleagues. 
Two test runs of  the experiment were also arranged with people from our researcher group 
who had not been exposed to the experiment. Based on the reviews and test runs of  the 
experiments several improvements were made to the experiment material and the organiza-
tions. Unfortunately, we do not posses a complete trace for the changes made and the 
reasons leading to changes. However, here are listed some of  the changes. The diversity of  
the methods was extended by adding a method with none of  the smells existing6. The 
reason for this was that at the time the experiment did not have any methods with 
“perfect” design. In addition, the time to evaluate each method was decreased from six 
minutes to five minutes since six minutes was found out to be too long in the pre runs of  
the experiment.   

Experiment B This experiment was similar to Experiment A and thus required less pre-
validation. After the survey and other material where transformed to html-format and I 
had tested the experiment, a colleague of  mine conducted the experiment. Based on his 
suggestion few modifications to the experiment were made.  

3.3 Data Analysis 
This section presents the methods used to analyze the interrater agreement and the factors 
explaining the evaluations.  

3.3.1 Interrater agreement 
The Kendall coefficient of  concordance (Kendall 1948) which is referred to as W or 
Kendall’s W, can be used to study the agreement between three or more raters on several 

                                                 

6 Naturally this is only opinion by me and my colleagues 
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related samples. Other measures to study interrater agreement in ordinal scale, like Kappa 
and Kendall’s Tau, can measure agreement only between two raters and, therefore, were 
not applicable. For further information on Kendall’s W see ( (in press)Legendre 2005; 
Siegel 1956). 

Kendall’s W tells the amount of  interrater agreement by a number between zero and one. 
If  all raters agree W=one and W=zero implicates the smallest possible amount for the 
agreement. It is incorrect to use the expression “all disagree” since with m observers (m>2) 
on one-dimensional data it is impossible to completely disagree on anything (Kendall 
1948). With m=two it is possible to disagree completely on rankings and this results 
W=zero and Spearman correlation of  minus one (in pressLegendre 2005). Completely 
random data with m=two would result W=0.5 and Spearman correlation 0. When m, the 
number raters, increases the expectation value of  W decreases such that W is 1/m. 
Additionally, the statistical significance of  the agreement is needed. Small significance 
means that there is at least partial concordance among the raters. Kendall’s W significance 
is equivalent to the value produced by Friedman’s analysis of  variance test. 

Interrater agreement can also be studied in other fields e.g. judges of  sports like ski 
jumping and figure skating should be able to reach high interrater agreement. For a 
reference the Kendall’s W was calculated from the first round results of  ski-jumping world 
cup competition7 held in Oberstdorf, Germany at 29th December 2004. In that occasion 
the five judges evaluating 50 jumps achieved Kendall’s W 0,888 and asymptotic significance 
0,000.  

3.3.2 Factors explaining evaluations – regression analysis 
Regression analysis was used to study how the method characteristics and the informants’ 
demographics affected the evaluations. There were various features concerning the method 
characteristics and the respondents’ background, and the data came in various scales 
(nominal, ordinal, interval), and therefore could not be analyzed using classical linear 
regression. Thus, the data was analysed using categorical regression that is available for 
SPSS™ software. Categorical regression is founded on optimal scaling, which turns 
nominal and ordinal variables into linear variables (Meulman 1998). The categorical data 
analysis methods for SPSS™ have been developed in Data Theory Group from Leiden 
University, The Netherlands. 

Categorical regression performs better than traditional ordinal regression on data sets that 
have limited amount of  observations, too many variables, and too many values per variable 
(Meulman and Heiser 2001). This was also observed in this study when ordinal regression 
in SPSS™ was used to analyze the data. For instance in most cases no reliable statistical 
analysis could be performed because the answers could not provide all the possible 
combinations for the 7-point ordinal scale. Optimal scaling provides another advantage 
against traditional methods, which is the ability to create a combined regression models 
where different types of  independent variables can exist simultaneously and also the 
dependent variable can belong to any of  the three categories nominal, ordinal, and 
continuous (Meulman and Heiser 2001 pp. 8). Thus, categorical regression based on 
optimal seemed the most suited option for this type of  statistical analysis.  

                                                 

7 Results are available from http://www.fis-ski.com/ 
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Several regression models were created for each of  the predicted (dependent) variables, 
which were the evaluations of  the existence of  three code smells and the refactoring 
decision. The first model (called the MetDem model) used the source code metrics of  the 
methods and the demographics of  the informants as predictor (independent) variables. 
The second model contained only the demographics and the third model only the source 
code metrics of  the method. In Experiment A, an additional model was constructed that 
used the smell evaluations as predictor variables when predicting the refactoring decision. 

3.3.3 Factors explaining evaluations – qualitative data 
In Experiment B, the informants were asked to provide rationales for each refactoring 
decision. This resulted textual answers ranging from four words to seven sentences per 
evaluated software element per informant. The total number of  separate qualitative 
comments was 360. Qualitative research greatly varies in research strategies and types, look 
for example Miles and Humberman (1994) pages 6-7. Thus, there is no single analysis 
method or process that could be taken and used straight of  the shelf. Based on the ideas 
gathered from (Moilanen and Roponen 1994; Miles and Huberman 1994; Seaman 1999) 
the coding process presented in below and Atlas.ti program was used to analyze the textual 
data. During the analysis of  the textual answers, the demographic data of  the informants 
and the evolvability evaluations were not studied to prevent possible bias they could have 
caused.     

First, all answers were read through and coding paradigm was used to recognize the type of  
information they presented. In this work, we shall call the recognized types of  information 
as topics instead of  codes to avoid confusion with coded text passages and program code. 
Literature (Moilanen and Roponen 1994; Miles and Huberman 1994; Seaman 1999) 
suggests that topics can be either preformed or postformed. Preformed topics mean that 
before the text is analyzed a list of  topics is created. Postformed topics mean that topics 
are created during the coding process. Often in practice, some of  the topics are preformed 
and some of  them are postformed. In this study, mostly postformed topics were used. 
However, as the author had studied code problems (e.g. bad code smells (Fowler and Beck 
2000)) extensively, this meant that some topics were actually preformed in the authors mind 
although they were not explicitly written down before the coding process was started.  

Second, after all the answers had been analyzed and assigned with one or more topic, an 
analysis of  topics was performed. This meant that topics were renamed to better reflect 
their contents, and some topics were merged as there had been several topics with different 
names reflecting identical meaning.  

Third, all the answered were again read through and recoded with new topics where 
needed. This was done to have constant topic usage across the answers. Some topics were 
formed during analyzes of  the final answers, and, thus, such topics would not have 
appeared in the rest of  the answers. Short memos of  answers for each method that the 
informants had evaluated were also written in this stage.  

Fourth, each topic was individually analyzed by looking at the text passages that each topic 
pointed. This was done in order to discover patterns inside the topics, to detect wrongly 
categorized text passages, and to understand better what each topic actually meant. During 
this process, topics were also merged and split up when ever it was necessary. 

Fifth, the relationships of  the topics were studied by grouping them in to topic families 
that gathered similar topics.    
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Sixth, topics with similar targets but different types (look Section 4.3.1 and Figure 9 for 
definition of  topic type and target) were combined to get the total amount of  persons who 
were pointing out similar problems. For example if  an informant was pointing out that 
method is too long and was also saying that it should be split up, this comment had both a 
complain and improvement suggestion. However, the target of  the comment, method size, 
remains the same.   

3.3.4 Factors explaining evaluations – regression analysis with qualitative data 
Categorical regression that was introduced in Section 3.3.2 was used to perform regression 
analysis on the qualitative data. Categorical regression was chosen because the dependent 
variable was in ordinal scale and the qualitative topics are best interpreted as ordinal scale 
data. These topics were discovered when performing qualitative data analysis as described 
in Section 3.3.3. The different topic types can be found in results chapter Section 4.3 

• Either a text contained a topic or it did not. Thus ordinal binary scale 

• With OK topic there was three different levels plus a case where no OK topic was 
found. Thus ordinal scale from 0-3 

• There were also different topic families e.g. complaints and improvement sugges-
tions concerning software structure. These topic families contained several topics. 
A value of  a topic family was obtained by counting how many of  its topics are in 
the text. One might have been temped to call this an interval scale, but since it was 
based ordinal values we shall also interpret is as ordinal. 

Different regression models were studied. First, a model where the refactoring decision was 
explained by the OK topics and topic family called negatives was created. It is called Simple 
Model. OK topic was split up three levels 1, 2, and 3, where three is highest meaning that 
method was praised in some way and one being the lowest indicating an OK, but also a 
minor complains made concerning the method. Topic family negatives contained all 
comments whose type was a complain or an improvement suggestion.  

Second, a model containing the negative topics grouped on topic families structure, 
documenting, and visual representation was created. It is called Target Model. An extended 
version of  this model was also created by adding OK topics to this model. It is called 
Target&OK Model. In this model topic families structure, documenting, and visual represen-
tation have slightly fewer topics than topic family negatives because some topics inside 
topic family negatives were too general to be categorized into any of  the topic families. 
This analysis aimed to discover how much impact did each topic family (structure, 
documenting, and visual representation) have on the refactoring decision.  

Finally, just pure topics were used to predict the refactoring decision. This model would 
reveal the individual topics that had the greatest affect on the refactoring decision. This 
regression model is called Pure Topics Model. 
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4 Results 

This chapter has four sections that present the results of  the study. First, we look at the 
Interrater agreement in Section 4.1. Section 4.2 studies the factors explaining evolvability 
evaluations with regression analysis. Section 4.3 presents results of  qualitative factors 
affecting the refactoring decision. Finally, Section 4.4 uses the qualitative factors as bases 
for regression analysis in explaining the refactoring decision.  

4.1 Interrater Agreement  
Table 4 shows the results of  the interrater agreement analysis. The informants had a high 
agreement on evaluations concerning the Long Method and Long Parameter List smells. 
The agreements concerning the Feature Envy smell the refactoring decision and are 
considerably weaker. However, all W values are significant indicating that the informants 
had at least some level of  agreement. W values in the refactoring decision for both 
experiments are close to each other. The number of  rankings available varied from 44 to 46 
in Experiment A. In Experiment B, there were 36 rankings. For all the cases, the number 
of  evaluated objects was 10.  

Table 4. Interrater agreement 

Question N Kendall’s W p-value 
Exp A - Long Method 46 0,777 0,000 

Exp A - Long Parameter List 46 0,816 0,000 

Exp A - Feature Envy 44 0,238 0,000 

Exp A - Refactoring 45 0,353 0,000 

Exp B - Refactoring 36 0,397 0,000 

 

4.2 Factors Explaining Evaluations - Regression Analysis 
This section studies the sources of  variation in the evolvability evaluations and tries to 
predict the evaluations using regression analysis.  

4.2.1 Long Method 
Regression models for the Long Method smell are in Table 5. From the table, we can see 
that the MetDem model, consisting on the source code metrics and informants’ demo-
graphics, explains 74,6% of  the evaluations. The MetDem model details revealed that the 
source code metrics were the most important predictors. This can be also seen in Table 5 
where the Metric model predicts 71,2% of  the evaluations. However, the Demographic 
model, containing the information about the informants’ background, is not able to explain 
the evaluations effectively.  
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Table 5. Long Method regression models 

Model Adjusted R Square p-value
MetDem  0,746 0,000 

Metric  0,712 0,000 

Demographic 0,012 0,231 

 

As it seems that, the metrics rather than the demographics explained most of  the Long 
Method evaluations it made sense to study them in more detail. In Table 6 we can see the 
predictor variables of  the Metric model and their standardized beta’s, p-value of  the F-
values, and the correlation with the predicted variable.  

Table 6. Predictors in the metric model for Long Method smell evaluations 

Code Metric Standardized Beta p-value Correlation
Number of  Parameters -0,108 0,002 -0,509 

Lines of  Code 0,738 0,000 0,815 

Cyclomatic Complexity 0,114 0,001 0,474 

Fan Out 0,008 0,866 0,480 

Number of  Remote Methods 0,171 0,014 0,700 

Coupling Between Objects (C&K) -0,190 0,001 0,624 

 

From Table 6 we can see that Lines of  Code was the most important predictor in the 
model. The Lines of  Code in this case meant that a single line is a single line of  code 
regardless of  the space usage or comments in the method. NLOC8  was also tested in the 
regression model, but it performed slightly poorer, although the difference was merely 
marginal. Other metrics had only a subsidiary effect in the Metric model, but most of  them 
had a high correlation with the Long Method evaluations. This indicates that a reasonably 
good regression model could be created even without the lines of  code metric, and when 
this was tested the Metric model without Lines of  Code was able to explain 61,8% of  the 
evaluations. In that model number of  remote methods (std beta 0,531), cyclomatic 
complexity (std beta 0,335), and coupling between objects (std beta 0,255) were the best 
predictors 

4.2.2 Long Parameter List  
The regression models for the Long Parameter List smell are in Table 7. The results are 
similar to the results of  the Long Method smells. We can see in Table 7 that the MetDem 
model explained 77,6% of  the evaluations, and the Metric model was almost as good 
explaining 76,1% of  the evaluations.  
                                                 

8 lines of  code with out comments and blank lines so that one statement equals a line of  code 
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Table 7. Long Parameter List regression Models 

Model Adjusted R Square p-value
MetDem 0,776 0,000 

Metric 0,761 0,000 

Demographic 0,054 0,003 

 

Further analysis of  the Metric model in Table 8 shows that the Number of  Parameters is 
the most important predictor. It has very high correlation with the predicted variable. 
Number of  Remote Methods and Fan-out also have some impact in the regression model. 
However, it seems likely that the effect was caused more by the limited amount of  methods 
evaluated rather than by real effect. Additionally, only the Number of  Parameters metric 
has a positive correlation with the predicted variable.   

Table 8. Predictors in the Metric Model for Long Parameter List smell evaluations 

Code Metric Standardized Beta p-value Correlation
Number of  Parameters 0,807 0,000 0,857 

Lines of  Code 0,095 0,074 -0,466 

Cyclomatic Complexity -0,170 0,000 -0,424 

Fan Out 0,229 0,000 -0,228 

Number of  Remote Methods -0,287 0,000 -0,441 

Coupling Between Objects (C&K) 0,061 0,246 -0,494 

 

4.2.3 Feature Envy  
Regression models for the Feature Envy smell are in Table 9. The MetDem model was able 
to explain only 29,8% of  the evaluations. The Metric Model explained only 9,8% of  the 
evaluations. Thus, with Feature Envy it appears that the predictors failed in predicting the 
Feature Envy smell evaluations. Consequently, there is no need to look at the individual 
models any further. 

Table 9. Feature Envy regression models 

Model Adjusted R Square p-value
MetDem  0,298 0,000 

Metric  0,098 0,000 

Demographic 0,054 0,003 
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4.2.4 Refactoring decision  
In refactoring decision regression analysis, there were data from both experiments. The 
regression models of  the refactoring decision can be seen in Table 10 and Table 11. In 
Table 10 we can see that SmeMetDem model which consists of  smell evaluations, source 
code metrics and demographics, explained 66,5% of  the evaluations. The most significant 
contributors in the SmeMetDem model are the smell evaluations. The Metric model 
explained 31,9% of  the evaluations. Finally the Demographic model was not effective at all 
explaining only 8,7% of  the evaluations. 

Table 10. Refactoring decision regression models in Experiment A 

Model Adjusted R Square p-value 
Exp A - SmeMetDem 0,665 0,000 

Exp A - Smell  0,618 0,000 

Exp A - MetDem 0,435 0,000 

Exp A - Metric  0,319 0,000 

Exp A - Demographic 0,087 0,000 

 

Experiment B did not have a SmeMetDem or Smell model because no questions concern-
ing the code smells were asked in that experiment. As can be seen from Table 11, the 
MetDem model explained 28,4% of  the evaluations. Further analysis showed that most of  
the explanative power came from source code metrics. The Metric model explained 26,1% 
of  the evaluations alone while the demographic model failed to be effective. The compari-
son to Experiment A shows that the Demographic model in Experiment A performed 
slightly better, but this is likely to be caused by the larger set of  demographic variables than 
a real effect.  

Table 11. Refactoring decision regression models in Experiment B 

Model Adjusted R Square p-value 
Exp B – MetDem 0,284 0,000 

Exp B – Metric  0,261 0,000 

Exp B – Demographic 0,036 0,026 

 

Details of  the Smell Model from the Experiment A can be seen in Table 12. From the table 
we can see that all the smell evaluations were important when predicting the refactoring 
decision. The Long method smell evaluations were the most significant contributors, but 
even the evaluations of  the Feature Envy smell contributed significantly to the Smell 
model. 
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Table 12. Predictors of  the Refactoring decision in Smell Model in Experiment A 

Code Metric Standardized Beta p-value Correlation 
Long Method 0,598 0,000 0,514 

Long Parameter List 0,469 0,000 0,280 

Feature Envy 0,360 0,000 0,518 

 

In Table 13  we can see the predictors of  the Metric model predicting the refactoring 
decision in both experiments. In the table, we can see that the lines of  code measure had 
the highest beta in the regression equation, and it also had the highest correlation among 
the source code metrics with the refactoring decision. In both experiments, Coupling 
between objects (CBO) was a suppressor term, which traditionally would indicate a 
reduction in the likelihood of  refactoring. However, this was more likely caused to by the 
multicollinearity that source code metrics have with each other. This is supported by the 
facts that CBO had positive correlation with the refactoring decision and that Lines of  
Code and CBO had high correlation with each other (Person correlation 0,830, significance 
0,000). Therefore, we cannot claim that increase in CBO would decrease the refactoring 
need. 

Table 13. Predictors of  the Refactoring decision in Metric model in Experiments A and B 

 Experiment A Experiment B 
Predictor Std. 

Beta 
p Correlation Std. 

Beta 
p Correlation

Number of  Parameters 0,397 0,000 0,130 -0,133 0,032 -0,230 

Lines of  Code 0,805 0,000 0,381 0,923 0,000 0,453 

Cyclomatic Complexity -0,003 0,957 0,157 -0,073 0,230 0,233 

Fan Out 0,063 0,417 0,215 0,057 0,534 0,168 

Number of  Remote 
Methods 0,011 0,916 0,157 -0,162 0,197 0,277 

Coupling Between 
Objects  -0,299 0,001 0,272 -0,500 0,000 0,246 

 

4.2.5 Summary 
From the results, we can see that Lines of  Code is the best and most important predictor in 
the Long Method smell evaluations, regardless of  the fact that other problems of  the long 
method were introduced to the informants as described in Section 3.2.5. However, well 
performing regression model was created even without using the lines of  code metric. This 
is easy to explain when we know that many source code metrics are correlated with each 
other. In Metric regression model with out Lines of  Code metric Number of  Remote 
Method, Cyclomatic Complexity, and Coupling Between Object rose as the most important 



 Results  34 
 

 
 

predictors. From those three metrics, only Cyclomatic Complexity did not have significant 
correlation with the lines of  code metric.   

With Long Parameter List smell evaluations the Number of  Parameters was the most 
significant predictor. There is no reason to believe that any other metric would be good 
predictors of  this problem, because the smell evaluations had significant correlation with 
other metrics. The evaluations on Feature Envy smell, however, could not be explained by 
the dependent variables in the regression model.  

The smell evaluations in Experiment A were able to provide the best explanation for the 
refactoring decision explaining 61,8% of  the variation. The used source code metrics could 
not effectively explain the refactoring decision explaining only 31,9% and 26,9% of  the 
variation in experiments A and B respectively.  

4.3 Factors Explaining Evaluations – Exploring Qualitative Data 
This section will explore the rationales of  the informants’ evolvability evaluations. This is 
qualitative research and exploratory by nature.  

4.3.1 Topics and topic families  
Topics and topic families can tell us what different types of  problems the informants 
recognized in the software elements they were evaluating. The total number of  topics was 
67. Some topics had only one or two text references when some topics had over 70 
references. Before going through each individual topic in detail, we study the topic families 
of  the answers to get an overview of  the qualitative data provided. Figure 9 shows the 
topic families represented with Unified Modelling Language (UML), which is originally 
designed to model object oriented programming elements.  

 
Figure 9. Topic families of  the answers 

In the figure we can see that Answer could consists of  zero or more Types and Targets. Types 
reflected the type of  answer whether it was a positive comment, complain, or an improve-
ment suggestion. Target represented the part of  the software element the answer was 
concerned of. Visual representation means issues in representing the software topic that 
can make it easier for a human to read. Topics on visual representation contained com-
ments for example on blank line usage, indentation, and splitting up method parameters to 
their own lines. Documenting means communicating information about a software element 
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to the reader. In source code level9, such documenting is most often done by the names of  
the software elements and source code comments that provide clarification when naming 
cannot alone explain the source code’s intent. In this study, topic family documenting 
consisted of  source code naming or comments. Topic family structure had comments on 
the software structure. Topic family structure included comment whether a certain method 
should be split up to smaller methods, or should the parameters be passed inside an object 
or separately. 

Figure 9 is purposefully missing the reasons for each complaint. For example if  informant 
was complaining about the structure of  a software element one might wish to know the 
reason for this complaint. In this study, the reasons for the answers were however given in 
the task description, which was the evolvability of  the software (the form of  the question 
can be read from Section 0 Figure 7). However, few answers also commented other issues 
like performance and correctness, although they were not specifically asked for.   

By comparing the scope of  the work, which was presented in Section 2.3.4, and the textual 
answers we can see that some of  the informants’ answers actually are outside of  the 
original scope of  the work since they have specified other targets than structure and other 
reasons than evolvability. However, as this part of  the work was qualitative it made sense to 
study also those answers as it helps us in explain the refactoring decision.  

4.3.2 Qualitative data in detail  
It is difficult to understand the value of  qualitative data by looking at it from the distance. 
Therefore, we go thorough all the software methods that were evaluated by the informants. 
We look at interesting topics and patters that can only be discovered by studying individual 
software elements. We analyze topics that appear more often in each method than in other 
methods. We also study topics that according to our opinion should have received more 
mentions from the informants. We consider how certain topics could be automatically 
detected. We use complain topics as bases for refactorings to remove those topics and 
reflect the refactorings effects to source code metrics. We list source code and the most 
used topics for each method. All topic frequencies per software element can be found in 
Appendix C. The number of  topics in Appendix C does not equal the number of  infor-
mants because a single informant may be responsible for one or more topics. The same 
holds for topics that are selected for further analysis of  each method in tables from Table 
14 to Table 23. 

The first method evaluated by the informants can be seen in Listing 1. The topics selected 
for further analysis of  the method are in Table 14. From the table we can see that 17 
informants were not happy with the length of  the return statement. Nine of  the infor-
mants were not happy with the comments. They indicated that parameter comments are 
missing or that within code comments are confusing. Seven people claimed that method is 
OK. Only two informants rightfully pointed out that method is inside a wrong class 
(method should be in Person class instead of  PersonTableModel), and only one informant 
considered the number of  parameters to be too high. It is interesting that only few people 
pointed out the two latter comments, although those issues can be considered as important 
as the length of  the statement in the method.  

                                                 

9 In higher levels of  representation, visual documenting is used.  
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Table 14. Selected topic frequencies in method PersonTableModel.personMatch 

Topic name Number of  informants Percentage (out of  36)
Long Statement or Statement Split 17 47% 

Comments improve 9 25% 

OK 7 19% 

Move method 2 6% 

Long Parameter List 1 3% 

 

Listing 1. Method PersonTableModel.personMatch 

/** 
 * PersonTableModel.personMatch() 
 * 
 * Does the person given as the first argument match  
 * with the search criteria given as arguments 
 */ 
private boolean personMatch( 
        Person person, 
        String firstName, 
        String lastName, 
        int gender, 
        Calendar dateOfBirth, 
        Calendar dateOfDeath) { 
    return         
    //Compare firstname 
    (firstName == null || person.getFirstName().equals(firstName)) &&         
    //Compare lastname 
    (lastName == null || person.getLastName().equals(lastName)) &&         
    //Compare gender 
    (gender == person.getGenderAsInt() || gender == -1) &&         
    //Compare day of birth 
    (dateOfBirth == null || person.dateOfBirthEquals(dateOfBirth)) &&         
    //Compare day of death 
    (dateOfDeath == null || person.dateOfDeathEquals(dateOfDeath)); 
} 
 

A measure could have been used to detect the long statement, for example, one could 
calculate the number of  conditionals in a single statement or used other kind of  statement 
weight or length measure. Many informants suggested splitting the statement to several if  – 
else clauses, which would have slightly increased the lines of  code in the method. However, 
lines of  code is inaccurate measure, in Listing 1 for example all method parameters are split 
to their own separate rows and combining them to same line would decrease this measure 
when only effecting the method’s visual representation. Therefore, we suggest measure 
such as statement count i.e. calculate all statement ending with “;”-mark and special 
statements containing conditionals expressions like while, for, if. This type of  measure 
would be immune to changes in the method’s visual representation. Splitting the long 
statement in Listing 1 would dramatically increase the statement count, because currently 
the method has only has one statement and after splitting the statement there could be 
easily over ten statements. The effect of  statement split to would also increase the cyclo-
matic complexity (McCabe 1976), which measures the lineally independent execution 
graphs inside the method.  
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Many informants pointed out that parameters are not commented, which could have been 
measured or detected. Naturally, the quality of  comments could not be measured or 
detected automatically. The effect of  commenting all parameters would increase the 
number of  comment lines, which is traditionally seen as a positive measure10. The need for 
moving the method to another class can be detected with coupling measure measuring the 
maximum number of  remote method calls to one class. Moving method to other location 
would have decreased coupling.  

The second evaluated method can be seen in Listing 2. The topics selected for further 
analysis of  the method are in Table 15. From the table we can see that 17 informants 
thought that the method is too long or that it should be split to smaller methods. Eight 
informants said that a certain part of  the method’s algorithm should be changed. Seven out 
of  these eight were pointing out that the duplication removal is not needed if  duplicate 
relationships are not added to the data structure in the first place, or that the duplicate 
removal should be better programmed. One remaining informant suggested using Java’s 
object serialization functionality instead of  self  programmed file format. Seven persons 
pointed minor details that were classified under Minor Coding Conventions. They include 
changing the for-loop to a while-loop, using iterators in all loops, or processing or introduc-
ing variables in different part of  the method. Again, there are seven informants saying that 
the method is OK.  

Detecting the long method could be easily achieved with lines of  code or statement count 
measure. The extract method refactoring would decrease the lines of  code or statement 
count measure. However, it would increase the number of  methods per class that is used to 
measure class size. The effects of  performing the change algorithm refactoring to get rid 
of  duplicate removal functionality would shorten the method. Changing the method’s 
algorithm to use Java’s serialization routines would dramatically shorten and simplify the 
method as whole objects and object relationships could be stored with a single command11. 
Automatic detection for the need of  the change algorithm refactoring is not feasible.  

Table 15. Selected topic frequencies in method DiskManager.writeToDisk 

Topic name Number of  informants Percentage (out of  36)
Long Method or Extract Method 15 42% 

Change Algorithm 8 22% 

OK 7 19% 

Minor Coding Conventions 7 19% 

 

                                                 

10 However, recently some people have presented ideas that comments can be seen as symptom of  poorly 
programmed code e.g. using comments to explain the programs behavior rather than programming it be 
evident.  

11 However, there are issues involved in serialization that make compatibility of  different file versions 
questionable. Therefore it is not necessarily an optimal solution in this case.  
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Listing 2. Method DiskManager .writeToDisk 

/** 
* Write the family tree data to the disk 
*  
* Write the people and their relationships to disk 
*  
* @param personTableModel 
*            This data model contais the people we will write to disk 
* @throws IOException 
*/ 
public void writeToDisk(PersonTableModel personTableModel) 
        throws IOException { 
    // Open files for writing 
    FileWriter fileWriterPerson = new FileWriter(FILE_PERSONS); 
    FileWriter fileWriterRelations = new FileWriter(FILE_RELATIONS); 
    // Create temp variables 
    Vector persons = personTableModel.getPersons(); 
    Vector relations = new Vector(); 
    Vector relationsToBeRemoved = new Vector(); 
    //Write persons to disk according to format: 
    //"<id>,<firstName>,<lastName>,<female>;\n" 
    for (Iterator iter = persons.iterator(); iter.hasNext();) { 
        Person person = (Person) iter.next(); 
        fileWriterPerson.write(person.getId() + ","); 
        fileWriterPerson.write(person.getFirstName() + ","); 
        fileWriterPerson.write(person.getLastName() + ","); 
        fileWriterPerson.write(person.isFemale() + ";\n"); 
        relations.addAll(person.getRelationships()); 
    } 
    //Find duplicate Relationships 
    for (int i = 0; relations.size() > i; i++) { 
        Relation rel1 = (Relation) relations.elementAt(i); 
        for (int j = i + 1; relations.size() > j; j++) { 
            Relation rel2 = (Relation) relations.elementAt(j); 
            if (rel2.equals(rel1)) { 
                relationsToBeRemoved.add(rel2); 
            } 
        } 
    } 
    //Remove duplicate relationships 
    for (Iterator iter = relationsToBeRemoved.iterator(); iter.hasNext();) { 
        relations.remove(iter.next()); 
    } 
    //Write relations to disk to format: 
    //"person_id-relationtype-person_id" 
    for (Iterator iter = relations.iterator(); iter.hasNext();) { 
        Relation relation = (Relation) iter.next(); 
        fileWriterRelations.write(relation.getPerson1().getId() + "-"); 
        fileWriterRelations.write(relation.getRelationType(relation 
                .getPerson1()) 
                + "-"); 
        fileWriterRelations.write(relation.getPerson2().getId() + ";\n"); 
    } 
    //Clean up and close the files and streams 
    fileWriterPerson.flush(); 
    fileWriterPerson.close(); 
    fileWriterRelations.flush(); 
    fileWriterRelations.close(); 
} 
 

The third evaluated method can be seen in Listing 3. The topics selected for further 
analysis of  the method are in Table 16. Majority of  the informants said that the method is 
OK. OK-topic actually has three levels 1, 2, and 3. Three is the highest meaning the 
method was praised in some way, and one is the lowest indicating acceptance of  the 
method but also having a minor complaint. In this method 8 out of  22 OK-topics where 
level 3, and only one was level one OK-topic. Four people pointed out that gender 
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handling with string-variable and equals-command is a bit strange. Four people also 
pointed out that the called method person.setFemale is badly named and it should be 
changed to person.setGender. In this case, four informants’ answers indicated that they did 
not completely understand what was going on in the method. Two of  them where 
wondering the intention of  the last expression which uses variable rowIndex twice as an 
argument in a single method call12. One was suggesting that separate methods should be 
created for setting the different parameters. This makes no sense since this is user interface 
code that is executed right after user has pressed apply in the user interface. The last 
informant, that lacked understanding, commented in her answer that maybe she did not 
completely understand the structure of  method.  

Automatic or metrics based detection of  any of  the problems of  this method seem 
impossible. We cannot see a way to detect automatically the naming problems or the gender 
handling problems.  

Table 16. Selected topic frequencies in method PersonTableModel.applyChangesToPerson 

Topic name Number of  informants Percentage (out of  36) 
OK 22 61% 

Gender handling 4 11% 

Naming other methods 4 11% 

Lack understanding 4 11% 

 

Listing 3. Method PersonTableModel.applyChangesToPerson 

/** 
 * Update the selected persons data 
 * @param firstName New first name 
 * @param lastName New last name 
 * @param gender New gender 
 * @param rowIndex The row that contains the person to be updated 
 */ 
public void applyChangesToPerson( 
        String firstName, 
        String lastName, 
        String gender, 
        int rowIndex) { 
    Person person = (Person) persons.elementAt(rowIndex); 
    person.setFirstName(firstName); 
    person.setLastName(lastName); 
    person.setFemale(gender.equalsIgnoreCase("female")); 
    fireTableRowsUpdated(rowIndex, rowIndex); 
} 

 

The fourth method evaluated can be seen in Listing 4. The topics selected for further 
analysis of  the method are in Table 17. This method has many similar characteristics as the 
method in Listing 2. In both methods, the method length or extracting method to smaller 
pieces was the most mentioned topic. The second frequent topic in both cases was the 

                                                 

12 This part is actually partly confusing, but it is correctly coded and the informants could have checked this 
from Java SDK API 
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Change Algorithm. In this method 11 out 12 informants with Change Algorithm topic 
pointed out, that part of  the code that is reading the data from disk could be more easily 
implemented with using: Java’s String Tokenizer functionality, Java’s regular expression 
functionality with String.split method calls, Java’s Serialization functionality, or using loop 
with array instead of  several index variables. Six informants thought the method was OK. 
Although, there were no OK level 3 comments, which indicates the lack of  praises in the 
OK comments. Four informants also thought that the number of  temporary variables 
declared and used in the method should be reduced. 

The metrics and refactoring analysis for this method is in many ways similar to the method 
in Listing 2. However, some differences need to be discussed. The effect of  change 
algorithm refactoring to start using Java’s regular expression or String Tokenizer would 
made individual statements simpler and it would reduce the code lines needed. The 
temporary variable reduction refactoring could be detected by measuring the number of  
temporary variables inside the method. The effect of  this refactoring would reduce the 
number variables, but it would not decrease the number of  code lines or number state-
ments. 

Table 17. Selected topic frequencies in method DiskManager.applyChangesToPerson 

Topic name Number of  informants Percentage (out of  36)
Long Method or Extract Method 16 41% 

Change Algorithm 12 33% 

OK 6 16% 

Temps reduce 4 11% 

 

Listing 4. Method DiskManager.readFromDisk 

/** 
 * Read familytree data from disk 
 *  
 * Read stored data of people and their relationships from disk 
 *  
 * @param personTableModel 
 *            The table data model that is populated by the method 
 * @throws IOException 
 *             In case IO-fails 
 */ 
public void readFromDisk(PersonTableModel personTableModel) 
        throws IOException { 
    // Open files so we can read the data 
    LineNumberReader personReader = new LineNumberReader(new FileReader( 
        FILE_PERSONS)); 
    LineNumberReader relativeReader = new LineNumberReader(new FileReader( 
        FILE_RELATIONS)); 
    /* 
     * This loop reads the persons from the disk Single person is stored in 
     * the disk in the form: " <id>, <firstName>, <lastName>, <female>;\n" 
     */ 
    String linePerson = personReader.readLine(); 
    while (linePerson != null) { 
        // Read single person from disk 
        int index_1 = linePerson.indexOf(","); 
        int id = Integer.parseInt(linePerson.substring(0, index_1)); 
        int index_2 = linePerson.indexOf(",", index_1 + 1); 
        String firstName = linePerson.substring(index_1 + 1, index_2); 
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        int index_3 = linePerson.indexOf(",", index_2 + 1); 
        String lastName = linePerson.substring(index_2 + 1, index_3); 
        int index_4 = linePerson.indexOf(";", index_3 + 1); 
        String strFemaleTrue = linePerson.substring(index_3 + 1, index_4); 
        boolean female = Boolean.valueOf(strFemaleTrue).booleanValue(); 
        // Restore the person and add it to table model 
        Person person = Person.restorePerson(id, firstName, lastName, 
                female); 
        personTableModel.addPerson(person); 
        linePerson = personReader.readLine(); 
    } 
    /* 
     * This loop reads relationships from the disk Single relation is writen 
     * to disk in the form "person_id-relationtype-person_id" 
     */ 
    String lineRelation = relativeReader.readLine(); 
    while (lineRelation != null) { 
        //Read single relation from disk 
        int index_1 = lineRelation.indexOf("-"); 
        int id1 = Integer.parseInt(lineRelation.substring(0, index_1)); 
        Person person1 = personTableModel.getPersonWithId(id1); 
        if (person1 == null) 
            throw new IOException( 
                   ERROR_MSG_NONE_EXISTING_PERSON_IN_RELATION); 
        int index_2 = lineRelation.indexOf("-", index_1 + 1); 
        String relationType = lineRelation.substring(index_1 + 1, index_2); 
        int index_3 = lineRelation.indexOf(";"); 
        int id2 = Integer.parseInt(lineRelation.substring(index_2 + 1, 
                index_3)); 
        Person person2 = personTableModel.getPersonWithId(id2); 
        if (person2 == null) 
            throw new IOException( 
                    ERROR_MSG_NONE_EXISTING_PERSON_IN_RELATION); 
        // Restore relations as classes 
        try { 
            if (relationType.equals(Relation.DAUGHTER) 
                    || relationType.equals(Relation.SON)) { 
                person1.addChild(person2); 
            } else if (relationType.equals(Relation.FATHER) 
                    || relationType.equals(Relation.MOTHER)) { 
                person2.addChild(person1); 
            } else if (relationType.equals(Relation.WIFE) 
                    || relationType.equals(Relation.HUSBAND)) { 
                person1.addSpouse(person2); 
            } 
        } catch (AddRelationException e) { 
            throw new IOException(ERROR_MSG_ADD_RELATION_FAILED); 
        } 
         lineRelation = relativeReader.readLine(); 
    } 
} 

 

The fifth method that was evaluated can be seen in Listing 5. The topics selected for 
further analysis of  the method are in Table 18. Most (27/36) of  the informants said the 
method was OK and six of  them made a level 3 praising OK comment. Four informants 
pointed out poor readability. Two of  the four mentioned that the children.add method call 
was not easy to understand. The other two informants did not specify why they thought 
that the method was not easy to understand. Answers with topics Reorganize internally 
(need of  reorganization of  the method internals) were saying variable relation should be 
declared outside of  loop or that the iterator should be initialized before the loop structure. 
Two people indicating the need for changing the algorithm suggested using different data 
structure than Vector. One informant pointed out that with large amount of  relatives, the 
search becomes slow and therefore the parent should constantly hold a list of  its children. 
The minor coding convention topic included issues of  changing the for-loop to a while-
loop and to use curly braces with the if-statement. 
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The problems of  poor readability and the need to change algorithm cannot be detected 
automatically. However, we can detect and measure the variable declaration inside of  a 
loop. The effects of  the proposed refactorings to source code metrics would be very small 
if  not inexistent.   

Table 18. Selected topic frequencies in method Person.getChildred 

Topic name Number of  informants Percentage (out of  36)
OK 27 75% 

Readability poor 4 11% 

Reorganize internally 3 8% 

Change algorithm 3 8% 

Minor coding conventions 3 8% 

 

Listing 5. Method Person.getChildren 

/** 
 * Get children of this person 
 * @return Vector containing the children 
 */ 
public Vector getChildren() { 
    Vector children = new Vector(); 
    for (Iterator iterator = vecRelations.iterator(); iterator.hasNext();) { 
        Relation relation = (Relation) iterator.next(); 
        if (relation.isParent(this)) 
            children.add(((RelationParentChild) relation).getChild()); 
    } 
    return children; 
} 

 

The sixth method that was evaluated can be seen in Listing 6. The topics selected for 
further analysis of  the method are in Table 19. Over half  of  the informants said that the 
method was too long and should split up i.e. some suggested creating graphical user 
interface (GUI) components for the two tabs in their own methods. This can be seen a bit 
surprising since GUI code often contains long methods, as there seldom is possibility to 
reduce the amount of  code by generalization. Half  of  the informants said that the method 
was not very easy to read or comprehend. These informants characterized the code as long, 
messy, awful, and lacking proper grouping, but also pointed out that GUI code often looks 
like this. The informants complaining about the layout said that there should more empty 
lines to provide better grouping. Surprisingly, there were two informants saying that the 
method’s internal grouping is good (OK)   Four people said the method overall was OK, 
although two of  these four had level 1 OK-topics indicating some complain accompanying 
the OK statement. However, there was one person praising the method and thus character-
ized as level 3 OK:  

Metodi oli selkeä. Person ja Relation paneeleihin koskevat koodit oli selkeästi jaksotettu ryhmiinsä 
ja myöhemmin jos tarvitaan lisää poimintoja, on ne helposti lisättävissä oikealle paikalleen koodia. 

Here is an English translation of  that comment 
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The method was clear. Code concerning Person and Relation panels was clearly grouped, and if  
there is later, a need to add functionality it can be easily added to the correct place in the code  

Again, in this method the method size could be easily measured with lines of  code or 
statement count measure. However, cyclomatic complexity measure would not have 
indicated any problems since the method does not have any conditional statements. 
Performing the extract method refactoring would decrease the size of  this method, but it 
would increase the number of  methods in this class. Nothing can be said about detecting 
or refactoring poor readability, as it is very general statement. The poor layout could have 
been detected by the lack of  blank lines compared to the lines of  codes in the method. The 
effect of  improving layout would be seen in code lines versus blank lines ratios.  

Table 19. Selected topic frequencies in method FamilyFrame.FamilyFrame 

Topic name Number of  informants Percentage (out of  36)
Long Method or Extract Method 22 61% 

Readability Poor 18 50% 

Layout poor 12 33% 

OK 4 11% 

 

Listing 6. Method. FamilyFrame.FamilyFrame 

/** 
 * Constructor of the main GUI class in the application 
 * This method creates GUI components for the application 
 */ 
private FamilyFrame() { 
    super("Family Tree Professional"); 
    setDefaultCloseOperation(DO_NOTHING_ON_CLOSE); 
    JTabbedPane tabbedPane = new JTabbedPane(); 
    JPanel personPanel = new JPanel(false); 
    JPanel relativePanel = new JPanel(false); 
    personPanel.setLayout(new BorderLayout()); 
    relativePanel.setLayout(new BorderLayout()); 
    // Two tabs are used. personPanel for showing all the persons 
    // relativePanel for showing all the relations 
    tabbedPane.addTab("Persons", null, personPanel, "Shows the persons"); 
    tabbedPane.setSelectedIndex(0); 
    tabbedPane.addTab("Relationships", null, 
            relativePanel,"Show the relationships"); 
    //Table for Person PersonTable 
    personTableModel = new PersonTableModel(); 
    personTable = new JTable(personTableModel); 
    personTable.setPreferredScrollableViewportSize(new Dimension(500, 70)); 
    //Table for Relations RelationTable 
    relationTableModel = new RelationTableModel(); 
    relationTable = new JTable(relationTableModel); 
    relationTable.setPreferredScrollableViewportSize( 
            new Dimension(500, 70)); 
    //Create the scroll pane and add the PersonTable to it.  
    JScrollPane scrollPane = new JScrollPane(personTable); 
    personPanel.add(scrollPane, BorderLayout.CENTER); 
    //Create the scroll pane and add the RelativeTable to it.  
    JScrollPane scrollPane2 = new JScrollPane(relationTable); 
    relativePanel.add(scrollPane2, BorderLayout.CENTER); 
    //Create the panel where person data can be edited  
    //Add it personPanel 
    JPanel personPanelEdit = new JPanel(); 
    personPanelEdit.setLayout(new BorderLayout()); 
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    //Text fields for editing person 
    JPanel personFieldPanel = new JPanel(); 
    personFieldPanel.setLayout(new GridLayout(0, 3)); 
    personFieldPanel.add(jtfFirstName); 
    personFieldPanel.add(jtfLastName); 
    personFieldPanel.add(jcbGender); 
    personPanelEdit.add(personFieldPanel, BorderLayout.NORTH); 
    //Buttons for editing person 
    JPanel buttonPanelPerson = new JPanel(new FlowLayout(FlowLayout.LEFT)); 
    buttonPanelPerson.add(jbAddPerson); 
    buttonPanelPerson.add(jbApplyPerson); 
    buttonPanelPerson.add(jbDeletePerson); 
    personPanelEdit.add(buttonPanelPerson, BorderLayout.SOUTH); 
    personPanel.add(personPanelEdit, BorderLayout.SOUTH); 
    //Create the panel where relationships can be edited. 
    //Add it to relativePanel 
    JPanel relativePanelEdit = new JPanel(); 
    relativePanelEdit.setLayout(new BorderLayout(0, 1)); 
    JPanel relativeFieldPanel = new JPanel(); 
    relativeFieldPanel.setLayout(new GridLayout(0, 3)); 
     
    relativePanel.add(createTopRelativePanel(), BorderLayout.NORTH); 
    relativePanelEdit.add(relativeFieldPanel, BorderLayout.NORTH); 
    //Buttons for editing relationships 
    JPanel buttonPanelRelative = 
        new JPanel(new FlowLayout(FlowLayout.LEFT)); 
    buttonPanelRelative.add(jbAddRelation); 
    buttonPanelRelative.add(jbApplyRelation); 
    buttonPanelRelative.add(jbDeleteRelation); 
    buttonPanelRelative.add(jcbRelationship); 
    relativePanelEdit.add(buttonPanelRelative, BorderLayout.CENTER); 
    //RelativeInfoPanel, where the person's info  
    //who is edited/added/deleted as relative is added  
    JPanel relativeInfoPanel = new JPanel(); 
    relativeInfoPanel.setLayout(new GridLayout(0, 3)); 
    jcbFullNameRelativeToBeAdded = 
        new JComboBox( 
                new DefaultComboBoxModel(personTableModel.getPersons())); 
    relativeInfoPanel.add(jcbFullNameRelativeToBeAdded); 
    relativeInfoPanel.add(jcbRelationship); 
    relativePanelEdit.add(relativeInfoPanel, BorderLayout.SOUTH); 
    relativePanel.add(relativePanelEdit, BorderLayout.SOUTH); 
    //Add the tabbed pane to this window. 
    getContentPane().add(tabbedPane, BorderLayout.CENTER); 
    addListeners(); 
    readDataFromDisk(); 
} 

 

The sixth method that was evaluated can be seen in Listing 7. The topics selected for 
further analysis of  the method are in Table 20. Over half  of  the informants were happy 
with the method. Some informants pointed out that it is good thing the method is using 
helper method inside the if-statement. However, there only two informants indicated that 
the method should have been using parameter object. The informants were correct as 
parameter object would make this method immune for the changes in the criteria (currently 
passed as parameter list) used in searching and matching a person. Six informants that told 
the method would need more comments were mostly pointing to the fact that parameters 
had not been commented. Two informants indicated they would change the method 
arguments to be in a single line. Finally, six informants pointed out that variable mathing-
Persons is spelled incorrectly.  

The need for method parameter comments could have been automatically detected. The 
effect of  this change would increase the lines of  comment measure. Spelling problems with 
the single variable could not be detected; the use of  spelling checker in this case is not 
feasible because source code contains variables names like firstName, which would be 
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flagged by any regular spellchecker. Only special source code spell checker (if  existing) 
could point out this problem. The problem concerning the layout of  method arguments 
could be detected and even automatically enforced. This change in layout would reduce the 
lines of  code in the method but it would not affect the statement count measure. It is easy 
to measure the number of  the parameters and state that parameter object could be used. 
However, this measure is not detecting the fact that all the parameters are used as a group 
when they are referenced inside a method call. Referring them only as a group and not 
making separate references to them makes the parameter object even more tempting 
because there would be no need to make any method calls or field references to the 
parameter object. Thus, the coupling to the parameter object would be minimal. To detect 
the need for this refactoring we would have to somehow measure that parameters are only 
used as a group and they are not referenced individually. Performing this with program 
analysis is possible, but not necessarily very simple.  

Table 20. Selected topic frequencies in method PersonTableModel.searchPersons 

Topic name Number of  informants Percentage (out of  36)
OK 21 58% 

Comments Add 6 17% 

Spelling & grammar 6 17% 

Layout method arguments 2 6% 

Parameter Object 2 6% 

 

Listing 7. Method PersonTableModel.searchPersons 

/** 
 * Get the persons that match the arguments 
 * @return Vector contain the matching persons 
 */ 
protected Vector searchPersons( 
        String firstName, 
        String lastName, 
        int gender, 
        Calendar dateOfBirth, 
        Calendar dateOfDeath) { 
    Vector mathingPersons = new Vector(); 
    // Loop throught the persons and check if they match 
    for (Iterator iter = persons.iterator(); iter.hasNext();) { 
        Person person = (Person) iter.next(); 
        if (personMatch(person, 
                firstName, 
                lastName, 
                gender, 
                dateOfBirth, 
                dateOfDeath)) { 
            mathingPersons.add(person); 
        } 
    } 
    return mathingPersons; 
} 

 

The eighth method that was evaluated can be seen in Listing 8. The topics selected for 
further analysis of  the method are in Table 21. Twelve informants were saying that the final 
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return statement is too long and it should be split up. This is similar to the complains 
concerning the long statement problem in Listing 1 that also had a long return statement. 
Seven informants said that the method is OK. Seven informants also indicated that 
readability of  the method is poor. Two of  these seven did not indicate the problem in more 
detail, but complained about the horrible appearance and said the method was not easy to 
understand. The remaining five out of  the seven were pointing that the return statement is 
unreadable. Three out of  the five layout complainers pointed out that the return-statement 
is not correctly intended. The remaining two layout complainers complained about the lack 
of  blank line usage. Four informants would have extracted a new method from this 
method. Three of  them would make own methods from the comparisons of  day, month, 
and year. One pointed out that the bug avoidance should have been separated in to its own 
routine, which is good idea, but the return value of  that method should be an array or 
other data structure. Three informants spotted that this method is almost identical to the 
method just below this method called Person.dataOfDeathEquals and suggested combin-
ing them. 

Table 21. Selected topic frequencies in method Person.dataOfBirthEquals  

Topic name Number of  informants Percentage (out of  36)
Long Statement or Statement Split 12 33% 

OK 7 19% 

Readability Poor 7 19% 

Layout Poor 5 14% 

Extract Method 4 11% 

Duplication 3 8% 

 

The measurement and the effect of  refactoring a long statement were already discussed in 
Listing 1. In addition, we have already discussed how the poor layout can be automatically 
detected and corrected. The detection of  extract method refactoring in this method would 
have been difficult. One informant indicated that the bug fix should be extracted to own 
method. Detecting this would have been challenging, and the only idea that comes in to 
mind is to try to search for in-method comments that contain words “bug” and “fix” near 
to each other. Three informants answered that they would extract own methods out of  the 
checks of  day, month, and year. These three informants clearly indicate that they prefer 
using small utility methods for condition testing. Automatically supporting this kind of  
coding style would require a tool that could distinct between the utility methods and the 
worker methods. Then the tool would need to detect statements in the worker methods 
that do not utilize a utility method but still makes use of  identical conditional comparisons. 
Creating such detection tool would not be straightforward operation. The effects of  extract 
method refactorings to source code metrics have been previously discussed. Duplicate or 
clone source code detection is an established research area look for example (Balazinska et 
al. 2000; Ducasse et al. 1999) for more references. It seems likely that the duplication found 
by the informants could have been automatically detected. The effect of  removing the 
duplication would reduce the class size measured as lines of  code or number of  statements, 
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but it would increase the method count in the class if  both methods would retain their 
presence and a new method would be created to contain the shared functionality. 

Listing 8. Method Person.dataofBirthEquals 

/** 
 * Does the given birth day match with this persons birthday 
 *  
 * @param moment The moment that is checked as birthday. 
 * It is possible to specify only only month, year or day in the moment variable 
 * This way we can check whether his person was born in July for instance 
 *  
 * @return Whether the given moment includes the birthday  
 */ 
public boolean dateOfBirthEquals(Calendar moment) { 
    if (moment == null) 
        return false; 
    //Ugly hack to fix feature/bug by SUN, which causes 
    //all calender fields to get set, when Calender.get(Field) is called  
    Calendar day1 = (Calendar) moment.clone(); 
    Calendar day2 = (Calendar) moment.clone(); 
    Calendar day3 = (Calendar) moment.clone(); 
    Calendar bday1 = getDateOfBirth(); 
    Calendar bday2 = getDateOfBirth(); 
    Calendar bday3 = getDateOfBirth(); 
    return (         
            //Check day of month 
            (!day1.isSet(Calendar.DAY_OF_MONTH) 
                    || (bday1.get(Calendar.DAY_OF_MONTH) == day1.get(Calendar.DAY_OF_MONTH))) 
                    &&          
                    //Check month 
                    (!day2.isSet(Calendar.MONTH) 
                            || (bday2.get(Calendar.MONTH) == day2.get(Calendar.MONTH))) 
                            &&          
                            //Check year 
                            (!day3.isSet(Calendar.YEAR) 
                                    || (bday3.get(Calendar.YEAR) == day3.get(Calendar.YEAR)))); 
} 

 

The ninth method that was evaluated can be seen in Listing 9. The topics selected for 
further analysis of  the method are in Table 22. Two thirds of  the informants said that the 
method was OK. Seven informants pointed out that comments should be improved, two 
of  these were saying that the usage of  Person parameters should made clearer. The rest of  
the informants who complained about comments pointed that the Javadoc should tell what 
the method does. Six people said that the naming of  Person parameters should be made 
more evident. However, none of  them proposed how it should be done, and one of  them 
even admitted that he could not come up with names that are more descriptive. This 
indicates that descriptive names are important, but not in all cases easy to come up.  

Table 22. Selected topic frequencies in method FamilyFrame.addRelationClicked 

Topic name Number of  informants Percentage (out of  36)
OK 24 67% 

Comments improve 7 19% 

Naming  improvement variables 6  17% 
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Detecting the problems listed for this method in Table 22 would be very difficult. Detect-
ing the problem in the comments is impossible because it requires interpretation of the 
comments. Poor variable naming could be perhaps detected by searching variables having a 
number as last part of their name. This could be used as an indication of lack of self-
documenting names. However, it seems likely that such solution would provide a great 
amount of false positive results. 

 

Listing 9. Method FamilyFrame.addRelationClicked 

/** 
 * This method is executed, when user adds a relation between to persons. 
 * E.g. addRelation button is clicked 
 * @param person1 Person participating in the relation 
 * @param person2 Other person participating in the relation 
 * @param relation The relation type 
 */ 
    private void addRelationClicked( 
        Person person1, 
        Person person2, 
        String relation) { 
    try { 
        if (relation.equals(Relation.CHILD)) { 
            person1.addChild(person2); 
        } else if (relation.equals(Relation.PARENT)) { 
            person2.addChild(person1); 
        } else if (relation.equals(Relation.SPOUSE)) { 
            person1.addSpouse(person2); 
        } 
        relationTableModel.personAdded(); 
    } catch (AddRelationException e) { 
        JOptionPane.showMessageDialog( 
                this, 
                e.getMessage(), 
                "Adding relation failed", 
                JOptionPane.ERROR_MESSAGE); 
    } 
} 

 

The tenth method evaluated can be seen in Listing 10. The topics selected for further 
analysis of  the method are in Table 23. Half  of  the informants would have extracted this 
method to smaller methods. Fourteen informants said that code appeared as unreadable 
characterizing it for example as very unintuitive, very unclear, and very difficult to read. Eleven 
informants pointed out excessive nesting. Four informants suggested a complete refiguring 
i.e. going thoroughly through the code and rewriting it13. No informants said anything that 
could have been categorized with topic OK.   

The need for extract method and the excessive nesting would have been easy to detect with 
tools. Complete refiguring needed is actually a qualitative comment indicating that the 
method has become too complex. For detection of  poor methods, such as the one in 
Listing 10, a combination measure of  lines of  code and cyclomatic complexity could have 
been used.   

 

                                                 

13 As the author of  the code I may add that creating this coding horror was not particularly difficult. Maybe it 
is easier to create poor source code than to understand it.  
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Listing 10. Method Person.illegalRelation 

/** 
 * Is the new relation illegal 
 * Is there allready some kind of relationship between the two people 
 * @param relation Relation that holds the people together 
 * @return true if the two people already are in  
 *      any relationship with each other 
 */ 
private boolean illegalRelation(Relation relationToBeAdded) { 
    //Cannot have relationhips with yourself 
    if (relationToBeAdded.getPerson1() == relationToBeAdded.getPerson2()) 
        return true; 
    // Loop through this persons relationships    
    for (Iterator iter = vecRelations.iterator(); iter.hasNext();) { 
        Relation relation = (Relation) iter.next(); 
        // We allready have some kind of relation between the persons 
        if (relationToBeAdded.equalsPersons(relation)) 
            return true; 
        // Get direct reference to the person this person will have relation 
        Person relativeToBe; // The person we will have relation with  
        if (relationToBeAdded.getPerson1() == this) 
            relativeToBe = relationToBeAdded.getPerson2(); 
        else if (relationToBeAdded.getPerson2() == this) 
            relativeToBe = relationToBeAdded.getPerson1(); 
        else // this person does not partipate in this relation 
            return true; // Should not be reached 
        //Rule addition: 
        //this person cannot have relation with it's siblings (=sister/brother) 
        if (relation instanceof RelationParentChild) { 
            RelationParentChild rpc = (RelationParentChild) relation; 
            if (rpc.getChild() == this) { //Found Parent 
                Person parent = rpc.getParent(); 
                for (Iterator iter2 = parent.getRelationships().iterator(); 
                iter2.hasNext(); 
                ) { 
                    Relation parentsRelation = (Relation) iter2.next(); 
                    if (parentsRelation instanceof RelationParentChild) { 
                        RelationParentChild childRelation = 
                            (RelationParentChild) parentsRelation; 
                        if (parent == childRelation.getParent()) { 
                            //Found a child  
                            Person child = childRelation.getChild(); 
                            if (child == relativeToBe) { 
                                //Found sibling illegal relation 
                                return true; 
                            } 
                        } 
                    } 
                } 
            } 
        } 
    } 
    return false; 
} 
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Table 23. Selected topic frequencies in method FamilyFrame.addRelationClicked 

Topic name Number of  informants Percentage (out of  36) 
Extract method 18 50,0% 

Readability poor 14 39% 

Excessive nesting 11 31% 

Complete refiguring 4 11% 

OK 0 0% 

 

4.3.3 Summary of  the qualitative analysis  
Cross case summary of  the analyzed methods is in Table 24. In the table, refactoring 
decision is measured on scale 1-5 with one indicating no need for refactoring and five 
indicating immediate need for refactoring.  
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Table 24. Cross-case summaries of  the analyzed methods 

Refactor-
ing 
decision:  

Met
hod  

OK 

me
an 

std. 
dev 

Summary 

1 7 3,5 1,40 The informants indicated that the method has a long return 
statement that should be split up (similar to method number 8). 
Method documentation was not sufficient or was misleading 
according to the informants. Method also had a large std. dev 
in the Refactoring decision indicating conflicting opinions.  

2 7 3,8 1,26 Method is too long and duplication removal functionality is not 
needed if  different algorithm is used according to informants. 
Method number 4 is similar to this in the sense that they both 
operate with the file system and are responsible for applications 
I/O procedures.  

3 22 2,3 1,37 Most informants considered this method OK. Poor naming of  
called methods and the gender handling are the biggest 
problems according to the informants.  

4 6 3,8 1,28 Method is too long, and the algorithm that reads data from the 
disk needs improvement according to the informants. Few also 
pointed out excessive usage of  temporary variables.  

5 27 1,9 1,18 This is the best method under evaluation according to the 
amount of  the informants’ OK comment. There were only few 
negative comments on minor issues by the informants: some 
informants would have used other data structure instead of  
vectors, declaration of  parameter should have been done 
outside of  loop.  

6 4 4,2  0,96 This is long constructor method that has a poor readability and 
layout according to informants.  

7 21 2,5  1,56 Mostly OK method according to the informants. Although, the 
method’s standard deviation is highest among the methods that 
indicates conflicting opinions. Most mentioned problems by 
informants, poor method documentation, layout of  parameters, 
and spelling errors. Only two pointed out that using parameter 
object would greatly benefit the method.  

8 7 4,1  1,15 Method suffers from long return statement, and incorrect 
layout that hinders readability according to the informants. 
Some also pointed out that it has duplication with other 
method in the same class.  

9 24 2,2  1,21 Mostly OK method according to informants. Javadoc needs to 
be updated to tell what the method does. Variable names 
should be improved. 

10 0 4,6  0,60 Suffers from too excessive nesting, is too long, and has a 
complicated logic according to informants. This is worst 
method according to number of  OK comments.  
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Summary of  the most frequently mentioned topics are in Table 25. The complete set of  
topic frequencies are in Appendix C. Topics in italic are super topics meaning that more 
than one topic is included in them. From the table we have removed topics that had less 
than 20 references or were already included in one of  the super topics.  

The most frequently used topic was OK meaning that the method is fine and there is 
hardly need for improvement. OK topic had three levels 1, 2, and 3 indicating the level 
satisfaction expressed towards the method. The second frequent topic was a super topic 
combining complain and improvement suggestion. Either the method was too long and/or 
the informant was suggesting that a certain part of  the method should be extracted to a 
method of  its own. The third topic was a general comment indicating the method was not 
readable. The fourth topic, improve comments, was again super topic combining all the 
complaints and improvement suggestion on the source code comments. The fifth super 
topic combined the complaint and improvement suggestion on the layout of  the code. 
Sixth topic, change algorithm, indicated that a code can be improved by using a different 
approach to implement it e.g. if  one has coded a sorting routine with bubble sort the code 
can be improved by using quick sort and if  one is using self  coded file format to store data 
it can be replaced by using Java’s serialization functionality. At this point, a clever reader has 
noticed that there is slight difference in the two examples presented above. In the first 
example, the person programs the improved algorithm by himself  / herself  and in the 
second, a pre-built functionality is used. However, both of  these were categorized under 
the change algorithm topic because they both indicate completely new approach in 
implementing the existing functionality. The seventh super topic combined the complaints 
of  too long statement and the improvement suggestion of  splitting up a single statement to 
several smaller ones. High amount of  this super topic could be seen in methods 1 and 8. 
The eight topic, coding conventions, consisted of  minor problems. This meant comments 
that, by the interpretation of  the author, would not have had big impact on the evolvability 
and were more a matter of  opinion e.g. were loop variables declared in the loop or before 
the loop, for-loop structure instead of  while-loop structure, or traversing the vector with 
elementAt method call rather than using a iterator.  

If  we compare the most frequently used topics with Figure 9, in page 34, we can see that 
each target from Figure 9 (visual representation, documenting, and structure) will include 
one or more the most frequent topics. However, three most frequent topics do not fall in 
to these categories. Topics OK, poor readability, and coding conventions cannot be put in 
any of  the target groups’ categories. The comments behind topics OK and poor readability 
are likely formed from a combination effect of  the three target groups e.g. readability is poor 
when visual representation is not good, documenting is poor and structure could be slightly 
better. Often the answers of  those topics were also quite general that more specific topic 
could not be assigned. Finally, coding conventions are a collection of  minor issues 
including problems in all three target groups. Thus, this category is created based on the 
impact of  the complain or the improvement suggestion rather than the target of  it. Often 
the texts coded with coding convections were also coded to some other category to 
indicate the target of  the problem. 

Most frequent topics can be split to axes with ends general and specific. Topics OK, poor 
readability will be the most general where as topics indicating that a method or statement 
should be split up will be the most specific. Coding convention is also quite general as it 
only indicates the impact of  the issue. Topics indicating poor comments and layout are 
somewhat general. The topic change algorithm would also appear to be more general than 
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specific because it may contain several changes. It is good to notice that the topics that 
appear to be most general could not be placed inside of  any single target group (visual 
representation, documentation, structure). With comments that are more specific this 
grouping can be easily achieved.  

Table 25. Most frequent topics  

Topics Methods  

 1 2 3 4 5 6 7 8 9 10 Totals
OK 7 7 22 6 27 4 21 7 24 0 125 

extractMethod + longMethod 0 15 2 16 0 22 0 4 0 18 77 

readabilityPoor 4 0 1 5 4 18 0 7 1 14 54 

commentsImprove 9 4 1 2 2 1 6 3 7 5 40 

layoutPoor 1 3 1 4 2 12 2 5 3 4 37 

changeAlgorithm 1 8 0 12 3 3 1 3 0 2 33 

longStatement + statementSplit 17 0 0 0 2 0 0 12 0 0 31 

codingConventions 1 7 1 2 3 0 2 1 2 4 23 

 

4.3.4 Interpretation and summary  
In Figure 9 we saw the different topic families that were created based on the answers. The 
classification of  answer types to positive, complain, and improvement suggestion is not very 
interesting for the software engineering community. However, the classification of  answer 
targets to visual representation, documenting, and software structure could help researchers 
distinguish the different sources affecting the evolvability.   

By going individually through the evaluated methods we studied the individual characteris-
tics of  each method and saw how the informants evaluated them. We saw the specific 
problems of  each method by studying at the coded answers. For example, method number 
10 had problems with excessive nesting, but this problem was not mentioned in any of  the 
other methods as one can see from Appendix C. Similar patterns with other topics also 
appeared where few methods produced the majority of  the topics references. Table 25 
showed that even the most frequent topics are not uniformly distributed to different 
methods. This indicates that individual method characteristics play very important part in 
the evolvability evaluation.  

Based on the discussion on automatically detecting the problems (code smells) indicated by 
the informants, we can say that in some cases automatic detection seemed usable, in others 
it did not, and there were several cases that fall between these two categories. For example 
detecting a long method is easily achieved by measuring the method length. However, it is 
more difficult to measure cases where extract method refactoring should be applied i.e. if  
individual prefers small utility routines for conditional comparisons. Long statement 
problem could be automatically detected, but it might require development of  some new 
measures, as we are not currently aware of  metrics measuring the statement weight or size. 
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It is nearly impossible to detect problems such that change algorithm or improve readabil-
ity. The latter is difficult to detect because it is two vague. Perhaps it could be detected by 
forming a profile of  several methods that suffer from this problem. The former cannot be 
detected because it requires understanding of  the semantics, and knowledge of  better 
solutions and the pre-built functions available in APIs. These functions are not currently 
possessed by automatic detection tools.   

The affect of  the proposed refactorings to commonly used source code metrics were also 
discussed. Generally, the refactorings will cause some metrics to decrease while others 
increase. For example extract method decreases the size of  a single method, but increases 
the method count of  a class. Statement split refactoring will increase method size measured 
with lines of  code, number of  statement or cyclomatic complexity, but it will decrease the 
size or weight of  an individual statement. Change algorithm is one of  the few refactorings 
that can decrease some measures without increasing any of  the other measures, but as 
previously discussed, its automatic detection is virtually impossible.  

We saw that some of  the most frequent topics were very general and that some of  them 
were quite specific. The problem with the general topics is that they hide the interesting 
details and that that they cannot be effectively categorized. The problem with specific 
topics is that it is difficult compare them between cases due to the very uneven distribution. 
Thus, the specific topics greatly reflect the software that was under evaluation. The 
differences between the specific and general topics are likely to become evident if  more 
studies of  this nature are made. It is possible that in the future studies the specific topics 
can be completely different to the ones we had in here. On the other hand, the general 
topics and their frequencies should be more or less the same. This way general topics make 
it easier to perform comparisons cross studies while specific topics increase the existing 
body of  knowledge concerning different problems that may appear in the code.  

4.4 Factors Explaining Evaluations – Regression Analysis with 
Qualitative Data 

In this section, we shall return to regression analysis and study whether the topics found in 
informants answers could be used to explain the refactoring decision. On one hand, this 
might sound pointless as the informants answers were exactly the rationales for their 
refactoring decisions. On the other hand, we must acknowledge that if  an informant 
recognized a certain problem, e.g., method is too long, it still does not indicate that the 
informant would have refactored it. It is possible that the informant did not consider 
method length to be a very bad problem. Regression analysis makes it possible to compare 
the effects of  topics. For instance we can study which topic families (structure, layout, 
visual representation), classified as targets in Figure 9, have the biggest impact on the 
refactoring decision.  

4.4.1 Regression models 
The regression models are in Table 26. We can see that the Simple model, consisting of  
OK topic in ordinal scale and number of  topics in topic family negatives, is able to explain 
over 70% of  the variation. The Target model, consisting of  the topics that could grouped 
to different targets of  Figure 9 in page 34,  is only able explain little over 40% of  the 
variation. However, the Target&OK model is almost as powerful as the Simple Model 
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explaining 69,6% of  the variation. The Pure Topics model, consisting of  all individual 
topics excluding super topics and OK topics, is only able to explain 37,7% of  the variation. 
The Pure Topics Model has R squared 0,587, but the model suffers when adjusted R square 
is calculated, because it has 61 topics as the explaining variables Pure Topics model is also 
performing better when OK topic is added to the model resulting in adjusted R square 
0,662. OK topic is part of  the original topics, and, therefore, it could be seen as part of  the 
Pure Topics model.   

Table 26. Qualitative regression models 

Model Adjusted R Square p-value 
Simple model 0,702 0,000 

Target model 0,403 0,000 

Pure Topics model 0,377 0,000 

 

Betas and correlations for Simple Model are Table 27. The model is easy to understand. 
OK topic is a suppressor term for the refactoring decision and the topic family negatives 
increased the refactoring decision. Both values have high correlation with refactoring 
decision. OK topic alone is able to predict 66,6% (adjuster R Square) of  the refactoring 
decision, and similarly topic family negatives is able to predict 62,4% (adjuster R Square) of  
the refactoring decision. Based on the adjusted R square values of  OK topic and topic 
family negatives one might expect the combined model to have higher values than 0,702. 
To explain this we studied the correlation between the two variables and found out that the 
variables had significant (p<0,01) Spearman correlation minus 0,709. This indicates that the 
two variables often act simultaneously i.e. if  one has high values the other has low values 
and vice versa. This explains why the Simple Model’s adjusted R is not higher.       

Table 27. Predictors in the simple model 

Topic Standardized Beta p-value Correlation 
OK -0,508 0,000 -0,815 

Topic family negatives 0,370 0,000 0,791 

 

Table 28 shows the independent variables of  the Target model. From the model, we can 
see that the topic family Structure, which indicates the number of  comments concerning 
structure, was the most import predictor. Visual Representation also had some effect, while 
topic family Documenting, which means the number of  complaints or improvement 
suggestion affecting comments or naming, did not have an affect on the refactoring 
decision. It is not surprising that the refactoring decisions were mostly influenced by the 
software structure. However, Visual Representation also plays a role in the refactoring 
decision.  
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Table 28. Predictors in the target model 

Topic Standardized Beta p-value Correlation
Topic family Structure 0,610 0,000 0,608 

Topic family Visual Representation 0,197 0,000 0,199 

Topic family Documenting 0,035 0,400 0,016 

 

Because Pure Topics Model contained over 60 topics, it is not informative to study them in 
a one table. However, we can narrate it in text. Three topics had standardized betas over 
0,2. They were extract method 0,481, add blank lines 0,237, and long statement 0,210. 
Especially extract method appears to be strong indicator of  the refactoring decision. The 
problem with pure topics regression model is that there were over 60 predictors and many 
of  the predictors were seldom active, when the methods were evaluated by the informants. 
Over 40 predictors are active less than ten times, and a regression model that was equally 
good was created without the variables that were active less than five times. The problem 
with Pure Topics model is that there really are not enough cases to create a good regression 
model for over 60 predictors. The Pure Topics model also lacks a measurement of  the 
problem level that the OK topics had as they were classified to three groups. To illustrate 
this consider the differences in saying “method seems somewhat long” when compared to 
“method is way too long, and the original programmer should be shot”.  

4.4.2 Interpretation and summary 
From the regression models, we can see that the Simple model performs very well and is 
able to explain over 70% of  the refactoring decision variation. The model has only two 
independent variables. First, the topic OK measures with three levels the satisfaction the 
informant feels towards the evaluated software element. Topic family negatives contain the 
number of  different negative comments made on the evaluated software. With these two 
simple variables, it was possible to explain 70% of  the refactoring decision. This indicates 
that the informants’ rationales have real connection with their refactoring decision.  

The second regression model called Target Model had three topic families as independent 
variables. The topic families included the negative comments that could be grouped to one 
of  the groups: structure, documenting, and visual representation. The most important 
predictor was structure but also the visual representation had some impact while docu-
menting was insignificant predictor. This regression model was only able to explain 40% of  
the variation. The models weakness was that it lacked all the positive comments of  the 
evaluations. When the OK topic was added to the model, it was almost as good as the 
Simple model. Additionally, the model lacked the negative comments that could not be put 
to any of  the groups, but this did not have a big impact on the model performance. Based 
on this data it seems that it is not enough to measure just the negative comments, but one 
must also take the positive comments in to consideration when trying to predict if  certain 
piece of  code will be refactored or not. This idea is very natural since in many cases a piece 
of  software can have good and bad sides, and it seems natural the refactoring decision is 
based on weighing the both sides.  
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The Pure topics regression model, lacking all topic families and the OK topic, is able to 
predict 37,7% of  the variation. Although, this model contains some positive topics like 
“comments are OK” it lacked the most important positive predictor the general OK topic 
measured in three levels. Adding this to the model greatly increases the models prediction 
power. We found three variables that had standardized betas over 0,2. Extract method topic 
had beta 0,478 making it the most important predictor. However, it seems likely that most 
of  the betas can be explained by the evaluated methods i.e. different types of  methods 
would have resulted in different topics getting high betas. However, the beta in extract 
method is clearly higher than the rest. Thus, it could indicate that this topic would be 
important predictor in studies containing different methods as well. It is also interesting 
that extract method performs much better than general negative comment readability poor 
although they both have more than 50 mentions. It could be that when informant indicates 
that a new sub method should be extracted he/she is much more certain about the 
refactoring decision than when stating rather vague complain about the readability. This 
would indicate that the decision whether to refactor would be affected by the informants’ 
knowledge on how to make refactorings.  
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5 Discussion 

This chapter recaptures the work done to answer the research questions, summarizes the 
answers to the research questions, discusses the limitations of  the study, and finally 
provides ideas for further research. 

5.1 Answering the Research Questions 
This section will answer the research questions from Section 3.1 based on the results that 
were presented in Chapter 4. We will also make comparisons to prior work.   

5.1.1 Research question 1  
Is there an interrater agreement in subjective evolvability evaluation?  
This research question was studied in Section 4.1. Kendall’s coefficient of  concordance, 
also known as Kendall’s W, was used to measure the agreement between raters.  

In the evolvability evaluations, we saw that code smells Long Method and Long Parameter 
List produced a high agreement between raters having Kendall’s Ws of  0,777 and 0,816 
respectively. The high agreement on these smells is not surprising, since both of  them 
should be easy to evaluate and rank. Long Parameter List can be clearly seen by looking at 
how many parameters are passed to the method. Long Method could be little more difficult 
to recognize since the definition given told that such methods have low cohesion, are 
difficult to understand, and reuse. Still the informants had very high agreement on the 
Long Method smell, as well.  

The Feature Envy smell had the lowest coefficient of  concordance with 0,238. However, 
from the feedback of  the experiment it was learned that some informants (3/46) felt that 
they did not completely understand what was meant by Feature Envy smell, although this 
was not specifically asked. This can partly explain the low interrater agreement on this case. 
However, the two persons that were used to pre-validate Experiment A did not make such 
comments. Therefore, there was no possibility to fix this problem beforehand. The fact 
that two persons used to pre-validate the experiment did not indicate that the lack of  
understanding in Feature Envy smell suggests that this problem may not have affected all 
of  the informants. 

The Kendall’s W for the refactoring decision in Experiment A was 0,353 and in Experi-
ment B 0,397. This was considerably lower than on code smells Long Method and Long 
Parameter List. W values in the refactoring question in both experiments were very close to 
each other (only a difference of  0,044). This indicates that the level of  interrater agreement 
is not affected by the different setups in the experiments. However, one might expect the 
agreement on the refactoring decision to be higher in Experiment A where the informants 
had the smell descriptions available to help them in making the refactoring decision. 

The refactoring question really was at the heart of  the experiments because it asked if  the 
method is in such a bad shape that it should be improved to make it more evolvable. It 
seemed unlikely for any misunderstanding concerning this question. Hence, the result 
seems to indicate that there are differences in people’s opinions on if  a certain piece of  
code should be refactored.  
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Based on the data the answer to the research question 1 is two-folded. For simple code 
smells Long Method and Long Parameter List there was a high agreement between the 
raters. For the refactoring decision and the Feature Envy smell, the level of  agreement was 
considerably lower. Since all evaluations are significant, we must conclude that there is 
partial concordance among the raters in all evaluations. However, the level of  agreement is 
not satisfactory in all cases.   

Comparison to prior work (Coleman et al. 1994; Coleman et al. 1995; Kafura and Reddy 
1987; Kataoka et al. 2002; Shepperd 1990; Shneiderman 1980; Welker et al. 1997) is 
challenging due to: lack of  proper representation of  the evaluation data (Coleman et al. 
1994; Coleman et al. 1995; Oman and Hagemeister 1994; Shepperd 1990; Welker et al. 
1997), lack of  statistical power (Kataoka et al. 2002; Mäntylä et al. 2004), use of  non-
standard statistical methods14 (Mäntylä et al. 2004; Shepperd 1990; Shneiderman 1980). All 
the prior work lacked calculation of  statistical significance on the interrater agreement and 
the Kendall’s W, which makes it impossible to say whether the raters really had agreement 
on the software evaluated or not. To make things even worse, the data is not available to 
public except in the Shneiderman’s study (Shneiderman 1980), who has included some of  
the raw data in his book. Unfortunately, even in Shneiderman’s study, which could be 
excellent comparison point for this study, the data is reported in a way that makes it 
impossible to track an individual evaluator’s answers through the programs she had 
evaluated. Therefore, we cannot compare our results with any prior work.     

5.1.2 Research question 2  
How much of  the evolvability evaluation of  a software element can be explained by the software element 
and the informant? 
This research question was studied in Section 4.2. The factors affecting the evolvability 
evaluations were searched through the measurable characteristics of  a software element 
(source code metrics) and the demographic data of  an informant. This research question 
was studied using categorical regression founded on optimal scaling, which makes it 
possible to use continuous and non-continuous variables as both dependent and independ-
ent variables.  

We saw that the evaluations on code smells Long Method and Long Parameter List could 
be predicted with good accuracy by the regression models. In Long Method smell 71,2% 
of  the evaluations could be explained by the regression model consisting of  source code 
metrics. As expected, the lines of  code metric was the most important predictor for the 
Long Method evaluations. However, the Metric model without the lines of  code metric 
also explained 61,8% of  the evaluations. This is caused by the correlation the source code 
metrics have with each other. In Long Parameter List smell evaluations the Metric model 
explained 76,1% of  the evaluations. The most important predictor in the model was the 
number of  parameters, and unlike in the Long Method evaluations there was no substitute 
for this predictor.  

The explanation power of  the source code metric based regression models diminished 
when we studied the refactoring decision and the Feature Envy code smell evaluations. The 

                                                 

14  The researchers have calculated the percentage of  answers that were off  by n steps in ordinal scale, or they 
calculated averages and standard deviations from the ordinal scale. In such procedure, no statistical 
significance can be calculated.   
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source code metrics explained only 9,8% of  the Feature Envy smell evaluations. For the 
refactoring decision, the percentage of  the evaluations explained by the Metric models was 
31,9% in Experiment A and 26,1% in Experiment B. This number was lower than what 
one would expect. In these experiments, the source code metrics also suffered from high 
collinearity, which makes it difficult or nearly impossible to say how good predictor each of  
the metric was. Based on the experiments we can only say that a line of  code metric 
appears to be the best refactoring decision predictor. The prediction power of  the rest of  
the metrics cannot be ranked because of  having small beta values, having very different 
beta values in experiments A and B, or having negative beta values when having positive 
correlation with the refactoring decision while also having strong correlation with the best 
predictor and therefore suffering from multicollinearity. For interesting empirical study on 
C&K source code metrics (Chidamber and Kemerer 1994) multicollinearity look for (Succi 
et al. 2005). 

In Experiment A we were able to use the smell evaluations of  each informant to create 
regression model that explained 61,8% of  the refactoring decision variance. This result is 
not surprising because the smell evaluations and the refactoring decisions were subjective 
evaluations that should have connection with each other. The experiment set up could have 
affected this as well: first, the informants were told that smells are bad, then they were 
asked to evaluate the existence of  the smells, and finally they were asked whether they 
would refactor the method to remove the smells in order to keep the software evolvable. 
Thus, we could expect the regression model with the smells to explain even greater deal of  
the variation. 

We also studied the demographic variables as predictors for a refactoring decision, but their 
explanatory power was low. We even tried to improve the gathering of  demographic data in 
Experiment B grounded on Experiment A, but still the background variables had only 
minor explanatory power. In fact, the demographic variables performed slightly better in 
Experiment A, but this was affected by having more demographics variables in Experiment 
A rather than a real improvement in the data variables.  

Comparing these results to the results of  research question 1 reveals us that both the 
interrater agreement and the explanatory power of  metric regression model have similar 
two-folded structure. Both perform well on Long Method and Long Parameter List smell 
evaluations. Similarly, both the inter-agreement and the regression models have low values 
when it comes to refactoring decision and especially to Feature Envy evaluations. Clearly, 
there is a connection between these two, and it is caused by the fact that the source code 
metrics of  any method will remain the same even if  there is disagreement between raters. 
Thus, if  there is a disagreement whether a certain method should be refactored, it auto-
matically means that the code metrics of  that method cannot make up a strong regression 
model that would predict the refactoring decision because there is a disagreement on the 
issue. Naturally, this does not affect the regression model created from the smell evalua-
tions because the possible disagreement in the refactoring decision is likely to be reflected 
in the smell evaluations.  

Comparison to prior studies is not clear-cut because they have not utilized regression 
analysis. Regardless, we can try to make some comparisons. Kafura and Reddy (Kafura and 
Reddy 1987) concluded that the expert evaluations on maintainability were in conformance 
with the complexity source code metric. This conflicts with our results since we showed 
that metrics were not effective predictors of  the refactoring decision i.e. the evolvability 
improvement need. However, their results are based on interviews on software maintain-
ability while we used the refactoring decisions on an ordinal scale survey. Software 
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Engineering Test Lab at the University of  Idaho used subjective evaluations to create a 
metrics based maintainability measure (Coleman et al. 1995; Welker et al. 1997). It is 
therefore quite natural that their metric correlated well with subjective evaluations.  

Our prior work (Mäntylä et al. 2004), which studied code smell evaluations at the module 
level on an industrial setting, concluded that source code metrics and code smell evalua-
tions did not correlate. However, this study shows that simple code smells and source code 
metrics have a relationship. The difference is likely to stem from three limitations in our 
prior study. First in our prior work, we used higher (module) level evaluations. Second, the 
evaluations were based on recollection. Third, the evaluators had been working with the 
software modules and, thus, had a more personal bond with the software under evaluation. 
We think that these dissimilarities can explain the different results.   

5.1.3 Research question 3a  
What factors act as the rationales for the refactoring decision, could these factors be automatically detected, 
and what would be the effect of  the improvement suggestion factors to common source code measures? 
This research question was studied in Section 4.3 by exploring the qualitative data provided 
by the informants of  Experiment B. The informants were required to give rationales for 
their refactoring decision. These rationales, which consisted of  one to ten lines of  text, 
were analyzed with the coding paradigm by using atlas/ti software.  

The rationales were grouped to one or more of  the following three topic types. The 
informant could praise, complain, or suggest improvements to the software element. Often 
complain was accompanied by an improvement suggestion and vice versa. It was evident 
that complains and improvement suggestions had a relationship with each other. The 
complain was the cause for the improvement suggestion e.g. a rational might have com-
plain pointing out that the method is too long and it would additionally contain suggestion 
splitting the method into sub-methods. This is hardly surprising and similar complaint-
improvement pairs can be found for example in Fowler’s work (Fowler 2000) where we can 
see Code Smells as the complaints and the appropriate refactorings as the improvements. 
The praises given by the informants indicated that the method was already in a good shape, 
and therefore they are opposite of  the complaints and improvement suggestions. Thus, it is 
possible to further classify the answers to two types one containing the positive comments 
and other containing the negatives.  

In addition to their types, the rationales were also classified based on their targets. Three target 
groups, namely Visual Representation, Documentation, and Structure were identified. Visual 
representation means issues that make a method easy for a human eye to study, indenta-
tion, blank line usage, etc. Documentation contains all the (textual) information within the 
source code that makes the programs easier to comprehend, e.g. naming of  variables and 
comments. Structure stands for the source code composition that is eventually parsed by 
the compiler to a syntax tree. Structure is clearly distinguishable from documentation and 
visual representation, because the latter two have no impact on the program run-time 
operations or the syntax tree generated from the source code.  

Not all the answers could be classified to any target group because they were too general e.g., 
comments such as “method is difficult to understand” cannot be classified to any of  the 
three target groups. Additionally, many positive comments were given that were very general. 
They were classified to three OK groups based on how positive the comment appeared to 
be.   
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It is difficult to provide a brief  overview of  the detailed topics that that fall inside of  the 
target groups discussed above. However, here we will try to summarize the most interesting 
points. Firstly, over 60 different topics, given as the rationale for the refactoring decisions, 
were discovered. This number indicates that the informants were able to discover wide 
range of  different issues in the evaluated software. Secondly, many topics were method 
specific, meaning that there could be several mentions of  a single topic in one method and 
only few or not any in the rest of  the methods. Thirdly, refactoring change algorithm, 
which means implementing some functionally with completely different approach (e.g. use 
Java’s serialization functionality to save data rather than implementing own file format), 
appeared frequently in the answers. We feel that it could offer one of  the greatest potentials 
to make code more evolvable. Fourthly, hardly any answers pointed out the excessive 
number of  parameters in the methods where such comment would have been appropriate. 
This is interesting because in answer to research question one, in Section 5.1.1, we saw that 
Long Parameter List code smell evaluations had the highest agreement among the infor-
mants. Still only few informants mentioned this as a problem to be fixed in Experiment B. 
Likewise, too excessive coupling from the method, in Listing 1, to another class, and the 
fact that actually this method should have been moved to inside of  the class it was 
excessively coupled with, was only mentioned by two of  36 informants. These results 
indicate that the given evaluation criterion can greatly affect the issues found in the 
evaluated code. Fifthly, there were conflicting opinions in the informants rationales, for 
example in the method, in Listing 6, an informant claimed that the method was nicely 
grouped, while another informant claimed just the opposite saying that the method was 
poorly grouped. These kind of  conflicts found in the qualitative data provide insight to the 
cases where there is low interrater agreement.  

Automatic detection of  some topics is possible while in others it is not. In general, it easy 
to measure method length and then use a threshold to determine whether the method is 
too long. It is more difficult to discover whether certain piece of  method should extract to 
a method of  it own because preferences vary greatly, e.g. some people for instance may 
prefer small utility methods for Boolean expressions. In some cases, automatic detection 
would also require new (according to our knowledge) specialized metrics like statement size 
or weight metric. Change algorithm refactoring was recognized as important, but currently 
its detection does not seem feasible. Detection of  general topics seems hard to do in 
practice. Maybe this could be done by imputing several (tens or preferable hundreds of) 
methods’ to a machine learning system that could then generate a profile of  what is meant 
by the general topic. However, even such a machine learning system would require 
agreement between raters in order it to work correctly.   

The effects of  the suggested refactorings to common source code metrics are in some 
cases trade-offs. Splitting long statement will result in more statements and increased 
cyclomatic complexity, but it will reduce the weight of  individual statement. The move 
method refactoring on the other hand will not cause tradeoffs in the metrics, as it will 
ideally just reduce couplings leaving every other metrics as they were. Change algorithm is 
another refactorings detected that can decrease some measures without increasing any of  
the others. Unfortunately, it seems that the refactorings’ effects to source code metrics 
cannot be better summarized based on this study.  

Siy and Votta (Siy and Votta 2001) studied data of  130 code inspection sessions. They 
focused on “soft maintenance-issues” that are similar to the rationales analysed in our 
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work. They also categorized part15 of  their qualitative data based on the goals the issue 
tried to resolve. They came up with four groups, namely Documentation, Style, Portability 
and Safety. Documentation contained 47% of  the issues while style had 46% of  the issues. 
Thus, combined these two groups were responsible for 93% of  the issues.  

Siy and Votta further categorized the documentation group to sub-groups called Clarifica-
tion, Correction, and Documentation of  Future work. Similarly, this work has the target 
group Documenting. However, our definition is larger as we also considered the naming of  
source code elements (e.g. variables and routines) to be part of  Documenting, where as Siy 
and Votta only consider the comments in the code. In our data, we had no topics that 
could be categorized under the Documentation of  Future work in grouping by Siy and 
Votta. Perhaps this is because our informants were not the developers of  the application, 
and thus their mind set might not been so future development oriented. This work has only 
one topic that could be place under the Correction group by Siy and Votta. This is topic 
commentsPoor. However, our commentsPoor topic also contained few answers where 
topics were not incorrect, but just poor, or incomplete. Rest of  our topics referring to the 
comments would be placed under the group Clarification by Siy and Votta. 

Siy and Votta further categorized the Style group to sub-groups called Clean-up, Renaming, 
Debugging, and Cosmetic. The Clean-up group has perfect match in this work’s target group 
Structure. The Renaming group means the naming of  source code elements (e.g. variables 
and routines). In this work renaming was included in the target group Documenting. The 
Debugging group has no match in this work. The Debugging contained suggestion of  
adding debugging and trace statements to the source code. Finally, the cosmetic group has 
a perfect match in this work with target group Visual Representation.    

The above comparison between this work and the study of  Siy and Votta shows many 
similarities in the classification. However, the classifications also have differences. Siy and 
Votta had groups Documentation (with sub-groups Clarification, Correction, and Docu-
mentation of  Future work), Style (with sub-groups Clean-up, Renaming, Debugging, 
Cosmetic), Portability, Safety. This work had target groups Structure, Documentation, and 
Visual Representation. The differences in the groupings are probably caused by the 
different environments in which the data was gathered. Therefore, it is pointless to argue 
why one grouping would be superior to the other. Maybe in the future there will grouping 
that will take best sides of  both groupings.  

According to our knowledge other similar prior work of  this kind has not been performed. 

5.1.4 Research question 3b  
Can the factors of  the rationales predict the refactoring decision, and, if  yes what are the most important 
factors? 
This research question was studied in Section 4.4. Similar to research question 2 this was 
studied by using categorical regression based on optimal scaling. The predictors were the 
coded answers given by the informants in their refactoring decision rationales.  

Three regression models Simple model, Target model, and Pure Topics models were 
created. Simple model consisted of  two predictors: positive OK topics and the topic family 

                                                 

15 The source (Siy and Votta 2001) does not reveal how many code inspection session’s data was used to 
create the grouping 
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Negatives, which was created by summing up all the different negative comments made in 
each answer. Target model was created from all the negative comments that we were able 
to categorize under code families Visual Representation, Documentation, or Structure. 
Finally, Pure Topics model contained all the topics identified during the coding process. 
Simple model was able to explain 70,2% of  the refactoring decision variation. Both of  its 
predictors were important with std. betas -0,508 and 0,370 for OK topics and topic family 
Negatives respectively. Target model was able to explain 40,3% of  the variation. Topic 
family Structure was the most important predictor with std. beta of  0,610 while topic 
family Visual Representation had std beta of  0,197. Topic family Documenting was not 
significant predictor in the model. Pure Topics model was able to explain 37,7% of  the 
variation. In Pure Topics model there were over 60 predictors, but only three of  them had 
std betas over 0,2. Those topics were extract method, add blank lines, and long statement 
with betas 0,481, 0,237, and 0,210 respectively. Target model and pure codes model were 
both created without the OK topics. If  the results of  this positive OK topic were added to 
these models, their predictive power increased considerably, but not to the level of  the 
simple model.  

Based on the results we can conclude that the factors discovered in the qualitative answers 
can be used to predict the refactoring decision. It appears that for successful regression 
model we must measure both the positive and negative comments discovered in the 
answers. The most important positive predictor is the OK comment that indicates the 
amount of  positive comments given to the method in three-point ordinal scale. There were 
several negative comments. The best predictor out of  the negative comments was created 
by summing up all the negative comments in to a topic family called negatives. When 
studying the negative comments with the Target model we saw that code Structure is the 
most important predictor while Visual Representation also had some impact. Studying this 
further with pure codes model revealed that suggestions to extract method and complain 
concerning long statement were most important structural predictors. From topic family 
Layout add blank lines rose as the most important predictor.  

Comparison to the answers of  research questions 2 in Section 5.1.2 shows that the 
qualitative elements provided by the informants are far better refactoring decision predic-
tors than the source code metrics or the demographics. Now we can compare the predic-
tion power of  the qualitative elements gathered in experiments A and B. In Experiment A, 
the qualitative elements were gathered by asking the informants about three code smells. In 
Experiment B, the qualitative elements were gathered from the refactoring decision 
rationales. The qualitative regression model in Experiment A, i.e. the Smell model, was able 
to explain 61,8% of  the refactoring decision variation. The qualitative regression model, i.e. 
simple model, in Experiment B performed slightly better explaining 70,2% of  the variation. 
Maybe a better prediction power could have been achieved in Experiment A if  opinions on 
more code problems would have been asked.  

We are not aware of  any studied were qualitative answers concerning code evolvability 
would have been used as a basis for regression analysis. Therefore, we are not able to 
perform any comparison on prior work.  

5.2 Limitations 
This section assesses the limitations of  the study. Threats to internal validity and external 
validity are studied as well as some special considerations on experimental design. Finally, 
we will propose some improvements to the experiments. Threats to validity were identified 
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based on Campbell and Stanley(1966), and Coolcan (Coolican 1999) who cites Cook and 
Campbell (1979). The special considerations to experiment design are done based on 
Juristo and Moreno (2001).  

5.2.1 Threats to internal validity 
In Experiment B, the reliability of  the respondents’ procedures was questionable since it 
was done as a web survey, and there was no control over the respondents. However, a 
similar situation could have occurred in Experiment A, because we had no means to make 
sure that the informants actually paid attention to the introduction lecture they were given 
prior to the experiment. 

Experiment B lacked the randomization of  the methods evaluated. The evaluation order of  
the methods could have caused bias to the evaluation results. In Experiment B, the 
informants had the possibility to go back and forth in their answers if  they wanted to 
check or change something in their prior answers. This should have limited the effect cause 
by the lack of  randomization. 

In both experiments, collection of  demographics could have been improved. In Experi-
ment A, we did not collect any information of  the students’ success in prior programming 
or software engineering courses. In Experiment B, we collected the students grades on 
selected programming courses, but even this could have been improved by allowing 
students to list other relevant programming or software engineering course that were not 
specifically asked for. However, we feel that this limitation in Experiment B would not have 
had big impact on the prediction power of  demographics based regression models.  

5.2.2 Threats to external validity 
There could be interaction between the selection of  evaluators and the issue studied in the 
experiments. In both experiments, the population was the students participating in the 
course. However, proper sampling was not done to select the individuals who would 
become the evaluators of  the experiment. Instead, the informants were those interested in 
receiving the extra credit for their course grade. This sampling method could have caused 
bias. It is possible that students who were more interested in this topic participated in the 
experiment. Based on the course grades there actually was a slight bias in both experiments 
towards better performing students. 

Another threat to external validity comes from the population. Generalizing the results 
obtained using students to developers in industry might not be possible. We may argue that 
students are a too homogenous group, and, therefore, the results are too good. Further-
more, one may argue that as the evaluators had a varying amount of  industrial program-
ming experience (from zero to fifteen years), the population is too heterogeneous. 
However, also teams of  industrial developers can have fluctuating levels of  homogeneity. 

The selection of  the evaluated software elements is another threat to external validity. It is 
possible that with a different set of  software elements different results could be obtained. 
This is particularly crucial for the individual topics mentioned in the refactoring decision 
rationales that were studied in Section 4.3. Therefore, this mainly concerns answer to 
researcher question 3a 

The source code metrics used to measure the evaluated methods were limited to six 
different metrics, which were introduced in Section 3.2.5. With a different set of  metrics, 
the results could have been different. However, it must be pointed out that the goal was 



 Discussion  66 
 

 
 

not to discover the best metrics to predict refactoring decisions, but to test how a few 
widely used measures perform in predicting the evaluations. 

It is possible that the results represent more the effect of  the experimental setting than 
what it would be in the real world. One may argue that in the real world the agreement 
between raters would be better since the raters would understand and study the evaluated 
piece of  software longer and more thoroughly.   

Finally, the qualitative data and the results are sensitive to researcher bias, i.e. a researcher 
will discover whatever the researcher thought he/she should discover. Therefore, different 
researcher might have discovered different topics and topic families to be important in the 
refactoring rationales. This limitation cannot be efficiently avoided in qualitative studies.     

5.2.3 Considerations of  experimental design  
Juristo and Moreno (Juristo and Moreno 2001) list consideration for experimental design in 
software engineering. This section will explain how these considerations were addressed in 
the experiments. 

Learning effect means that informants apply the technique differently after they have 
learned to use it.  

In Experiment, A this could have caused differences in the evaluations of  the methods 
depending on the order of  the methods. To prevent this in Experiment A, the order of  
methods was randomized, so that no two informants evaluated the methods in the same 
order. This prevents the learning effect from biasing the results.  

In Experiment B, no randomization was performed because the web-based system lacked 
such feature. In Experiment B no pre-determined refactoring criteria were given. This 
means that there was less material to learn from. Finally, in Experiment B the informants 
had the possibility to go back to their previous answers if  they later changed they mind. 
However, it must be concluded that the lack of  randomization makes Experiment B 
weaker compared to Experiment A when evaluating the learning effect.     

Boredom effect means that informants get tired or bored during the experiment, which 
will lead in poorer performance due to the end of  the experiment. As with the learning 
effect, the randomization of  the methods can partly block this effect from the results.  

Experiment A lasted only for about hour and half. The informants were motivated with 
extra-point given to them if  properly finishing the experiment. It is possible that infor-
mants got bored since they had five minutes to evaluate each method. For the shorter 
methods this was clearly too long. However, even if  the informants got bored when waiting 
for the permission to move to the next method, this extra time was necessary in order to 
make sure that the evaluation was not performed too quickly. Performing the evaluation 
too quickly can happen when informants are bored and want to complete the experiment 
quickly. Although the five minute evaluation time caused boredom, we believe it also 
reduced the haste effect and thus affected positively on the evaluation quality.  

In Experiment B, the informants were allowed to evaluate the methods and provide 
rationales in their own pace. Only the final result was controlled in grading the evaluations 
and making sure no one got any points without actually studying the methods. As there 
were only ten methods to be evaluated and informants were allowed to proceed at their 
own pace it seems unlikely that boredom might have biased the evaluations. However, it is 
possible that some informants got bored and proceeded more rapidly than they should 
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have. Still, we believe that by grading the rationales we prevented most of  the haste that 
might have occurred through boredom effect.  Experiment B seems to be stronger than 
Experiment A when evaluating against the boredom effect.  

Enthusiasm effect concerns mostly cases where two different techniques are applied. In 
this type of  scenario, it is possible that the informants using the new technique are ecstatic 
while the informants using the old technique are less motivated. However, our experiments 
did not involve a comparison of  two techniques this effect is not an issue.  

Experience effect deals with the case where informants are more experienced with the 
traditional technique and thus perform better. Again, this effect cannot occur in this 
experiment. 

Unconscious formalization means that informants learn from the first technique and 
unconsciously apply it to the second technique. Again, this effect cannot occur in this 
experiment.  

Assurance concerning the procedure implemented by the subjects raises the issue of  
being sure that the informants actually used the technique as instructed.  

In Experiment A, there was no particular technique for locating the smells or evaluating the 
refactoring need. The students were given the description of  the smells, and the UML 
description of  the application. Additionally, an application demonstration was shown. 
During Experiment A two instructors were present who made sure that the students 
actually looked at the methods and did not proceed to the next method until given 
permission to do so. Therefore, the setting of  Experiment A was quite controlled. The 
informants were also told that they would not receive the additional points if  they did not 
evaluate the methods according to the smell descriptions. Still we cannot ever be sure that 
the students actually did as they were told. However, in this setting it seems likely that at 
least most of  the students did as they were told. 

In Experiment B, there was no control of  over the subjects. However, there was no 
technique for making the refactoring decision or finding suitable arguments to support 
their decision. The only control came through the subject refactoring decision rationales. 
Experiment A had better control over the individuals. However, Experiment B had better 
control of  the answers as written output required.   

Setting effect deals with the emotional state of  the informants. This can occur when 
experiment runs over several days. This effect means that it is not advisable to have two day 
experiment on Thursday and Friday, because the informants’ emotional state will be 
different in Friday because of  the upcoming weekend. Experiment A only lasted for two 
hours in Monday afternoon with no holidays in sight. Experiment B was performed as a 
web-survey and therefore the student might have performed in different days with different 
emotional state.  
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Table 29. Summary of  the experiment design consideration in the experiments 

Consideration Applicable, prevention 
 Experiment A Experiment B 
Learning effect Partly. Randomization Partly. There was no 

prevention, but there was 
no particular technique 
utilized either.  

Boredom Yes. Randomization and Forced time 
to spent on evaluation to avoid hastily 
evaluations 

Yes. Grading of  the 
rationales provided by the 
informants to prevent 
hastily evaluations.  

Enthusiasm effect Not Applicable Not Applicable 
Experience effect Not Applicable Not Applicable 
Unconscious 
formalization 

Not Applicable Not Applicable 

Assurance concerning 
the procedure 
implemented by the 
subjects 

Partly, Instructors present during the 
whole time of  the experiment, 
controlled time for each evaluation, 
thereat to take additional points away 
if  not evaluating as instructed 

Partly. No control over 
the subject. No procedure 
given. We controlled the 
quality of  the answers.  

Setting effect No, performed on Monday night 
with no holidays in sight.  

Yes. We had no control 
over subjects. Therefore, 
they might have per-
formed the experiment 
on any day.  

   

5.2.4 Improvements of  the experiments empirical design  
This section can be valuable to those who wish to study this area further.   

1. The selection of  the evaluators should be random.  

2. The population should be more diverse.  

3. More software elements should be used for evaluation to reduce the possible bias. 

4. More source code metrics not suffering from collinearity16 should be used.  

5. More code smells should be studied to allow better comparison between the evalua-
tions.   

6. There should be several questions describing each smell to allow assessing reliability 
of  answers.  

7. A pre-exam should be held to see how well the evaluators understand the issues to 
be evaluated.   

 

                                                 

16 Collinearity means a linear or near linear relationship among the independent variables of  a regression 
model.  
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6 Conclusions and Future Work  

The purpose of  this work was to study the subjective software evolvability evaluation, i.e. 
evaluation of  the existence of  certain code problems called code smells and the refactoring 
decision. First, we suggested the use of  the term software evolvability over the traditional 
term software maintainability. To position our research, we provided four viewpoints to 
software evolvability. Based on these viewpoints, we focused our empirical study on the 
subjective evolvability evaluation. The empirical research was carried out with two student 
experiments where we assessed the interrater agreement and the factors explaining the 
evolvability evaluations.  

We have seen that the interrater agreement is high for the simple code smells Long Method 
and Long Parameter List, but considerably lower for the refactoring decision and the 
Feature Envy code smell. Regression models based on source code metrics explained over 
70% of  the evaluations of  Long Method and Long Parameter List smells, but explained 
only about 30% of  the refactoring decision. The best predictors of  the refactoring decision 
were the rationales of  the refactoring decision explaining over 70% of  the variation and the 
evaluations of  the code smells explaining more than 60% of  the decisions. It is hardly 
surprising that the subjective evaluation of  smells and the rationales for the refactoring 
decision were the best predictors. Our regression analysis of  rationales also revealed, that 
the positive comments were good predictors of  the lack of  refactoring need. They were 
better at predicting the lack of  refactoring need than the negative comments were at 
predicting the refactoring need.  

Analysis of  the qualitative data, i.e. refactoring decision rationales, revealed that the method 
under study greatly affect the contents of  the rationales. We also proposed categorization 
of  the negative comments and improvement suggestion to three groups, namely Structure, 
Documenting, and Visual Representation. By studying the qualitative data of  Experiment B 
and comparing it to the smells evaluations of  Experiment A we found that the given 
evaluation criteria greatly effects the evaluation results. For example, Long Parameter List 
was identified often in Experiment A and yet it was seldom mentioned in the refactoring 
decision rationales of  Experiment B even though the evaluated code was identical. Some 
of  our qualitative findings confirm that evaluators can have very conflicting opinions of  
the same method. Based on the qualitative data we also considered the automatic detection 
of  code problems and improvement suggestion. We found out that some code problems 
would need new code metrics, e.g. statement weight, and that some code problems could 
not be detected or measured at all. Finally, when considering the effects of  the improve-
ment suggestion to code metrics, we found that most refactorings would decrease some 
metrics while increasing others.  

High interrater agreement on the simple code smells implies reliability of  the smell 
evaluations. Thus, there should be no need to double-check the evaluations of  those smells 
by tools or another developer. Additionally, for the simple code smells the prediction by the 
code metrics based regression model was also quite accurate. This suggests code metrics 
tools usage as an effective approach in highlighting straightforward problems in the code.  

Lower interrater agreement of  the refactoring decision indicates a possible unreliability in 
the developers’ evaluations. To compensate this it seems advisable to double check the 
evaluation at least from time to time because false judgments may lead to poorly evolvable 
software.  



 Conclusions and Future Work  70 
 

 
 

The results indicate that it might not yet be feasible to build tool support simulating real-
life subjective refactoring decisions. This is based on three findings. First, the refactoring 
decisions had low interrater agreement. Second, the metrics-based regression models were 
only able to explain 30% of  the refactoring decisions. Third, some refactoring decision 
rationales were difficult or impossible to measure and detect, or would require new metrics 
to make the detection possible.   

The success of  subjective and qualitative data in predicting the refactoring decision is not 
surprising. Nevertheless, they are the best predictors for the refactoring decision. Although, 
there are reliability issues with subjective and qualitative evaluation, this study has shown 
that subjective evaluation can be reliable if  given criteria is simple enough, e.g., code smell 
Long Parameter List. Therefore, we are planning to make more studies with more diverse 
code set and with industrial developers to study the qualitative elements of  software 
evolvability in more detail. Hopefully, this way we can come up with criteria that will 
achieve high interrater agreement and be applicable in real world code evaluation cases. 
This type of  criteria can be used to train the developers in making code that is more 
evolvable. Qualitative data can also suggest new code metrics, i.e. which aspects of  the 
source code are actually worth measuring. Understanding qualitative aspects of  software 
evolvability would also enable us to build better tool support for the refactoring decisions.  
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Appendix A – Lecture Slides of  Experiment A 

This appendix contains the lecture slide of  Experiment A.  

 

Bad Smell in Code – Inspection Exercise

T-76.613 – Software Testing & Quality Assurance
<mika.mantyla@soberit.hut.fi>

2

Contents of the lecture

Bad Code Smells
Motivation
Exercise notes & Grading
Software under study
Smells under inspection 
Inspection
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This slide contained the image of shanty town, which are 
commonly seen in the surroundings of big cities in the 
countries with lower economical status. For copyright 
reason the image has been removed. 

4

Refactoring

Can be used to avoid structure seen in the previous slide 
Definition of Refactoring adopted from Fowler

Controlled way to improve the software’s structure without changing its 
observable behavior

Benefits of Refactoring according to Fowler and Arnold
It improves software design
Programs are easier to understand
It helps you finding bugs
Increased software development speed
Easier testing, auditing, documenting
Reduced dependency on individuals
Greater job satisfaction
Extending system’s lifetime
Preserving software asset value to organization
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Bad Code Smells

Bad Code Smells (Fowler & Beck 2000) are an aid for 
developers in deciding when software needs refactoring
Smells are structures that indicate bad software design

They were covered in more detail in previous lecture
E.g. Large Class, Duplicate Code
Of course, the list of bad smells can never be complete

Why are they called smells?
Fowler & Beck think that when it comes to refactoring decision: “no 
set of metrics rivals informed human intuition

Smells are 
More solid than common criteria of good programming style
Deliberately vague so that human judgment can be applied

This contained the image of middle aged nurses smelling at 
men’s armpits likely as a part of some sort of deodorant 
testing experiment.  



 Appendix A – Lecture Slides of  Experiment A                                 A-IV 
 

 
 

7

Subjective vs. objective measures of sw structure

Subjective measures
Bad code smells

Objective measures
Automatic measurement with metrics

has no wide adaptation
Lines of code per method, coupling between objects

Subjective opinions are more often used in practice
Process is often ad hoc or gut feeling based
E.g. Programmer constantly evaluates the code under work “This code 
looks like spaghetti”

Especially when working on some else’s code
Very little is known about subjective opinions

Conflicting opinions about source code formatting 
Historically: Curly brace wars have caused some problems
Standards and pretty printers have pretty much solved the problem

How about software structure?
Opinions on: Number of parameters for method,  Method size?

8

Exercise notes

There are no right answers in this survey 
We expect that 99% of you will receive full points. 
However, your opinions should be reasonable 

For example: Claiming that method with zero parameters has a 
lot of Long Parameter List smell will not be reasonable 

I will provide group averages after the exercise 
You can compare your opinions against the others
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Grading

Contents of the exercise 
inspection and demographic data

Grading of the course
Maximum 3 points from this exercise
Maximum 40 points come from the exam
Maximum 10 points come from weekly exercises

10

Software under study

Quick demo
This software is only prototype

It is lacking huge amount of features
In future it should support visualizations of family trees
How ever the data model is about complete

UML-model
The visible methods are to be evaluated
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Smells under inspection

All smells under inspection focus at method level
There is no time to go through smells involving class relationships 

12

Long Method

Description:
Long methods have low cohesion

Low cohesion means that method tries to do several things. 
Rather than performing just single task

Method that is too long is difficult to understand

Benefits of small methods:
Easier to use descriptive method names

No need to look at the method body
Name tells the purpose of the code

Methods that perform single tasks are easier to reuse

Fix:
Split big method into several smaller methods
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Long Parameter Lists

Description:
Are constantly changing as more data is needed
Are hard to understand 

Before OO everything routine needed was to be passed as 
parameter

The alternative was global data, which usually is even worse
With OO there really is no need for long parameter lists

The method host already has much of the data that method needs
You can always ask other objects for more data or/and pass whole
objects instead

Fix:
You can always ask other objects for more data or/and pass whole
objects instead

14

Feature Envy

Description:
Method is more interested in other class(es) than the one it is in
E.g. If method invokes several getter and setter methods of other 
classes it is envying data. 
The key idea of OO is that data and the logic are in the same place

Design Patterns don’t necessarily follow this principle
DP’s should be used only when necessary

Fix:
Move method to the class it really should be in
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Doing the inspection

Work alone
Evaluate each method for all the presented smells

Does the smell exist in the method?
Scale 1-7 Not at all - Yes very much

Evaluate whether you would refactor this method in order to 
keep software easy to understand and develop further
There are total of 10 methods to be evaluated
For each method you have 5 minutes to evaluate it and answer 
the questions

I will make a note when there is one minute left
Do not proceed to the next method before I say you should
The time for each method might feel like too long or short

16

Material

Everyone should have 
Smell descriptions (one paper)
UML class diagram of the software (one paper)
The exercise sheet (11 papers)
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Appendix B – Web Page of  Experiment B 

This appendix contains the web-page that was used to give the exercise instruction in 
Experiment B. 

 
Exercise description 

Your job is to familiarize yourself with the software called Family Tree Professional. After getting a 
general overview of the software you will then review ten methods from the software's source code. 
During the exercise you will also need to answer some questions concerning your background. After 
reviewing each method: 

    * You will indicate whether you would refactor the method or not in order to keep this software easy 
to understand and develop further. 

    * You will also need to give a short rationale for you choice. (Short = 1-3 sentences). 

    * You may answer in Finnish, Swedish or English. 

What is refactoring 

Definition adapted from [2]: Refactoring is a controlled way to improve the software’s structure without 
changing its observable behavior. 

Benefits of refactoring according [1,2] 

    * Improves software design 

    * Programs are easier to understand 

    * Reduced dependency on individuals 

    * Easier testing, auditing, documenting 

    * Makes bugs easier to find 

    * Increased software development speed 

    * Greater job satisfaction 

    * Extended system’s lifetime 

    * Preserving software asset value to organization 

Thus, by improving the software structure, we should should receive some or all of the above presented 
benefits. 

Grading 

The exercise will be graded based on the rationale you provide for your refactoring decision. Strictly 
speaking there are no right or wrong answers for this exercise. 

    * You can freely select any of the choices for the refactoring questions as long as you are able to 
provide good rationale. 

    * Getting 100% from the exercise should not be very difficult as long as you put some thought and 
effort writing up your rationale. 

    * Also try to keep your rationale short. More than 5 sentences is definitely too much  

    * Finally: we are not interested in what your "guru" buddy thinks. Please answer only based on your 
own opinions! 

 

Effort 

The exercise should take 1-2 hours to complete. 

    * About 15-30 minutes should be spent in getting an overview of the software by looking at the 
screen shots, the UML-diagram, and the source code 

    * About 5-10 minutes to answer the demographic questions. 
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    * Then 40-80 minutes should be spent in evaluating the ten methods. This will mean that you will 
have 5-10 minutes to study each method and write your rationales. However, the methods are 
somewhat different so you might spend just few minutes studying the shorter methods. 

    * Also when you study the methods you will need to get back and forth between the UML and the 
source code so that you can better understand the method and its context.   

 

How the exercise information may be used 

    * The refactoring choices for each method will be published through the web so that students can 
study the opinions of other students. However it will be impossible to recognize individual respondents. 

    * The rationales for the refactorings will not be published as is. However the issues will be covered 
during the lecture. 

    * All the data provided may be used for scientific purposes, but the results will be published in a way 
that makes it impossible to recognize individual respondents. 
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Appendix C – Topic Frequencies 

This appendix contains the codes discovered from the evaluated software elements, i.e. 
methods. The software elements are referenced as primary docs 1-10 and they can found in 
Listings 1-10 in Section 4.3. Codes that have *-mark in front of  them indicate super codes 
that have been created by combining several codes. Combining in this case does not mean 
adding, e.g. adding number of  extractMethod topics and longMethod topics does not give 
the number of  super topic extractMethod+longMethod because many informant specified 
both topics and such cases are only counted as one.  

The topic frequency means the number of  informants who mentioned the issue; however, 
one individual may have specified several topics. Thus, the addition of  all topic frequencies 
can be larger than the number of  informants; however number of  individual topic 
mentions can be only as large as the number of  informants. 
 
------------------------------------------------------------------- 
                       PRIMARY DOCS 
CODES                  1   2   3   4   5   6   7   8   9  10 Totals 
------------------------------------------------------------------- 
*commentsImprove       9   4   1   2   2   1   6   3   7   5  40 
*extractMethod + lon   0  15   2  16   0  22   0   4   0  18  77 
 gMethod 
*layoutPoor            1   3   1   4   2  12   2   5   3   4  37 
*longStatement + sta  17   0   0   0   2   0   0  12   0   0  31 
 mentSplit 
------------------------------------------------------------------- 
Totals                27  22   4  22   6  35   8  24  10  27 185 
 
 
 
 
------------------------------------------------------------------- 
                       PRIMARY DOCS 
CODES                  1   2   3   4   5   6   7   8   9  10 Totals 
------------------------------------------------------------------- 
callerProblems         1   0   0   0   0   0   1   0   0   0   2 
changeAlgorithm        1   8   0  12   3   3   1   3   0   2  33 
codingConventions      1   7   1   2   3   0   2   1   2   4  23 
coditionalsCombine     0   0   0   0   0   0   0   0   0   2   2 
commentsAdd            7   3   1   1   2   1   6   1   6   1  29 
commentsOK             0   1   2   0   0   0   1   2   2   0   8 
commentsPoor           1   1   0   1   0   0   0   1   1   4   9 
commentsPosition       1   1   0   0   0   0   0   1   0   0   3 
commentsRemove         2   0   0   0   0   0   0   0   0   0   2 
complexLoop            0   0   0   1   0   0   0   0   0   1   2 
conditionalsTooMany    0   0   0   0   0   0   0   0   0   2   2 
correctness            3   3   1   2   0   0   1   2   2   3  17 
coupling               0   0   2   0   0   0   0   0   1   0   3 
couplingLow            0   0   0   0   0   0   0   0   1   0   1 
duplication            0   0   0   1   0   0   0   3   0   0   4 
dynamicConcept         0   0   0   0   0   0   0   0   1   0   1 
exctractCommonMethod   0   0   0   0   0   0   0   3   0   0   3 
extractClass           0   0   0   0   0   1   0   0   0   0   1 
extractMethod          0  13   2  16   0  21   0   4   0  18  74 
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extractVariable        0   0   0   1   0   1   0   0   0   0   2 
genderStoredString     0   0   4   0   0   0   0   0   0   0   4 
generalize             0   0   0   0   0   0   0   0   0   1   1 
improve                0   0   0   0   0   0   0   0   0   1   1 
inlineMethod           0   0   0   0   1   0   0   0   0   0   1 
inlineResponsibility   0   0   0   0   0   1   0   0   0   0   1 
lacksUnderstanding     0   1   4   0   1   0   1   3   1   0  11 
largeClass             0   0   0   0   0   1   0   0   0   0   1 
layoutAddBlankLines    0   3   1   4   1   9   0   3   2   3  26 
layoutComments         0   1   0   0   0   0   0   0   0   0   1 
layoutGroupingGood     0   0   0   0   0   2   0   0   0   0   2 
layoutGroupingPoor     0   1   0   1   0   8   0   0   0   1  11 
layoutIndent           1   0   0   0   0   0   0   3   0   0   4 
layoutMethodArgsMore   0   0   0   0   0   0   2   0   1   0   3 
layoutSplitLines       0   1   0   1   0   0   0   0   0   0   2 
layoutWhiteSpace       0   1   0   1   1   3   0   0   1   2   9 
longMethod             0   9   0   5   0  15   0   1   0   1  31 
longStatement         17   0   0   0   2   0   0  10   0   0  29 
methodNameOK           0   0   0   0   0   0   1   0   0   0   1 
methodNamePoor         0   0   0   0   0   0   0   0   0   2   2 
methodVisibility       0   0   0   0   0   0   1   0   0   0   1 
moveMethod             2   0   0   0   0   0   0   0   0   0   2 
moveResponsiblity      1   0   1   0   0   0   1   0   0   0   3 
namingImprovmentOthe   0   0   4   0   0   0   0   0   0   0   4 
namingImprovmentVars   0   0   0   3   1   0   0   3   6   2  15 
nestingTooMuch         0   0   0   0   0   0   0   0   0  11  11 
nonsense               3   1   2   0   1   0   1   1   2   0  11 
OK %1                  2   1   1   2   5   2   1   4   2   0  20 
OK %2                  2   5  13   4  16   1  15   3  19   0  78 
OK %3                  3   1   8   0   6   1   5   0   3   0  27 
overloadingNeeded      1   0   0   0   0   0   0   0   0   0   1 
parameterListLong      1   0   1   0   0   0   1   0   0   0   3 
parameterObject        1   0   1   0   0   0   2   0   0   0   4 
parametersAreNotChec   0   0   0   0   0   0   0   0   1   0   1 
parametersModify       0   0   1   0   0   0   0   2   0   0   3 
performance            0   3   1   0   1   0   0   1   0   0   6 
readabilityOK          0   0   2   0   0   1   3   0   1   0   7 
readabilityPoor        4   0   1   5   4  18   0   7   1  14  54 
refiguringComplete     0   0   0   0   0   0   0   1   0   4   5 
reOrganizenternal      0   2   0   2   3   0   2   0   0   1  10 
spellingGrammar        0   0   0   1   0   0   6   0   1   0   8 
statementSplit        14   0   0   0   1   0   0   8   0   0  23 
statmentsMerge         0   1   0   0   0   0   0   0   0   0   1 
tempsAdd               0   0   1   1   2   0   0   1   0   0   5 
tempsReduce            0   0   0   4   0   0   0   0   0   0   4 
------------------------------------------------------------------- 
Totals                69  68  55  71  54  89  54  72  57  80 669 
 
 


