

HELSINKI UNIVERSITY OF TECHNOLOGY

Department of Computer Science and Engineering

Software Business and Engineering Institute

Mika Mäntylä

Two Experiments on Subjective Evaluation of
Code Evolvability

Licentiate thesis submitted for official examination for the
degree of Licentiate in Technology.

Espoo, 8.12.2005

Supervisor: Tomi Männistö

Instructor: Tomi Männistö

 II

HELSINKI UNIVERSITY OF TECHNOLOGY
Department of Computer Science and Engineering

ABSTRACT OF LICENTIATE THESIS

Author Date
Mika Mäntylä 8.12.2005
 Pages
 75

Title of thesis
Two Experiments on Subjective Evaluation of Code Evolvability

Professorship Professorship Code
Software Engineering T-76

Supervisor
Tomi Männistö

Instructor
Tomi Männistö

Software evolvability – the ease of further developing software – is an important quality attribute greatly dictating
the future potential of any software system. Recent trends such as agile software development and extreme
programming have highlighted refactoring – modifying the internal structure of software without affecting its
observable behaviour – as a key factor for ensuring software evolvability. To help software developers in making a
refactoring decision, descriptions of bad code, so called code smells have been proposed. Although humans play an
important role in making refactoring decisions, most of the work around refactoring has focused on tools and
metrics, instead of empirical work with humans. Therefore, we studied refactoring decisions and the evaluation
of the existence of code smells at the source code method level.

Two experiments were made with a different sample of students in each. The participants evaluated the existence
of certain code smells for 10 methods, stated whether each method should be refactored or not, and provided
rationales for their refactoring decisions. We studied the interrater agreement, i.e. the extent to which evaluators
agree. Furthermore, we studied the explaining factors of the evaluations with three approaches. First, with
regression analysis we studied how the measures of the evaluated code and the background of the evaluators
affected the evaluations. Second, we analyzed the information of the refactoring decision rationales. Third, we
used the information discovered in the rationales to explain the refactoring decision with regression analysis.

The results showed high interrater agreement for the simple code smells, and low agreement for the more
complex smell and the refactoring decision. The code metrics explained over 70% of the variation regarding the
simple code smell evaluations, but only about 30% of the refactoring decision. Surprisingly, the demographics
were not useful predictors neither for evaluating the code smells nor the refactoring decision. The best predictors
of the refactoring decision were the rationales of the refactoring decision, i.e. the qualitative data, explaining over
70% of the variation, and the evaluations of the code smells explaining more than 60% of the variation. The
analysis of qualitative data showed that the method under study affects the contents of the rationales. In other
words with different methods we would have obtained different rationales. The qualitative data indicates that
automatic detection of some code problems would require new code metrics, and some problems could not be
detected at all.

The results suggest code metrics tools usage as an effective approach in highlighting straightforward problems in
the code. The low interrater agreement of the refactoring decisions, the poorly performing code metric based
regression models of the refactoring decisions, and the fact that some refactoring decision rationales are difficult
or impossible to measure, indicate difficulty in building tool support simulating real-life subjective refactoring
decisions. The main outcome of this study is that commonly used code metrics alone are not sufficient
predictors for refactoring decisions and that qualitative data offers far superior insight of refactoring decisions.
Therefore, we need to make further studies on the qualitative elements of software evolvability. Hopefully, with
qualitative studies we can discover the true evolvability problems in code, define new code metrics, and, thus,
enable creation of effective tool support simulating real-life subjective refactoring decisions.

Keywords:
software engineering experiment, software evolvability, software maintainability, subjective evaluation, interrater
agreement, regression analysis, qualitative analysis, coding paradigm

 III

TEKNILLINEN KORKEAKOULU
Tietotekniikan osasto

LISENSIAATINTUTKIMUKSEN
TIIVISTELMÄ

Tekijä Päiväys
Mika Mäntylä 8.12.2005
 Sivumäärä
 75

Työn nimi
Kaksi koetta ohjelmiston jatkokehitettävyyden subjektiivisesta arvioinnista

Professuuri Professuurin koodi
Ohjelmistotuotanto T-76

Työn valvoja
Tomi Männistö

Työn ohjaaja
Tomi Männistö

Ohjelmiston jatkokehitettävyys on tärkeä laatuominaisuus, joka vaikuttaa ratkaisevasti ohjelmistojärjestelmän
tulevaisuuden mahdollisuuksiin. Erityisesti ketterä ohjelmistokehitys korostaa refaktoroinnin – ohjelmiston
rakenteen muokkaamisen muuttamatta sen ulkoista toimintaa – tärkeyttä ohjelmiston jatkokehitettävyyden
varmistamisessa. Koodihajuja, jotka ovat kuvauksia huonosta ohjelmakoodista, on esitetty ohjelmistokehittäjien
avuksi heidän päättäessään ohjelmakoodin refaktoroinnista. Ihmiset ovat avainasemassa refaktorointipäätöksissä,
mutta alueen aiempi tutkimus on silti keskittynyt pääasiassa työkaluihin ja koodimittareihin eikä empiiristä
tutkimusta ihmisten roolista ole juurikaan tehty. Työssä tutkittiin ihmisten refaktorointipäätöksiä ja arvioita
koodihajujen esiintymisestä ohjelman metoditasolla.

Työssä tehtiin kaksi koetta kahdella eri otoksella opiskelijapopulaatiosta. Koskien kymmentä metodia osallistujat
arvioivat koodihajujen esiintymistä ja refaktoroinnin tarvetta sekä perustelivat refaktorointipäätöksensä. Kokeen
tuloksista analysointiin arvioijien keskinäistä samanmielisyyttä. Lisäksi selvitimme kolmella eri tavalla arvioinnin
tulokseen vaikuttuvia tekijöitä. Ensin tutkimme regressioanalyysillä kuinka hyvin mittaukset arvioidusta koodista
ja arvioijan taustatiedot pystyivät selittämään refaktorointipäätöstä. Seuraavaksi tutkimme mitä asioita laadullinen
aineisto, eli refaktorointipäätösten perustelut, sisälsi. Lopuksi tutkimme kuinka hyvin refaktorointipäätösten
perusteluista löytyneet eri asiat pystyivät selittämään refaktorointipäätöstä.

Tulokset osoittivat, että arvioiden keskinäinen yhdenmielisyys oli korkeaa yksinkertaisissa koodihajuissa ja matalaa
kompleksisissa koodihajuissa ja refaktorointipäätöksissä. Koodimittaripohjaiset regressiomallit selittivät yli 70%
yksinkertaisten koodihajujen arviosta, mutta vain 30% refaktorointipäätöksistä. Yllättäen arvioitsijoiden
taustatiedot eivät vaikuttaneet koodihajuarvioihin tai refaktorointipäätöksiin. Parhaiten refaktorointipäätöstä
selittivät refaktorointipäätöksen perustelut kattaen yli 70% variaatiosta ja koodihajuarviot kattaen yli 60%
variaatiosta. Analysoidessamme refaktorointipäätösten perusteluita huomasimme, että arvioitava metodi vaikuttaa
suuresti perusteluiden sisältöön. Eli erilaisilla arvioitavilla metodeilla olisimme saaneet huomattavasti toisenlaisia
perusteluita. Perusteluiden analyysi myös osoitti, että löytääksemme automaattisesti osan koodiongelmista niille
pitäisi luoda uusia lähdekoodimetriikoita ja osaa koodiongelmista ei voitaisi löytää koodimittareilla lainkaan.

Tulosten perusteella näyttää siltä, että koodimittarityökalun käytöllä voidaan tehokkaasti löytää suoraviivaisia
ongelmia koodista. Refaktorointipäätösten matala arvioijien välinen yhdenmielisyys ja heikosti menestyneet
koodimittaripohjaiset regressiomallit, sekä mahdottomuus mitata kaikkia refaktorointipäätöksen perusteluita
saattavat estää tosielämän subjektiivisia refaktorointipäätöksiä simuloivan työkalun toimivuuden. Tutkimuksen
päätulos on, että yleisesti käytetyt koodimetriikat eivät yksinään ole riittävän hyviä ennustamaan
refaktorointipäätöstä. Kvalitatiivinen aineisto mahdollistaa paremman refaktorointipäätösten ennustamisen. Näin
ollen on tarve jatkotutkimukselle, joka keskittyy ohjelmiston jatkokehitettävyyden tutkimiseen laadullisten
menetelmien kautta. Laadullisen tutkimuksen avulla voimme tunnistaa todellisia ongelmia koodissa, kehittää
uusia koodimittareita ja näin ollen mahdollistaa työkalutuen, joka simuloi tosielämän refaktorointipäätöksiä.

Avainsanat:
ohjelmistotuotannon koe, ohjelmiston jatkokehitettävyys, ohjelmiston ylläpidettävyys, subjektiivinen arviointi,
vastaajien välinen yhdenmielisyys, regressioanalyysi, laadullinen analyysi

 Acknowledgements IV

Acknowledgements

During the thesis work, I have had the pleasure to work with many inspiring individuals
whose ideas, support and friendship have greatly improved the outcome of this work.

Juha Itkonen provided ideas in planning the experiments and helped with the practical
arrangements. Pietu Pohjalainen and Mikko Rusama piloted the first experiment and gave
valuable feed back. Jari Vanhanen and Kristian Rautiainen reviewed parts of this work and
helped in the experiment planning. Discussions with my original supervisor and current
research group leader Casper Lassenius have greatly contributed to this work. My supervi-
sor and instructor Tomi Männistö gave me valuable ideas and helped me in finalizing this
work. Jarno Vähäniitty handled the tasks of a project manager in our research project
(SHAPE) and provided many moments of laughter and joy. In addition, all other members
of our research group (SPRG) need be acknowledged for their support. In the end, the
experiment could not have taken place without the students of the Software Testing and
Quality Assurance course who participated in the experiments.

I also want to thank my mother Sinikka and my father Ilmari for their support. Finally, I
thank my spouse Terhi for the love, companionship and support she has given me.

Espoo 8.12.2005

Mika Mäntylä

 Table of Contents V

Table of Contents

ACKNOWLEDGEMENTS.. IV

TABLE OF CONTENTS.. V

1 INTRODUCTION.. 1
1.1 Motivation and Background... 1
1.2 Terminology ... 2
1.3 Research Problem and Scope... 2
1.4 Structure and Outline of the Thesis ... 2

2 BACKGROUND.. 3
2.1 Software Evolvability... 3
2.2 Viewpoints to Software Evolvability... 4
2.3 Approaches to Software Evolvability Evaluation and the Scope of the Work 5

2.3.1 Level of evaluation ... 5
2.3.2 Evaluation method.. 6
2.3.3 Bases for evaluation.. 7
2.3.4 Scope .. 8

2.4 Human Based Software Evolvability Evaluation... 8
2.4.1 Subjective evolvability criteria ... 8
2.4.2 Studies of subjective evolvability evaluation ... 10

2.5 Gap in Existing Work.. 12
3 METHODOLOGY...13

3.1 Research Problem & Questions... 13
3.1.1 Interrater agreement... 13
3.1.2 Factors explaining evaluations — regression analysis.. 14
3.1.3 Factors explaining evaluations — qualitative analysis .. 14

3.2 Description of the Experiments.. 15
3.2.1 Introduction... 15
3.2.2 Software under study.. 15
3.2.3 Viewpoints of subjective evaluations... 17
3.2.4 The informants of the experiment... 18
3.2.5 Source code metrics.. 19
3.2.6 Experiment material ... 21
3.2.7 Training .. 24
3.2.8 During the experiment ... 25
3.2.9 Pre-validating the experiment.. 25

3.3 Data Analysis.. 25
3.3.1 Interrater agreement... 25
3.3.2 Factors explaining evaluations – regression analysis .. 26
3.3.3 Factors explaining evaluations – qualitative data .. 27
3.3.4 Factors explaining evaluations – regression analysis with qualitative data 28

4 RESULTS .. 29
4.1 Interrater Agreement... 29
4.2 Factors Explaining Evaluations - Regression Analysis ... 29

4.2.1 Long Method... 29
4.2.2 Long Parameter List ... 30
4.2.3 Feature Envy.. 31
4.2.4 Refactoring decision ... 32

 Table of Contents VI

4.2.5 Summary .. 33
4.3 Factors Explaining Evaluations – Exploring Qualitative Data.. 34

4.3.1 Topics and topic families ... 34
4.3.2 Qualitative data in detail... 35
4.3.3 Summary of the qualitative analysis ... 50
4.3.4 Interpretation and summary.. 53

4.4 Factors Explaining Evaluations – Regression Analysis with Qualitative Data...................................... 54
4.4.1 Regression models .. 54
4.4.2 Interpretation and summary.. 56

5 DISCUSSION .. 58
5.1 Answering the Research Questions... 58

5.1.1 Research question 1 .. 58
5.1.2 Research question 2 .. 59
5.1.3 Research question 3a .. 61
5.1.4 Research question 3b.. 63

5.2 Limitations.. 64
5.2.1 Threats to internal validity ... 65
5.2.2 Threats to external validity .. 65
5.2.3 Considerations of experimental design ... 66
5.2.4 Improvements of the experiments empirical design.. 68

6 CONCLUSIONS AND FUTURE WORK.. 69

REFERENCES ...71

APPENDIX A – LECTURE SLIDES OF EXPERIMENT A ...A-I

APPENDIX B – WEB PAGE OF EXPERIMENT B...B-I

APPENDIX C – TOPIC FREQUENCIES...C-I

 Introduction 1

1 Introduction

1.1 Motivation and Background
Software evolvability – the ease of further developing software – is an important quality
attribute greatly dictating the future potential of any software system. In the past, there was
a strong emphasis on up front design for ensuring software evolvability. However, recent
trends such as agile software development and extreme programming have highlighted
refactoring – modifying the internal structure of software without affecting its observable
behaviour – as a key factor for ensuring software evolvability. For example, Microsoft has
recognized the constant need to modify existing software structure to ease future develop-
ment. Therefore, Microsoft’s Office division determined that 20% of development effort
should be budgeted to code modification (Cusumano and Selby 1995 pp. 280-281).

An important issue concerning software evolvability is the decision when to perform
refactoring. It seems likely that wrong refactoring decisions can do more harm than good.
Fowler and Beck have come up with a term called code smell (Fowler and Beck 2000) to help
software developers in recognizing problematic code. These code smells are general
descriptions of bad code that are supposed to help software developers decide when the
code needs refactoring. Fowler and Beck (2000) claim that exact criteria for refactoring
decisions cannot be given: “no set of metrics rivals informed human intuition”.

Thus, humans play an important role in making software-refactoring decisions. Still, most
of the work around refactoring has focused on tools and metrics, see (Mens and Tourwe
2004) for details. There are a limited number of empirical studies and controlled experi-
ments studying subjective software evolvability evaluation, i.e. refactoring decisions and the
evaluation of the existence of code smells. We studied this topic at the source code method
level. Two experiments were made with a different set of students in each. The participants
evaluated the existence of certain code smells for each method and then stated whether the
method should be refactored or not. In the second experiment, the participants additionally
stated the rationale for the refactoring decision. Our first objective was to assess the
interrater agreement, i.e. the extent to which evaluators agree. High interrater agreement is
a positive indication of the reliability of the subjective evaluations. Lack of interrater
agreement can mean that some evaluators are mistaken in their evaluations. The second
objective was to study how factors, such as the evaluated code itself and the background of
the evaluators, affect the evaluations. An analysis of these factors can help us find predic-
tors for the code smell evaluations and the refactoring decisions, which can be used, e.g. in
building tool support. The third objective was to study the qualitative reasons for refactor-
ing, i.e. the refactoring decision rationales. From the qualitative information, we can
perhaps exact criteria to help developers in creating more evolvable code. Qualitative
information can also help in creating new metrics that could measure the refactoring need.

This work builds on our previous study (Mäntylä et al. 2003; Mäntylä 2003; Mäntylä et al.
2004) of subjective evaluation of software evolvability. This study tries to fix many of the
shortcomings of our previous studies, particularly those that were concerned with the
statistical power, and the reliability of the procedures performed by informants.

 Introduction 2

1.2 Terminology
In this work, software evolvability stands for the ease of further developing a software element. This
term was chosen over more traditional term software maintainability for the reasons
covered in Section 2.1.

Subjective evaluation or perceived evaluation means an evaluation performed by an individual. In
real world, such evaluations are performed for example by ski jumping, beauty contestant,
and wine tasting judges. In context of this work, subjective evaluation is performed on
source code.

1.3 Research Problem and Scope
The objective of this research is to study empirically the subjective evaluations of software
evolvability. The research problem is:

Do human evaluations of software evolvability differ from one another, and what are the explaining factors
behind the evolvability evaluations?
The research problem is answered by studying the following research questions, which are
further elaborated in Section 3.1

Research question 1: Is there an interrater agreement in subjective evolvability evaluations?
Research question 2: How much of the evolvability evaluation of a software element can be explained
by the software element and the informant?
Research question 3a: What factors act as the rationales for the refactoring decision, could these
factors be automatically detected, and what would be the effect of the improvement suggestion factors to
common source code measures?
Research question 3b: Can the factors of the rationales predict the refactoring decision, and, if yes
what are the most important factors?
The data needed to answer the research questions is provided by two experiments. Details
of the experiments are in Section 3.2. These research questions are studied within follow-
ing scope

Evolvability evaluation, including both the evaluation of bad elements in the code and the decision whether
to improve the code by refactoring, of software methods based principally on the software structure using
human evaluations.
The scope is discussed in Section 2.3, which also provides on overview of the research area
demonstrating the areas outside of the scope of this work.

1.4 Structure and Outline of the Thesis
Rest of the thesis is organized as follows. Chapter 2 discusses different viewpoints of
software evolvability, present the scope of the work, and introduce the relevant prior work.
Chapter 3 elaborates the research questions and the methodology utilized to provide
answers to the research questions. Chapter 4 presents he results of that are used to answer
the research question. Chapter 5 answers the research questions, asses the limitations of the
study. Finally, Chapter 6 presents the conclusion of the study and provides direction for
future work.

 Background 3

2 Background

This chapter positions the work by introducing the term software evolvability, and
highlighting different viewpoints to software evolvability and to software evolvability
evaluation. The scope of the work is presented at end of Section 2.3. Relevant prior work
is summarized in Section 2.4. Finally, Section 2.5 points out the gaps in existing literature.

2.1 Software Evolvability
In this study, we use the term software evolvability to denote “the ease of further developing a
software element”. Traditionally, the term software maintainability has been used to represent this
quality attribute, and IEEE (IEEE 1990) has defined software maintainability as follows:
The ease with which a software system or component can be modified to correct faults, improve performance
or other attributes, or to adapt to a changed environment. Additionally, Pigoski (Pigoski 1996)
quotes several sources that contain almost similar definitions for the term software
maintainability.

Our definition of software evolvability is more restrictive than the definition of software
maintainability, which typically includes the ease of fault correction (corrective mainte-
nance) and adaptation (adaptive maintenance). The term software evolvability has a close
match with the term perfective software maintenance, which according to the IEEE standard
glossary of software engineering terminology (IEEE 1990) is defined as: software maintenance
performed to improve the performance, maintainability, or other attributes of a computer program.
Historically, software maintainability has a strong link to the maintenance phase of the
software lifecycle. However, the term software maintenance poorly describes what typically
happens after initial software deployment. The word maintainability is derived from the verb
“maintain”, which according to Merriam-Webster’s dictionary1 can be defined as: “To keep
in an existing state (as of repair, efficiency, or validity); To preserve from failure or decline (maintain
machinery).” Thus, the word maintainability refers to our ability to keep software in an
existing state or to preserve it from decline. The problem with this definition is that
software is not consumed or worn down by use. However, most software systems, and
software products in particular, are subject to lots of changes after their initial deployment.
A large part of these changes are extensions to the existing system (sometimes referred to
as perfective maintenance). Whereas the term maintenance may have been representative
and useful in the 1970s, it fits poorly with modern iterative development processes and the
constant evolution of contemporary software systems.

We think that the term software evolution better describes what happens after the initial
software deployment/release, an idea also supported by Sommerville (Sommerville 2001).
Rajlich and Bennett (Rajlich and Bennett 2000) propose an improvement to the traditional
develop and maintain model by presenting a life cycle model that also describes the phases
after the software has been released. In Rajlich’s and Bennett’s model, software evolution is
also seen as an important phase in the software lifecycle.

1 http://www.m-w.com/

 Background 4

The term software maintenance also offers a poor match with the development and release
of software products. In software system development, where typically a custom-made
system is delivered to a single client, the maintenance phase can be clearly identified after
the software has been delivered to the customer. In software product development, the
development is evolutionary and there are several deliveries to different customers. In the
software product business there is a constant need to further develop the product because
of the continuous competition for customers, i.e., a company will add new features to their
product to attract new customers. Therefore, we do not think that the term software
maintenance is appropriate in the software product context to describe all the modifica-
tions made to a software product after it has been initially shipped.

Since using the term software maintenance or the verb maintain to refer to the modifica-
tions made to the software offer a poor match with the real world phenomena, we have
chosen to use the term software evolvability rather than the traditional term software
maintainability to describe the ease of developing a software element further. The term
software evolvability could be substituted with perfective software maintainability, but for
the reasons listed in this section, we have opted not to do this.

2.2 Viewpoints to Software Evolvability
We have identified four viewpoints to software evolvability, as shown in Table 1. Firstly, we
may study factors that affect software evolvability, e.g., why a piece of software has become
poorly evolvable. The list of those factors is likely to be extensive, covering issues from the
programming language used and the motivation of the developers to the business goals
and the organization of the developing company. Some work in this area has been done by
Oman et al. (Oman et al. 1991)2, who listed different factors affecting software evolvability.
Lehman (Lehman 1980) has proposed laws that affect software evolution, some of which
also affect software evolvability.

Secondly, we can look at how evolvable a piece of software is at the moment. Evolvability
can be evaluated by looking at the software element itself, as well as its documentation.
Software evolvability is likely to be dependent on the evaluator. For example, the evolvabil-
ity of a software element can be high to the original developer, but at the same time, a new
developer who lacks proper knowledge of e.g. the used development paradigm can
experience great difficulties. Another way to evaluate the evolvability is through automatic
program analysis. We discuss evolvability evaluation in more detail in Section 2.3.

Thirdly, we can study the improvement of software evolvability. This improvement is often
referred to by terms such as restructuring, refactoring, or re-engineering. In some cases, even
rewriting is used to improve evolvability. If we look at the definitions of software restruc-
turing (Arnold 1989) and software refactoring (Fowler 2000), we can see that they both
essentially mean modification to the internal software structure to make the software easier to understand
and modify. Re-engineering (Chikofsky and Cross 1990) on the other hand means the
examination and alteration of software to reconstitute and implement it in a new form. Generally re-
engineering is used to refer to big system alterations, whereas refactoring and restructuring
mean small changes in the code. Often improvement of software evolvability is not studied

2 Unfortunately, this report has not been accessible to us, as our library was not able to obtain a copy of the
report even from abroad. A brief summary of the work can be found from (Pigoski 1996) in page 288.

 Background 5

in isolation. In many re-engineering case studies, improvement in the software evolvability
is only one of several goals.

Fourthly, we can study the effect of the current state of software evolvability concerning
some other attributes like development efficiency or the number of errors introduced by
source code modification. This is perhaps the most widely studied viewpoint to software
evolvability. Several well-constructed studies (Bandi et al. 2003; Li and Henry 1993;
Rombach 1987) show that using source code metrics for evolvability evaluation can predict
the future development effort. Those studies act as motivators for this work.

Table 1 summarises the four viewpoints to software evolvability. The table also provides a
general research question that each viewpoint tries to solve. The focus of this paper is on
the evaluation of software evolvability.

Table 1. Viewpoints to software evolvability

Affecting factors: Which factors can explain the current level of evolvability?

Evaluation: How can we evaluate software evolvability?

Improvement: How can we improve software evolvability?

Effect: What difference does evolvability make (e.g. in terms of development effort)?

2.3 Approaches to Software Evolvability Evaluation and the Scope of
the Work

Different approaches to software evolvability evaluation are presented in this section. First,
we discuss the level at which the evaluation can be performed. Second, we compare human
and machine based evaluation. Third, we look at factors in the software that affect software
evolvability. Finally, we present the scope of this work.

2.3.1 Level of evaluation
Software evolvability evaluation can be performed at several levels. We can evaluate
evolvability at level of software architecture that consists of systems and sub-systems. We
can study the evolvability at sub-system level and look at the package and class structure.
Furthermore, we can study the structure of interacting classes that work together to
implement certain functionality (e.g. design patterns typically consists of few interacting
classes). Still, we can delve even more to the details and study the evolvability of individual
classes and methods.

Software evolvability can be studied at various abstraction levels, and this effects the
elements we wish to study. For example if we study software at architectural level, we are
not well served by looking at the source code, but we should focus on the documentation
of the software architecture. Studying the evolvability of an individual method is probably
most efficiently done by looking at the actual source code rather than the method docu-
mentation. Thus, the level of software evolvability evaluation greatly affects the artefacts
we wish to study.

 Background 6

This work focuses on software evolvability at the level of individual source code routines /
methods.

2.3.2 Evaluation method
After selecting the level of abstraction where software will be studied, one must also
choose the evaluation method. Evaluation can be subjective performed by humans, or
objective and performed automatically using program analysis. In this section, we discuss
methods for evaluating software evolvability. We identify two fundamentally different
evaluation approaches: subjective evaluation performed by humans, and objective metric-
based evaluation performed dominantly by program analysis tools. Differences between
human evaluation and program analysis are highlighted to conclude the section.

The IEEE standard for software maintenance (IEEE 1998) includes a general process
framework for performing software maintenance. In the framework, quality — including
software evolvability — is evaluated subjectively by humans in process control points that
consist of review, inspection, and verification tasks, and objectively by measures that
consist, e.g. of code size and complexity, and error rates. Thus, the standard recognizes the
value of subjective human-based evaluation and objective metric-based evaluation, but still
leaves most practical issues open.

Widely studied source code or design metrics (Briand et al. 1997; Briand et al. 1999;
Chidamber and Kemerer 1994; Halstead 1977; Harrison et al. 1998; Henderson-Sellers
1996; Hitz and Montazeri 1996; Lorenz and Kidd 1994; McCabe 1976; Succi et al. 2005),
which can be gathered using program analysis, have traditionally played a big role in
evaluating software evolvability. Code metrics have been used and created to form a set of
metrics that are able to measure evolvability (Bansiya and David 2002; Chidamber et al.
1998; Szulewski and Budlong 1996). Code metrics have been combined to create polyno-
mial equations whose outcomes give a single measure of evolvability (Coleman et al. 1994;
Muthanna et al. 2000). Finally, some researchers have reported success in using code
metrics to predict maintenance effort (Grady 1994; Li and Henry 1993). Naturally, the
quantitative data should always be interpreted by humans — a fact that undoubtedly
introduces some level of subjectivity — but regardless of this there are significant
differences between using subjective, qualitative evaluations and objective, quantitative
metrics as the basis for evolvability analysis.

Considerably less work has been done studying the use of subjective human evaluation of
software evolvability. This topic is interesting because ultimately the developer decides
whether software evolvability should be improved or not. Human evaluations are always
subjective and thus dependent on the individual doing the assessment. Consequently, one
can expect there to be different, even conflicting opinions between the evaluators. This
evaluator effect can be reduced, e.g. by using evaluation criteria. Subjective human evaluations
of software evolvability using code smells can be compared to the judges’ evaluations in
figure skating or ski jumping competitions.

The differences between program analysis and human evaluations are shown in Figure 1.
The figure indicates that program analysis offers a quantitative and objective way to analyse
software quality. Human evaluations on the other hand are always more or less subjective,
but they offer qualitative information about the software that cannot easily be obtained by
program analysis tools. Humans can also consider aspects that are not included in the
predefined metrics calculated by tools. Management might be in favour of using program
analysis tools, since human opinions could be unreliable. Developers, on the other hand,

 Background 7

can think that metrics are spurious and that you cannot assess the context of each software
element by using measurement.

Program Analysis Human Evaluations

QualitativeQuantitative

SubjectiveObjective

Code Metrics Bad Smells in Code

“Humans are unreliable” “Metrics are phony”

DevelopmentManagement

HumansTools

Figure 1. Differences between automatic program analysis and human evaluations

In this study, we focus one the human evaluations because less work has been done in that
area. However, we will also contrast the human evaluations with source code metrics to
study the link between subjective human evaluations and automatic program analysis based
on code metrics.

2.3.3 Bases for evaluation
Software evolvability is also affected by other factors than software structure. Better
documentation increases software evolvability. For example, documentation of software
architecture raises software evolvability, because it makes software easier to understand and
further develop. Even when we study software at the source code level we cannot think
that the evolvability could be just determined based on the software structure. Factors like
code commenting, naming of code elements, and layout of source code also affect
software evolvability.

This work will try to focus studying the software structure at a method level. Our aim is to
study software evolvability based on source code structure. However, issues concerning
layout, naming, and commenting will be studied because it is not practical or even feasible
to study source code structure without concerning these dimension as well.

 Background 8

2.3.4 Scope
Now that we have seen concepts around software evolvability, we can look at the scope of
this work:

Evolvability evaluation, including both the evaluation of bad elements in the code and the decision whether
to improve the code by refactoring, of software methods based principally on the software structure using
human evaluations.

2.4 Human Based Software Evolvability Evaluation
As previously mentioned, several studies have established the link between software
evolvability and source code metrics. Recent studies (Balazinska et al. 2000; Ducasse et al.
1999; Kataoka et al. 2001; Simon et al. 2001; Tourwé and Mens 2003) have focused on
automatically detecting poor structures in software or have used historical data to detect
spots where refactorings had been performed (Maruyama and Shima 1999). For more
information on this type of work we point the reader to (Mens and Tourwe 2004). Many
of the studies mentioned are actually more focused on evolvability improvement than its
evaluation. We have been able to find only a limited number of studies in which subjective
evolvability evaluations have been studied or compared with automatic program analysis. In
this section, we introduce the relevant prior work we have identified discussing perceived
evolvability evaluations.

2.4.1 Subjective evolvability criteria
To make it easier for a software developer to decide whether a certain piece of software
needs refactoring (software evolvability improvement) or not, Fowler and Beck (Fowler and
Beck 2000) propose a list of 22 bad code smells. Fowler and Beck introduce code smells as
a more concrete indication of the need for refactoring than “some vague idea of pro-
gramming aesthetics”. They also claim that no set of precise metrics can be given to
identify the need for refactoring. Thus, the code smells can be seen as a compromise
between precise source code metrics and totally unguided subjective evaluation. In their
experience, Fowler and Beck say that when it comes to making refactoring decisions, no set
of metrics rivals informed human intuition. The code smells have been developed based on
Fowler’s and Beck’s industrial experience in several software projects that according to
them varied from successful to nearly catastrophic.

Some code smells represent two extremes of the same attribute. For example, the size of a
class could be an attribute. Too much of it leads to a smell called “Large Class” and too
little to the “Lazy Class” smell. The code smells are some-what vaguely defined. For
example, the following is said about the Large Class smell: “When a class is trying to do too
much it often shows up as too many instance variables”, ”...common prefixes or suffixes
for some subset of the variables in a class suggest the opportunity for a component.”, “As
with a class with too many instance variables, a class with too much code is prime breeding
ground for duplicated code, chaos and death”, “If you have five ten hundred line methods
with lots of code in common, you may be able to turn them into five ten line methods with
another ten two-line methods extracted from the original”, “If your large class is a GUI
class, you may need to move data and behaviour to a separate domain object. This may
require keeping some duplicate data in both places and keeping the data in sync.”

Structures similar to code smells are described by Brown et al. (1998), who discuss software
anti-patterns. These anti-patterns describe code problems on class to architectural levels.

 Background 9

Some of them are similar to code smells, e.g., God Class is equal to a Large Class smell and
Lava Flow is a synonym for Dead Code. However, the scope of their work is quite wide as
they also discuss problems in software processes, badly behaving developers, and many
other areas.

The widely recognized software development book “Code Complete” (McConnell 2004)
discusses the characteristics of high-quality routines and reasons for creating a class. To
summarize, we list the properties of high-quality routines, reasons for creating a class, and
classes to avoid as described by McConnell.

• High-quality routines: sufficient reason for existence, contains no code that would
benefit from extraction into routines of their own, descriptive names following the
naming conventions, high cohesion, low coupling, length that is determined natu-
rally, proper number and usage of parameters.

• Reasons for creating a class: model real-world objects, model abstract objects, re-
duce complexity, isolate complexity, hide implementation details, limit effects of
changes, hide global data, streamline parameter passing, make central points of
control, facilitate reusable code, plan for family of programs.

• Avoid classes that: are too big (God Classes), only contain data but no behaviour,
only contain behaviour but no data.

A comparison indicates that most of these ideas by McConnell can also be found in the
work of Fowler and Beck (Fowler and Beck 2000) that introduced the idea of code smells.

The Air Force Operation Test and Evaluation Center (AFOTEC) pamphlet (AFOTEC
1996) provides a rich set of instructions for evaluating software maintainability. According
to the pamphlet, the evaluation is performed by five evaluators that should have no
relationship to the software to ensure they are unbiased. As it is seldom humanly possible
to evaluate an entire software system, the evaluation is performed on selected source code
samples that are representative of the system. The evaluation is performed by agreeing or
disagreeing, using a six-point ordinal-scale, with statements that cover different aspects of
software maintainability, based on the source code and available documentation. Before the
actual evaluation, a calibration run is done to ensure that the evaluators have a “uniform
interpretation of how each statement applies to the system”. However, the pamphlet
particularly stresses that the evaluators should never be forced to change a score they have
given. Thus, the purpose is to achieve agreement through discussion on the interpretation
of the statements, while the answers are still allowed to vary between evaluators. After the
calibration, the team proceeds to the actual evaluation. The statements are grouped into
four categories: software documentation, module source listing, computer software unit,
and implementation. Some example statements include: Program initialisation is adequately
described, Identifier names are descriptive of their use, and Dataflow in this unit is logically
organized. To summarize, the AFOTEC pamphlet offers perhaps one of the most
complete guides to performing human-based software maintainability evaluations.

All the references discussed in this section provide examples of criteria that could be used
when making subjective evolvability evaluations on software. In addition, the AFOTEC
pamphlet offers a set of instructions and a process for performing software evolvability
evaluation with a team of evaluators.

 Background 10

2.4.2 Studies of subjective evolvability evaluation
Shneiderman et al. (1980 pp. 134-138)) report results from using peer reviews in software
code quality evaluation. They conducted three peer review sessions that each had five
professional programmers with a similar background and experience as the participants.
Each programmer provided one of their best programs which were then evaluated by the
four other participants. The review was performed by answering 13 questions on a seven-
point ordinal scale. The questions varied from blank line usage and the chosen algorithm to
the ease of further development of the program. The results showed that in half of the
evaluations three out of four programmers agreed on the subjective evaluations (answers
differed by one at the most). Still, in 43,1% of the evaluations the difference between all
four evaluators was two or less. The researchers tried to explain this by speculating that the
subjects misunderstood the questions or the scale. However, the research does not account
for factors such as differences in the developers’ opinions about the program design,
structure, and style that might explain the results.

Kafura and Reddy (1987) studied the relationship between software complexity metrics and
software maintainability. Maintainability was measured using system expert evaluations.
However, no details are given on how these evaluations were collected from the individuals
and no data is provided of the evaluations. Therefore, it is difficult to assess the study any
further. Nevertheless, the researchers conclude that the expert evaluations on maintainabil-
ity were in conformity with the source code metrics.

Shepperd (1990) validated the usefulness of information flow metrics on software
maintainability by collecting the opinions of the maintainers for 89 modules of airspace
software that totalled around 30 000 lines of code. Each maintainer of the maintenance
team was individually asked to classify each module from one to four on an ordinal scale on
the perceived difficulty of some hypothetical maintenance task. In 73% of the individual
classifications, the differences per module were one or less and thus the researchers
concluded that there was a strong correspondence between the individual ratings. However,
as no detailed data is given it is difficult to assess the study in more detail.

Software Engineering Test Lab at the University of Idaho report on the construction of a
maintainability index (Coleman et al. 1994; Coleman et al. 1995; Oman and Hagemeister
1994; Welker et al. 1997). In their work, the researchers used source code metrics to create
polynomial regression models that measured software maintainability. They calibrated the
maintainability models based on how well they correlated with the subjective evaluations of
the software maintainers. To do this the researchers acquired source code and the main-
tainers’ opinions on eight industrial software systems ranging from 1000 to 10 000 lines of
code (Oman and Hagemeister 1994). After calibration, they performed a validation study
where they again acquired opinions and the source code on six industrial systems ranging
from 1000 to 8000 lines of code. In the validation study, they also saw discrepancies where
one engineer was more lenient and the other ones more critical towards the systems they
were evaluating. Although the study (Oman and Hagemeister 1994) does not directly
indicate this, it seems that there was only the opinion of a single individual per software
system that was used in the initial creation of the metric and the validation performed.
Thus, this makes it difficult to study the differences in human maintainability evaluations.
After performing tests on several industrial systems, the researchers concluded that the
automatic assessment corresponds well to the subjective view of the experts (Welker et al.
1997).

 Background 11

Siy and Votta (2001) studied data of 130 code inspection sessions. Traditionally code
inspections have focused on the error data i.e. the problems in the code that will cause
failure in operation. Based on their data, Siy and Votta point out that only 18% of the
issues identified were true defects, 22% were false positives, and 60% were “soft mainte-
nance-issues”. We are interested in the “soft-maintenance issues” since they are quite close
to our topic, software evolvability. The researchers grouped together the maintenance
issues, which had similar goals. They came up with four groups, namely: Documentation,
Style, Portability, and Safety. Documentation contained issues dealing with the documenta-
tion in the code. Style issues were related to author’s personal programming style, and the
suggestions were optional changes to make the code more readable. Portability contained
issues that might cause problems in other environments. Safety contained additional checks
against things that “should really never happen”. The distribution of the maintenance
issues were 47% documentation, 46% style, 5% portability, and 2% safety issues. Style
issues had a sub-category called clean-up which contained modifications to the code
without “changing the meaning of the program”. The purpose of those modifications was
to prepare the code for subsequent evolution. This sub-category is closest to our scope i.e.
subjective software evolvability evaluation based software structure. The study does not
have evolvability evaluations, i.e. in scale evolvable not evolvable. Thus, there can be no
analysis of interrater agreement, or factors explaining the evaluations. However, it presents
important qualitative data of the issues affecting software evolvability.

Kataoka et al. (2002) studied the usefulness of improving software quality with refactoring
and report on a comparison between human evaluation and software metrics. According to
the researchers, the subjective evaluation of an expert on the effectiveness of refactorings
correlated quite well with improvement in the coupling metrics. The drawback in the study
is that the data set consists of only five refactoring cases and that only one developer
evaluated the effectiveness of the refactorings.

Genero et al (2002) studied the maintainability of UML-class diagrams. The researchers
show that subjective evaluation of understandability, analyzability, and modifiability of
UML-diagrams correlated (Spearman correlation between 0,529 and 0,943) with various
class level metrics. The study had 17 subjects and 28 UML-diagrams. Number of classes
and number of attributes had the highest correlations (Spearman correlation between 0,892
and 0,943) with the evaluated quality attributes understandability, analyzability, and
modifiability. In a follow up study Genero et al. (2004)3 show that subjective complexity
evaluation has a weak correlation (Kendall’s Tau) with time required to understand (0,242),
or modify (0,147 and not significant) the UML-diagram. Somewhat larger correlation
(0,539) is found between subjective evaluations and objective code metrics based diagram
classification. Genero’s studies appear to be constructed with empirical rigor, but their
reporting is far from perfect. However, these studies are made with UML-diagrams and not
with the actual source code. Other shortcoming from our point of view is that they do not
provide any results on the interrater agreement of the subjective evaluations.

Mäntylä et al. (2003; 2004) studied code smell evaluations of twelve industrial developers.
They discovered the developers make conflicting evaluations of the source code. They also
discovered inconsistencies when comparing the evaluations to source code metrics. The
weaknesses of the study are that the developers’ evaluations were based on recollection of

3 Unfortunately, this report is missing the section (section 5.2) that contains the results concerning the
correlations between subjective and objective complexity. In the report, only a table that contains the
correlations is available. Therefore, there is a possibility that we have interpreted their results incorrectly.

 Background 12

the modules they had primarily worked with, and the large size of the evaluated modules
(between 15 and 65 thousand lines of code).

2.5 Gap in Existing Work
In this chapter, we have laid the foundation for the work that will be presented in the
upcoming chapters. Section 2.1 presents the reasons for using the term software evolvabil-
ity over the traditional term software maintainability. In Section 2.2 we introduced four
viewpoints: factors effecting, evaluation of, improvement of, and the effect of software
evolvability. Section 2.3.1 discusses the different levels (architectural level, class level,
method level, etc) that can be used when evaluating software evolvability. Section 2.3.2
showed different evolvability evaluation methods focusing on the differences of human
evaluations and the source code metrics provided by program analysis. Section 2.3.3
discusses that evolvability is not completely grounded on software structure, but there are
other factors, like documentation and layout, effecting on evolvability. Based on our review
Section 2.3.4 sets the scope for this work on the software evolvability evaluation grounded
mainly on software structure performed by humans at the method level. Then Section 2.4
presents the relevant prior work based on the scope of the work.

Section 2.4 shows that there exists limited amount of studies where subjective evaluation
of software evolvability would have been studied in controlled settings, analyzed with
statistically solid methods, and with relevant amount of individuals. In addition, many of
the prior studies have been made with programming languages that are currently fading
away (C, Pascal, and COBOL) from the main stream of software development.

Thus, to better utilize the subjective evolvability evaluations in software development we
need to understand subjective evolvability evaluations and its strength and weaknesses. This
need is increased by the fact that there are claims and suggestions made on the subjective
evaluation of software evolvability without proper scientific studies.

 Methodology 13

3 Methodology

This chapter presents the research problem of the work that is then further divided to
different research questions in Section 3.1. Then two experiments are presented in Section
3.2 that provide the data to answer the research questions. Section 3.3 shows the data
analysis methods utilized.

3.1 Research Problem & Questions
Based on the scope of this work, presented in Section 2.3.4, and the limited amount of
prior work in this area, presented in 2.4, we selected the following research problem:

Do human evaluations of software evolvability differ from one another, and what are the explaining factors
behind the evolvability evaluations?
The research problem clearly has two parts. First, it inquiries whether there are differences
between human evolvability evaluations. This problem is called interrater agreement, and it
is studied in research question 1 that is presented in Section 3.1.1. Second, it is desirable to
explain the factors behind the evolvability evaluations. The second part of the research
problem is more interesting as it may explain some of the results of the first part. There-
fore, the factors explaining the evolvability evaluations were studied with two different
complimenting approaches. Regression analysis was used to provide numeric estimates of
the evolvability evaluation variation explained by the different measurable characteristics of
the informants or the source code. Qualitative analysis was used to study the rationales of
the informants’ evolvability evaluations. Researcher questions for regression analysis and
qualitative analysis are presented in Sections 3.1.2 and 3.1.3 respectively

3.1.1 Interrater agreement
When studying interrater agreement we must first consider whether there should be
interrater agreement between informants. If we ask people for the best way to spend their
holiday, we might not expect high interrater agreement, as people are likely to favour
different holiday plans. However, we might expect high interrater agreement when we look
at the judges of figure skating or ski jumping contests. In those cases, it is essential that
these professional judges have some sort of interrater agreement. Although, historically
this has not always been the case as the level of agreement between the ski jumping judges
has been found non-significant in the past (Vasama and Vartia 1979). Thus, the purpose of
our interrater agreement analysis is to study the amount of agreement between different
informants on their evolvability evaluations.

Research question 1: Is there an interrater agreement in subjective evolvability evaluation?
The hypothesis is that for all the three code smells (Long Method, Long Parameter List,
Feature Envy) evaluated and for the refactoring decision there should be high interrater
agreement.

 Methodology 14

3.1.2 Factors explaining evaluations — regression analysis
The purpose of regression analysis is to discover how much of the variation in evolvability
evaluation, which was the dependent variable, could be explained by the independent
variables. There should be two primary sources causing variation in the evaluation. First,
the independent variables measuring the characteristics of a software element could affect
the evaluations. Second, the independent variables describing the informant who made the
evaluations could affect the evaluations.

Research question 2: How much of the evolvability evaluation of a software element can be explained
by the software element and the informant?
The hypothesis is that characteristics of the evaluated element and the evaluators’ demo-
graphics can explain most of the variation in the evaluations. The software element
characteristics are expected to have major impact while the demographic data would have
minor impact.

3.1.3 Factors explaining evaluations — qualitative analysis
Qualitative analysis tries to find the factors affecting the evolvability evaluations by looking
at the rationales provided by the informants for each evaluation. It differs from the prior
two analysis methods by not being a statistical method. In general, qualitative analysis often
tries to discover a new hypothesis or a theory that could be tested in future studies, or used
to explain the reasons behind the measures.

In this study, qualitative analysis tries to explain the refactoring decisions, and this way it
complements the regression analysis. Using regression analysis is based on the assumption
that the evolvability evaluations have a linear relationship with the measurable properties of
the source code or of the informant. Qualitative analysis goes beyond this and provides a
viewpoint inside of an informant’s head by studying the rationales for the evolvability
evaluation i.e. we can see what each informant thought was good or bad in each software
element. Qualitative analysis could also provide some insight to the statistical results of the
interrater agreement analysis.

Research question 3a: What factors act as the rationales for the refactoring decision, could these
factors be automatically detected, and what would be the effect of the improvement suggestion factors to
common source code measures?
This research question is of explorative nature and it tries to bring out new qualitative
information. Thus, we do not have any hypothesis for the result.

To demonstrate the usefulness of the factors we needed to study the effect these factors to
the refactoring decision e.g. if factor X is discovered will this indicate that the refactoring
decision will be positive.

Research question 3b: Can the factors of the rationales predict the refactoring decision, and, if yes
what are the most important factors?
Our hypothesis is that the factors discovered in the rationales should be able to explain
most (at least 70%) of the variations in the refactoring decision. Naturally, we cannot
hypothesis on the possible factors, as they are the answers to research question 3a.

 Methodology 15

3.2 Description of the Experiments

3.2.1 Introduction
The goal of the experiments was to study subjective evaluations of software evolvability.
Therefore, a repeatable experimental setting was created where the subjective evaluations
could be studied in controlled manner.

Two separate experiments with considerable differences were made. We shall refer to them
as Experiment A and Experiment B. Both experiments had the same goal as they tried to
provide answers to the research problem. Experiment A provided data for the research
questions 1 and 2 and Experiment B provided data for research questions 1, 2, and 3.

Experiment A was made first and Experiment B was performed a year later. Experiment B
can be though as a successor experiment that tried to provide answers to some of the
questions that were created by the results of Experiment A.

Both experiments had the same software elements for the evolvability evaluation. Identical
documentation of the software was also provided. However, other things as the experiment
material, viewpoints to software evolvability, informants, training, and organization of the
experiment differed. The details of these differences are highlighted in the upcoming
subsections describing the experiments.

3.2.2 Software under study
To study the subjective evaluations of software evolvability, a small application consisting
of 9 classes and approximately 1000 NLOC of code was created. The application was
programmed in Java programming language. The application was created solely for the
purposes of the experiments. Thus, while creating the application, we purposefully
programmed some pieces of the software more poorly than we could have. This way we
tried to ensure fluctuation in the software evolvability.

Although, the application was created for this experiment it also has a meaningful task it
tries to accomplish. The application is able model a family tree contain relationships
between spouses, and parents and children. The family tree modelling was chosen because
the domain knowledge required in understanding the application is simple. In fact, all
humans can be thought to posses the domain knowledge needed to understand the
concepts of close family relationships like father and son.

Screenshots of the application are in Figure 2 and in Figure 3. In the figures, we can see the
two views that the application offers. The view shown on Figure 2 can be used to add,
delete, and modify people and their information. Figure 3 shows the view where one can
modify the relationships between the people.

 Methodology 16

Figure 2. Persons view of the application

Figure 3. Relationships view of the application

The UML diagram of the application is in Figure 4. From the figure, we can see the classes
and their relationships and positions in the package structure. The 10 methods that are
visible in the diagram were evaluated in the experiments. FamilyFrame class in the view
package is the main GUI-class for the application. PersonTableModel and Relation-
TableModel contain data that is showed by FamilyFrame class with java.swing.JTable
classes. The data of the application is in the model package classes Person, Relation,
RelatioSpouse, and RelationParentChild. The io package contains DiskManager class that is
responsible for providing the input output operations for the application. However,
currently only reading and writing to disk are supported.

 Methodology 17

Figure 4. UML-diagram of the application

3.2.3 Viewpoints of subjective evaluations
In both experiments, the subjective evaluations were targeted to the method level. The ten
methods that were studied in the experiments from the application are show in Figure 4
and their source code is listed in Listing 1 to Listing 10 in pages 36-49.

Experiment A. To get different viewpoints of the subjective evaluations, four questions
of each method were presented. Three of the four questions focused on the existence of
the following code smells (Fowler and Beck 2000): Long Method, Long Parameter List, and
Feature Envy, which were chosen because they can be studied at the method level. The
fourth question asked if the method was in such a bad shape that it should be refactored to
remove the smells.

Long method means that a method is too long and tries to perform many possibly
unrelated operations. This means that the method has low cohesion and makes it difficult
to reuse. Long parameter list means that a method is taking too many parameters. Long
parameter lists are difficult to understand and they are continuously changing, as the data
needed by the method is varying. Feature envy means that a method is more interested in
other classes than the class it is currently located. A method with the Feature Envy smell
should be moved to a class that the method is mainly operating with.

Experiment B. In the second experiment no predetermined viewpoints for subjective
evolvability evaluations were given i.e. the existence of the smells was not asked. Instead,
the informants were asked only if the method was in such a bad shape that it should be

 Methodology 18

refactored. In addition, the informants were asked to provide their rationale for the
previous answer i.e. why the method should be refactored or why not.

3.2.4 The informants of the experiment
The informants of the experiments A and B were students participating in Software
Testing and Quality Assurance course at Helsinki University of Technology (HUT) in fall
semesters 2003 and 2004. Thus, each experiment had a unique set of similar informants.
Below the informants of both experiments are introduced and Table 2 in page 19 summa-
rizes the most important demographic variables. From Table 2 we can see that informants
in both experiments were indeed very similar.

Experiment A. In fall 2003, the course had 82 students, with 51 of them that participated
in the experiment. We rewarded the participating students by giving them extra points that
made up 6 percentage of their total grade. From these 51 students we removed five
outliers, whose answers indicated that they had not paid attention, when the instructions
were given4. After removing these five outliers 46 students were left, and they made up the
informants of this experiment.

The informants were studying for a master’s degree that requires the minimum of 180
credits. On the average the students had, 115 credits, which means that they had completed
approximately two thirds of their studies. The standard deviation of the students’ credits
was 31,2 with minimum of 34 and maximum of 187,5. Majority of the students (41 of the
46) had between 70 and 158 credits. Years studied by the informants can be seen as
irrelevant and even misinforming, because the study times at HUT fluctuate greatly; some
students may complete their master’s in less than two years starting from undergraduate
level while others have studied over ten years. Normally it takes little longer than 6 years to
get a master’s degree starting from undergraduate or freshman level.

Students at HUT also work during the studies. Therefore, we asked how much work
experience the informants had in software development. The mean work experience was
1,5 years with the standard deviation of 1,76. The minimum software development work
experience was zero while the maximum was seven years. There were 13 informants (28%)
with no software development work experience, but 27 (58%) of the students had year or
more work experience in software development. We must make note here that the work
experience length between the informants might not be completely accurate, as we do not
know whether the informant had been working full time or part time while gaining the
work experience in software development.

Majority of the informants (37) were studying in the department of Computer Science and
Engineering. Other student were studying in the department of Department of Electrical
and Communications engineering (4), department of Automation and System Technology
(2), department of Industrial Engineering and Management (2), and department of
Engineering Physics and Mathematics (1).

Experiment B. In fall 2004, 37 students participated in the experiment. The students were
again rewarded with few extra points except that in Experiment B the extra points were
given based on their rationales they provided in the experiment. One student’s answers

4 For example some students claimed that a method had somewhat long parameter list smell, when it had
zero parameters. This happened regardless from our threats of forfeiting the extra points if the student
would give such incomprehensible and false answers.

 Methodology 19

were removed as outlier as he/she could not provide reasonable rationales for his/her
answers.

The informants were studying for master’s degree that requires the minimum of 180
credits. The students had an average of 125 credits. Standard deviation was 38,3 with
minimum and maximum of 6 and 199. 86% (31/36) of the students had between 80 and
160 credits. The mean programming related work experience was 1,9 years with the
standard deviation 2,91. The median of work experience was one year. The minimum work
experience was 0 years and maximum was 15 years. Eight students had no work experience
(22%). However, 21 students (58%) had year or more programming related work experi-
ence.

No information of the students’ department was asked in Experiment B as it was discov-
ered irrelevant in Experiment A. Instead, in Experiment B we asked students grades in
HUT’s programming courses. This information was not asked in Experiment A. Four
students (11,1%) had not taken any programming courses that were asked in the survey.
However, 28 (77,8%) students had taken advanced course in object-oriented programming,
which is thought after the Basics programming courses.

Table 2. Informants of the experiments

 Experiment
A

Experiment
B

N 46 36

Credits (mean) 115,24 124,54

Work Experience yeas (mean / median) 1,585 / 1 1,875 / 1

Proportion of informant with year or more work
experience

58,7% 58,3%

3.2.5 Source code metrics
Source code metrics was used to analyze the evaluated software elements. Here we briefly
introduce the metrics and the results of the measurements. The most utilized source code
metric is undoubtedly Lines of Code (LOC), and this metric was also used in this study. We
adopted the basic version of the Lines of Code measure and calculated it simply as the
number of lines in the method including blank and comment lines. Number of Parameters
(Par) was measured as it was seen a potential predictor to Long Parameter List smell.
Conditional statements are essential in all computer programming, and therefore we
decided to measure Cyclomatic Complexity (CC), which is based on interpreting programs
as graphs. CC measures the number of linearly independent graphs (McCabe 1976).
Cyclomatic complexity is equal to graph’s edges minus nodes plus 2. For illustrative
example, see Figure 5.

 Methodology 20

Figure 5. Program with cyclomatic complexity 2 = 4 – 4 + 2

We measured coupling with the Number of Remote Methods called (NORM) and the
number of couplings to different objects (CBO). Coupling is created with a field reference
or by a method call. This measure was first introduced by Chidamber and Kemerer
(Chidamber and Kemerer 1994). Finally, we measured fan-out (FO) that in object-oriented
context means the number of reference types used in field declaration, formal parameters,
throws declaration, and local variables. No simple types (in this case basic java data types,
but also String class) or super types of the object are counted. The results of measuring the
methods selected for evaluation are in Table 3.

With this metrics selection, we tried to get a few well-known metrics in order to study their
relationships to evolvability evaluations. Researchers have come up with hundreds of other
code metrics as well, but have mostly failed to show their relationships with the real world.
Thus, the purpose was not to research a vast amount of different metrics, but rather pick
few of the most recognized and see if they could be useful in explaining the evolvability
evaluations.

Table 3. Measures from the methods selected for evaluation

Methods Metrics
 LOCa Parb CCc CBOd NORMe FOf

FamilyFrame.FamilyFrame 84 0 1 13 17 3

Person.dateOfBirthEquals 24 1 2 1 3 1

PersonTableModel.personMatch 19 6 1 1 6 2

DiskManager.readFromDisk 67 1 11 5 16 4

FamilyFrame.addRelationClicked 20 3 6 4 6 1

PersonTableModel.applyChangesToPerson 11 4 1 2 5 1

Person.getChildren 9 0 3 4 7 3

DiskManager.writeToDisk 48 1 7 6 23 7

Person.illegalRelation 46 1 12 5 8 3

PersonTableModel.searchPersons 21 5 3 2 5 4
a Lines of code, b Parameter, c Cyclomatic complexity, d Coupling between objects, e

Number of remote methods called, f Fan-out

int max = a;

if (a < b)

max = b;

return max;

 Methodology 21

3.2.6 Experiment material
Experiment A Part of the demographic data was collected at beginning of the course with
web-based survey. Questions concerning the rest of the demographics, the source code to
be evaluated, and the subjective evaluations about the source code were collected with a
survey form. The survey form had 12 pieces of printed A4 paper with the landscape layout
so that two pages resided at the each page side by side. To get a better idea of the survey
form we refer to Figure 6 and Figure 7, which represent to example pages. However, all the
experiment forms were unique as the methods evaluated appeared in random order for
each of the informants.

Figure 6. First page of the survey form

 Methodology 22

Figure 7. A sample page with code and the subjective evaluations of the survey form

In addition to the survey forms, the informants also received descriptions of the smells and
the UML-figure of the software that can be seen on Figure 4. The description of the
smells that were handed out to the informants are in below:

Long Method
 Long methods are difficult to understand
 Long methods have low cohesion. Low cohesion means that method tries to do several things rather

than performing just a single task.
 Long methods are difficult to reuse

Long Parameter Lists
 Method that has too many parameters suffers from this smell
 Long Parameter Lists are hard to understand
 Long Parameter Lists are constantly changing as more data is needed

Feature Envy
 Method with this smell is more interested in other class(es) than the one it is in
 E.g. if method invokes several getter and setter methods of other classes it is envying data
 Violates the key idea of OO: data and logic are in the same place

For each method the informants evaluated how much of the smells as described in above
existed on the methods. The questions was Do these smells existing in the method below? and it
was evaluated with ordinal scale from one to seven with one standing for Not at all and
seven standing for Yes very much. In addition to that, a question about refactoring was
presented Would you refactor the method to remove the smells (in order to keep the software easy to
understand and develop further). This was answered with five point ordinal scale where each
option had a different meaning: 1-No, 2-Unlikely, 3-Maybe in the future, 4-Yes if the method needs

 Methodology 23

to be further development, 5-Yes, immediately. To get a better idea how the questions were
presented we refer to Figure 7. In Experiment A the instruction were given during the
lecture look for next sub-section for more details.

Experiment B. Experiment B was entirely web-based. The instructions of the experiment
consisted of the following: explanation of the task, explanation of refactoring, grading of
the experiment, estimated effort required, information about how the experiment informa-
tion may be used, description of the evaluated software (including screen shots see Figure 2
and Figure 3, UML-model diagram see Figure 4, source code5, runable application). All this
except the description of the software which was shown in Section 3.2.2, can be found in
Appendix B. First, the informants answered demographic questions. Then the methods to
be evaluated were presented with the question Would you refactor the method <in question> in
order to keep the software easy to understand and develop further? For the answers there were five
options 1-No, 2-Unlikely, 3-Maybe 4-Yes, later when the method needs further development, 5-Yes,
immediately. With the questions, there was a link to source code of the method. The
rationale for the evaluation was asked with a question: Explain your choice? If refactoring is
needed, explain what and how the method should be refactored. If the method is OK, explain what
desirable qualities the method possesses. If you answered Maybe also give your rationale. Screen shot of
an example evaluation page can be seen in Figure 8.

5 Interested readers may request the source code of the application from the author

 Methodology 24

Figure 8. Screen shot of an evaluation page of single method

3.2.7 Training
Experiment A To make sure that all the informants had the required information about
the software to be studied, the smells to be evaluated, and the benefits of refactoring, an
approximately 20 minute lecture was given on these issues. Additionally, the lecture covered
general information about the subjective evaluations as well as some ideas why good
software structure could be important, also the exercise organization, and the amount and
the criteria for receiving the extra-points was given. The lecture slide outline can be found
in Appendix A.

Experiment B. In the second there was no training lecture given before the informants
provided their evaluations. As explained in Section 3.2.5 the informants had received
information about the software to be studied and the benefits of refactoring. Comparison
to Experiment A Experiment B had no smells or any other evolvability flaws that the
informants were to search from the software.

 Methodology 25

3.2.8 During the experiment
Experiment A The experiment was run as a single lecture session, which took altogether
about 70 minutes. The session was held in a lecture hall with seats approximately for
hundred individuals. First, we gave the informants the training as described in 3.2.7 after
that the experiment material as described in 3.2.5 was handed out. Time to evaluate each
method was forced to five minutes to guarantee that all the informants used the same
amount of effort in evaluating each method. This meant that none of the informants was
allowed to proceed until we gave them the instruction to do so. After the experiment, the
informants evaluated the usefulness of the experiment (or exercise as it was presented to
them). Finally, the informants returned the survey forms.

Experiment B Each informant participated in the experiment through a web-based
survey. The informants were able to browse back forward through they answers during the
experiment. In the instructions an estimate of the experiment duration was given. During
the experiment, the time the informants used to complete the entire survey was tracked by
the web-based survey system utilized in the experiment.

3.2.9 Pre-validating the experiment
Experiment A As we would only get a one shot of the experiment with the given group
of students, we tried to make the experiment as good as possible. For instance, the
experiment material that was introduced in 3.2.5 was reviewed together with our colleagues.
Two test runs of the experiment were also arranged with people from our researcher group
who had not been exposed to the experiment. Based on the reviews and test runs of the
experiments several improvements were made to the experiment material and the organiza-
tions. Unfortunately, we do not posses a complete trace for the changes made and the
reasons leading to changes. However, here are listed some of the changes. The diversity of
the methods was extended by adding a method with none of the smells existing6. The
reason for this was that at the time the experiment did not have any methods with
“perfect” design. In addition, the time to evaluate each method was decreased from six
minutes to five minutes since six minutes was found out to be too long in the pre runs of
the experiment.

Experiment B This experiment was similar to Experiment A and thus required less pre-
validation. After the survey and other material where transformed to html-format and I
had tested the experiment, a colleague of mine conducted the experiment. Based on his
suggestion few modifications to the experiment were made.

3.3 Data Analysis
This section presents the methods used to analyze the interrater agreement and the factors
explaining the evaluations.

3.3.1 Interrater agreement
The Kendall coefficient of concordance (Kendall 1948) which is referred to as W or
Kendall’s W, can be used to study the agreement between three or more raters on several

6 Naturally this is only opinion by me and my colleagues

 Methodology 26

related samples. Other measures to study interrater agreement in ordinal scale, like Kappa
and Kendall’s Tau, can measure agreement only between two raters and, therefore, were
not applicable. For further information on Kendall’s W see ((in press)Legendre 2005;
Siegel 1956).

Kendall’s W tells the amount of interrater agreement by a number between zero and one.
If all raters agree W=one and W=zero implicates the smallest possible amount for the
agreement. It is incorrect to use the expression “all disagree” since with m observers (m>2)
on one-dimensional data it is impossible to completely disagree on anything (Kendall
1948). With m=two it is possible to disagree completely on rankings and this results
W=zero and Spearman correlation of minus one (in pressLegendre 2005). Completely
random data with m=two would result W=0.5 and Spearman correlation 0. When m, the
number raters, increases the expectation value of W decreases such that W is 1/m.
Additionally, the statistical significance of the agreement is needed. Small significance
means that there is at least partial concordance among the raters. Kendall’s W significance
is equivalent to the value produced by Friedman’s analysis of variance test.

Interrater agreement can also be studied in other fields e.g. judges of sports like ski
jumping and figure skating should be able to reach high interrater agreement. For a
reference the Kendall’s W was calculated from the first round results of ski-jumping world
cup competition7 held in Oberstdorf, Germany at 29th December 2004. In that occasion
the five judges evaluating 50 jumps achieved Kendall’s W 0,888 and asymptotic significance
0,000.

3.3.2 Factors explaining evaluations – regression analysis
Regression analysis was used to study how the method characteristics and the informants’
demographics affected the evaluations. There were various features concerning the method
characteristics and the respondents’ background, and the data came in various scales
(nominal, ordinal, interval), and therefore could not be analyzed using classical linear
regression. Thus, the data was analysed using categorical regression that is available for
SPSS™ software. Categorical regression is founded on optimal scaling, which turns
nominal and ordinal variables into linear variables (Meulman 1998). The categorical data
analysis methods for SPSS™ have been developed in Data Theory Group from Leiden
University, The Netherlands.

Categorical regression performs better than traditional ordinal regression on data sets that
have limited amount of observations, too many variables, and too many values per variable
(Meulman and Heiser 2001). This was also observed in this study when ordinal regression
in SPSS™ was used to analyze the data. For instance in most cases no reliable statistical
analysis could be performed because the answers could not provide all the possible
combinations for the 7-point ordinal scale. Optimal scaling provides another advantage
against traditional methods, which is the ability to create a combined regression models
where different types of independent variables can exist simultaneously and also the
dependent variable can belong to any of the three categories nominal, ordinal, and
continuous (Meulman and Heiser 2001 pp. 8). Thus, categorical regression based on
optimal seemed the most suited option for this type of statistical analysis.

7 Results are available from http://www.fis-ski.com/

 Methodology 27

Several regression models were created for each of the predicted (dependent) variables,
which were the evaluations of the existence of three code smells and the refactoring
decision. The first model (called the MetDem model) used the source code metrics of the
methods and the demographics of the informants as predictor (independent) variables.
The second model contained only the demographics and the third model only the source
code metrics of the method. In Experiment A, an additional model was constructed that
used the smell evaluations as predictor variables when predicting the refactoring decision.

3.3.3 Factors explaining evaluations – qualitative data
In Experiment B, the informants were asked to provide rationales for each refactoring
decision. This resulted textual answers ranging from four words to seven sentences per
evaluated software element per informant. The total number of separate qualitative
comments was 360. Qualitative research greatly varies in research strategies and types, look
for example Miles and Humberman (1994) pages 6-7. Thus, there is no single analysis
method or process that could be taken and used straight of the shelf. Based on the ideas
gathered from (Moilanen and Roponen 1994; Miles and Huberman 1994; Seaman 1999)
the coding process presented in below and Atlas.ti program was used to analyze the textual
data. During the analysis of the textual answers, the demographic data of the informants
and the evolvability evaluations were not studied to prevent possible bias they could have
caused.

First, all answers were read through and coding paradigm was used to recognize the type of
information they presented. In this work, we shall call the recognized types of information
as topics instead of codes to avoid confusion with coded text passages and program code.
Literature (Moilanen and Roponen 1994; Miles and Huberman 1994; Seaman 1999)
suggests that topics can be either preformed or postformed. Preformed topics mean that
before the text is analyzed a list of topics is created. Postformed topics mean that topics
are created during the coding process. Often in practice, some of the topics are preformed
and some of them are postformed. In this study, mostly postformed topics were used.
However, as the author had studied code problems (e.g. bad code smells (Fowler and Beck
2000)) extensively, this meant that some topics were actually preformed in the authors mind
although they were not explicitly written down before the coding process was started.

Second, after all the answers had been analyzed and assigned with one or more topic, an
analysis of topics was performed. This meant that topics were renamed to better reflect
their contents, and some topics were merged as there had been several topics with different
names reflecting identical meaning.

Third, all the answered were again read through and recoded with new topics where
needed. This was done to have constant topic usage across the answers. Some topics were
formed during analyzes of the final answers, and, thus, such topics would not have
appeared in the rest of the answers. Short memos of answers for each method that the
informants had evaluated were also written in this stage.

Fourth, each topic was individually analyzed by looking at the text passages that each topic
pointed. This was done in order to discover patterns inside the topics, to detect wrongly
categorized text passages, and to understand better what each topic actually meant. During
this process, topics were also merged and split up when ever it was necessary.

Fifth, the relationships of the topics were studied by grouping them in to topic families
that gathered similar topics.

 Methodology 28

Sixth, topics with similar targets but different types (look Section 4.3.1 and Figure 9 for
definition of topic type and target) were combined to get the total amount of persons who
were pointing out similar problems. For example if an informant was pointing out that
method is too long and was also saying that it should be split up, this comment had both a
complain and improvement suggestion. However, the target of the comment, method size,
remains the same.

3.3.4 Factors explaining evaluations – regression analysis with qualitative data
Categorical regression that was introduced in Section 3.3.2 was used to perform regression
analysis on the qualitative data. Categorical regression was chosen because the dependent
variable was in ordinal scale and the qualitative topics are best interpreted as ordinal scale
data. These topics were discovered when performing qualitative data analysis as described
in Section 3.3.3. The different topic types can be found in results chapter Section 4.3

• Either a text contained a topic or it did not. Thus ordinal binary scale

• With OK topic there was three different levels plus a case where no OK topic was
found. Thus ordinal scale from 0-3

• There were also different topic families e.g. complaints and improvement sugges-
tions concerning software structure. These topic families contained several topics.
A value of a topic family was obtained by counting how many of its topics are in
the text. One might have been temped to call this an interval scale, but since it was
based ordinal values we shall also interpret is as ordinal.

Different regression models were studied. First, a model where the refactoring decision was
explained by the OK topics and topic family called negatives was created. It is called Simple
Model. OK topic was split up three levels 1, 2, and 3, where three is highest meaning that
method was praised in some way and one being the lowest indicating an OK, but also a
minor complains made concerning the method. Topic family negatives contained all
comments whose type was a complain or an improvement suggestion.

Second, a model containing the negative topics grouped on topic families structure,
documenting, and visual representation was created. It is called Target Model. An extended
version of this model was also created by adding OK topics to this model. It is called
Target&OK Model. In this model topic families structure, documenting, and visual represen-
tation have slightly fewer topics than topic family negatives because some topics inside
topic family negatives were too general to be categorized into any of the topic families.
This analysis aimed to discover how much impact did each topic family (structure,
documenting, and visual representation) have on the refactoring decision.

Finally, just pure topics were used to predict the refactoring decision. This model would
reveal the individual topics that had the greatest affect on the refactoring decision. This
regression model is called Pure Topics Model.

 Results 29

4 Results

This chapter has four sections that present the results of the study. First, we look at the
Interrater agreement in Section 4.1. Section 4.2 studies the factors explaining evolvability
evaluations with regression analysis. Section 4.3 presents results of qualitative factors
affecting the refactoring decision. Finally, Section 4.4 uses the qualitative factors as bases
for regression analysis in explaining the refactoring decision.

4.1 Interrater Agreement
Table 4 shows the results of the interrater agreement analysis. The informants had a high
agreement on evaluations concerning the Long Method and Long Parameter List smells.
The agreements concerning the Feature Envy smell the refactoring decision and are
considerably weaker. However, all W values are significant indicating that the informants
had at least some level of agreement. W values in the refactoring decision for both
experiments are close to each other. The number of rankings available varied from 44 to 46
in Experiment A. In Experiment B, there were 36 rankings. For all the cases, the number
of evaluated objects was 10.

Table 4. Interrater agreement

Question N Kendall’s W p-value
Exp A - Long Method 46 0,777 0,000

Exp A - Long Parameter List 46 0,816 0,000

Exp A - Feature Envy 44 0,238 0,000

Exp A - Refactoring 45 0,353 0,000

Exp B - Refactoring 36 0,397 0,000

4.2 Factors Explaining Evaluations - Regression Analysis
This section studies the sources of variation in the evolvability evaluations and tries to
predict the evaluations using regression analysis.

4.2.1 Long Method
Regression models for the Long Method smell are in Table 5. From the table, we can see
that the MetDem model, consisting on the source code metrics and informants’ demo-
graphics, explains 74,6% of the evaluations. The MetDem model details revealed that the
source code metrics were the most important predictors. This can be also seen in Table 5
where the Metric model predicts 71,2% of the evaluations. However, the Demographic
model, containing the information about the informants’ background, is not able to explain
the evaluations effectively.

 Results 30

Table 5. Long Method regression models

Model Adjusted R Square p-value
MetDem 0,746 0,000

Metric 0,712 0,000

Demographic 0,012 0,231

As it seems that, the metrics rather than the demographics explained most of the Long
Method evaluations it made sense to study them in more detail. In Table 6 we can see the
predictor variables of the Metric model and their standardized beta’s, p-value of the F-
values, and the correlation with the predicted variable.

Table 6. Predictors in the metric model for Long Method smell evaluations

Code Metric Standardized Beta p-value Correlation
Number of Parameters -0,108 0,002 -0,509

Lines of Code 0,738 0,000 0,815

Cyclomatic Complexity 0,114 0,001 0,474

Fan Out 0,008 0,866 0,480

Number of Remote Methods 0,171 0,014 0,700

Coupling Between Objects (C&K) -0,190 0,001 0,624

From Table 6 we can see that Lines of Code was the most important predictor in the
model. The Lines of Code in this case meant that a single line is a single line of code
regardless of the space usage or comments in the method. NLOC8 was also tested in the
regression model, but it performed slightly poorer, although the difference was merely
marginal. Other metrics had only a subsidiary effect in the Metric model, but most of them
had a high correlation with the Long Method evaluations. This indicates that a reasonably
good regression model could be created even without the lines of code metric, and when
this was tested the Metric model without Lines of Code was able to explain 61,8% of the
evaluations. In that model number of remote methods (std beta 0,531), cyclomatic
complexity (std beta 0,335), and coupling between objects (std beta 0,255) were the best
predictors

4.2.2 Long Parameter List
The regression models for the Long Parameter List smell are in Table 7. The results are
similar to the results of the Long Method smells. We can see in Table 7 that the MetDem
model explained 77,6% of the evaluations, and the Metric model was almost as good
explaining 76,1% of the evaluations.

8 lines of code with out comments and blank lines so that one statement equals a line of code

 Results 31

Table 7. Long Parameter List regression Models

Model Adjusted R Square p-value
MetDem 0,776 0,000

Metric 0,761 0,000

Demographic 0,054 0,003

Further analysis of the Metric model in Table 8 shows that the Number of Parameters is
the most important predictor. It has very high correlation with the predicted variable.
Number of Remote Methods and Fan-out also have some impact in the regression model.
However, it seems likely that the effect was caused more by the limited amount of methods
evaluated rather than by real effect. Additionally, only the Number of Parameters metric
has a positive correlation with the predicted variable.

Table 8. Predictors in the Metric Model for Long Parameter List smell evaluations

Code Metric Standardized Beta p-value Correlation
Number of Parameters 0,807 0,000 0,857

Lines of Code 0,095 0,074 -0,466

Cyclomatic Complexity -0,170 0,000 -0,424

Fan Out 0,229 0,000 -0,228

Number of Remote Methods -0,287 0,000 -0,441

Coupling Between Objects (C&K) 0,061 0,246 -0,494

4.2.3 Feature Envy
Regression models for the Feature Envy smell are in Table 9. The MetDem model was able
to explain only 29,8% of the evaluations. The Metric Model explained only 9,8% of the
evaluations. Thus, with Feature Envy it appears that the predictors failed in predicting the
Feature Envy smell evaluations. Consequently, there is no need to look at the individual
models any further.

Table 9. Feature Envy regression models

Model Adjusted R Square p-value
MetDem 0,298 0,000

Metric 0,098 0,000

Demographic 0,054 0,003

 Results 32

4.2.4 Refactoring decision
In refactoring decision regression analysis, there were data from both experiments. The
regression models of the refactoring decision can be seen in Table 10 and Table 11. In
Table 10 we can see that SmeMetDem model which consists of smell evaluations, source
code metrics and demographics, explained 66,5% of the evaluations. The most significant
contributors in the SmeMetDem model are the smell evaluations. The Metric model
explained 31,9% of the evaluations. Finally the Demographic model was not effective at all
explaining only 8,7% of the evaluations.

Table 10. Refactoring decision regression models in Experiment A

Model Adjusted R Square p-value
Exp A - SmeMetDem 0,665 0,000

Exp A - Smell 0,618 0,000

Exp A - MetDem 0,435 0,000

Exp A - Metric 0,319 0,000

Exp A - Demographic 0,087 0,000

Experiment B did not have a SmeMetDem or Smell model because no questions concern-
ing the code smells were asked in that experiment. As can be seen from Table 11, the
MetDem model explained 28,4% of the evaluations. Further analysis showed that most of
the explanative power came from source code metrics. The Metric model explained 26,1%
of the evaluations alone while the demographic model failed to be effective. The compari-
son to Experiment A shows that the Demographic model in Experiment A performed
slightly better, but this is likely to be caused by the larger set of demographic variables than
a real effect.

Table 11. Refactoring decision regression models in Experiment B

Model Adjusted R Square p-value
Exp B – MetDem 0,284 0,000

Exp B – Metric 0,261 0,000

Exp B – Demographic 0,036 0,026

Details of the Smell Model from the Experiment A can be seen in Table 12. From the table
we can see that all the smell evaluations were important when predicting the refactoring
decision. The Long method smell evaluations were the most significant contributors, but
even the evaluations of the Feature Envy smell contributed significantly to the Smell
model.

 Results 33

Table 12. Predictors of the Refactoring decision in Smell Model in Experiment A

Code Metric Standardized Beta p-value Correlation
Long Method 0,598 0,000 0,514

Long Parameter List 0,469 0,000 0,280

Feature Envy 0,360 0,000 0,518

In Table 13 we can see the predictors of the Metric model predicting the refactoring
decision in both experiments. In the table, we can see that the lines of code measure had
the highest beta in the regression equation, and it also had the highest correlation among
the source code metrics with the refactoring decision. In both experiments, Coupling
between objects (CBO) was a suppressor term, which traditionally would indicate a
reduction in the likelihood of refactoring. However, this was more likely caused to by the
multicollinearity that source code metrics have with each other. This is supported by the
facts that CBO had positive correlation with the refactoring decision and that Lines of
Code and CBO had high correlation with each other (Person correlation 0,830, significance
0,000). Therefore, we cannot claim that increase in CBO would decrease the refactoring
need.

Table 13. Predictors of the Refactoring decision in Metric model in Experiments A and B

 Experiment A Experiment B
Predictor Std.

Beta
p Correlation Std.

Beta
p Correlation

Number of Parameters 0,397 0,000 0,130 -0,133 0,032 -0,230

Lines of Code 0,805 0,000 0,381 0,923 0,000 0,453

Cyclomatic Complexity -0,003 0,957 0,157 -0,073 0,230 0,233

Fan Out 0,063 0,417 0,215 0,057 0,534 0,168

Number of Remote
Methods 0,011 0,916 0,157 -0,162 0,197 0,277

Coupling Between
Objects -0,299 0,001 0,272 -0,500 0,000 0,246

4.2.5 Summary
From the results, we can see that Lines of Code is the best and most important predictor in
the Long Method smell evaluations, regardless of the fact that other problems of the long
method were introduced to the informants as described in Section 3.2.5. However, well
performing regression model was created even without using the lines of code metric. This
is easy to explain when we know that many source code metrics are correlated with each
other. In Metric regression model with out Lines of Code metric Number of Remote
Method, Cyclomatic Complexity, and Coupling Between Object rose as the most important

 Results 34

predictors. From those three metrics, only Cyclomatic Complexity did not have significant
correlation with the lines of code metric.

With Long Parameter List smell evaluations the Number of Parameters was the most
significant predictor. There is no reason to believe that any other metric would be good
predictors of this problem, because the smell evaluations had significant correlation with
other metrics. The evaluations on Feature Envy smell, however, could not be explained by
the dependent variables in the regression model.

The smell evaluations in Experiment A were able to provide the best explanation for the
refactoring decision explaining 61,8% of the variation. The used source code metrics could
not effectively explain the refactoring decision explaining only 31,9% and 26,9% of the
variation in experiments A and B respectively.

4.3 Factors Explaining Evaluations – Exploring Qualitative Data
This section will explore the rationales of the informants’ evolvability evaluations. This is
qualitative research and exploratory by nature.

4.3.1 Topics and topic families
Topics and topic families can tell us what different types of problems the informants
recognized in the software elements they were evaluating. The total number of topics was
67. Some topics had only one or two text references when some topics had over 70
references. Before going through each individual topic in detail, we study the topic families
of the answers to get an overview of the qualitative data provided. Figure 9 shows the
topic families represented with Unified Modelling Language (UML), which is originally
designed to model object oriented programming elements.

Figure 9. Topic families of the answers

In the figure we can see that Answer could consists of zero or more Types and Targets. Types
reflected the type of answer whether it was a positive comment, complain, or an improve-
ment suggestion. Target represented the part of the software element the answer was
concerned of. Visual representation means issues in representing the software topic that
can make it easier for a human to read. Topics on visual representation contained com-
ments for example on blank line usage, indentation, and splitting up method parameters to
their own lines. Documenting means communicating information about a software element

 Results 35

to the reader. In source code level9, such documenting is most often done by the names of
the software elements and source code comments that provide clarification when naming
cannot alone explain the source code’s intent. In this study, topic family documenting
consisted of source code naming or comments. Topic family structure had comments on
the software structure. Topic family structure included comment whether a certain method
should be split up to smaller methods, or should the parameters be passed inside an object
or separately.

Figure 9 is purposefully missing the reasons for each complaint. For example if informant
was complaining about the structure of a software element one might wish to know the
reason for this complaint. In this study, the reasons for the answers were however given in
the task description, which was the evolvability of the software (the form of the question
can be read from Section 0 Figure 7). However, few answers also commented other issues
like performance and correctness, although they were not specifically asked for.

By comparing the scope of the work, which was presented in Section 2.3.4, and the textual
answers we can see that some of the informants’ answers actually are outside of the
original scope of the work since they have specified other targets than structure and other
reasons than evolvability. However, as this part of the work was qualitative it made sense to
study also those answers as it helps us in explain the refactoring decision.

4.3.2 Qualitative data in detail
It is difficult to understand the value of qualitative data by looking at it from the distance.
Therefore, we go thorough all the software methods that were evaluated by the informants.
We look at interesting topics and patters that can only be discovered by studying individual
software elements. We analyze topics that appear more often in each method than in other
methods. We also study topics that according to our opinion should have received more
mentions from the informants. We consider how certain topics could be automatically
detected. We use complain topics as bases for refactorings to remove those topics and
reflect the refactorings effects to source code metrics. We list source code and the most
used topics for each method. All topic frequencies per software element can be found in
Appendix C. The number of topics in Appendix C does not equal the number of infor-
mants because a single informant may be responsible for one or more topics. The same
holds for topics that are selected for further analysis of each method in tables from Table
14 to Table 23.

The first method evaluated by the informants can be seen in Listing 1. The topics selected
for further analysis of the method are in Table 14. From the table we can see that 17
informants were not happy with the length of the return statement. Nine of the infor-
mants were not happy with the comments. They indicated that parameter comments are
missing or that within code comments are confusing. Seven people claimed that method is
OK. Only two informants rightfully pointed out that method is inside a wrong class
(method should be in Person class instead of PersonTableModel), and only one informant
considered the number of parameters to be too high. It is interesting that only few people
pointed out the two latter comments, although those issues can be considered as important
as the length of the statement in the method.

9 In higher levels of representation, visual documenting is used.

 Results 36

Table 14. Selected topic frequencies in method PersonTableModel.personMatch

Topic name Number of informants Percentage (out of 36)
Long Statement or Statement Split 17 47%

Comments improve 9 25%

OK 7 19%

Move method 2 6%

Long Parameter List 1 3%

Listing 1. Method PersonTableModel.personMatch

/**
 * PersonTableModel.personMatch()
 *
 * Does the person given as the first argument match
 * with the search criteria given as arguments
 */
private boolean personMatch(
 Person person,
 String firstName,
 String lastName,
 int gender,
 Calendar dateOfBirth,
 Calendar dateOfDeath) {
 return
 //Compare firstname
 (firstName == null || person.getFirstName().equals(firstName)) &&
 //Compare lastname
 (lastName == null || person.getLastName().equals(lastName)) &&
 //Compare gender
 (gender == person.getGenderAsInt() || gender == -1) &&
 //Compare day of birth
 (dateOfBirth == null || person.dateOfBirthEquals(dateOfBirth)) &&
 //Compare day of death
 (dateOfDeath == null || person.dateOfDeathEquals(dateOfDeath));
}

A measure could have been used to detect the long statement, for example, one could
calculate the number of conditionals in a single statement or used other kind of statement
weight or length measure. Many informants suggested splitting the statement to several if –
else clauses, which would have slightly increased the lines of code in the method. However,
lines of code is inaccurate measure, in Listing 1 for example all method parameters are split
to their own separate rows and combining them to same line would decrease this measure
when only effecting the method’s visual representation. Therefore, we suggest measure
such as statement count i.e. calculate all statement ending with “;”-mark and special
statements containing conditionals expressions like while, for, if. This type of measure
would be immune to changes in the method’s visual representation. Splitting the long
statement in Listing 1 would dramatically increase the statement count, because currently
the method has only has one statement and after splitting the statement there could be
easily over ten statements. The effect of statement split to would also increase the cyclo-
matic complexity (McCabe 1976), which measures the lineally independent execution
graphs inside the method.

 Results 37

Many informants pointed out that parameters are not commented, which could have been
measured or detected. Naturally, the quality of comments could not be measured or
detected automatically. The effect of commenting all parameters would increase the
number of comment lines, which is traditionally seen as a positive measure10. The need for
moving the method to another class can be detected with coupling measure measuring the
maximum number of remote method calls to one class. Moving method to other location
would have decreased coupling.

The second evaluated method can be seen in Listing 2. The topics selected for further
analysis of the method are in Table 15. From the table we can see that 17 informants
thought that the method is too long or that it should be split to smaller methods. Eight
informants said that a certain part of the method’s algorithm should be changed. Seven out
of these eight were pointing out that the duplication removal is not needed if duplicate
relationships are not added to the data structure in the first place, or that the duplicate
removal should be better programmed. One remaining informant suggested using Java’s
object serialization functionality instead of self programmed file format. Seven persons
pointed minor details that were classified under Minor Coding Conventions. They include
changing the for-loop to a while-loop, using iterators in all loops, or processing or introduc-
ing variables in different part of the method. Again, there are seven informants saying that
the method is OK.

Detecting the long method could be easily achieved with lines of code or statement count
measure. The extract method refactoring would decrease the lines of code or statement
count measure. However, it would increase the number of methods per class that is used to
measure class size. The effects of performing the change algorithm refactoring to get rid
of duplicate removal functionality would shorten the method. Changing the method’s
algorithm to use Java’s serialization routines would dramatically shorten and simplify the
method as whole objects and object relationships could be stored with a single command11.
Automatic detection for the need of the change algorithm refactoring is not feasible.

Table 15. Selected topic frequencies in method DiskManager.writeToDisk

Topic name Number of informants Percentage (out of 36)
Long Method or Extract Method 15 42%

Change Algorithm 8 22%

OK 7 19%

Minor Coding Conventions 7 19%

10 However, recently some people have presented ideas that comments can be seen as symptom of poorly
programmed code e.g. using comments to explain the programs behavior rather than programming it be
evident.

11 However, there are issues involved in serialization that make compatibility of different file versions
questionable. Therefore it is not necessarily an optimal solution in this case.

 Results 38

Listing 2. Method DiskManager .writeToDisk

/**
* Write the family tree data to the disk
*
* Write the people and their relationships to disk
*
* @param personTableModel
* This data model contais the people we will write to disk
* @throws IOException
*/
public void writeToDisk(PersonTableModel personTableModel)
 throws IOException {
 // Open files for writing
 FileWriter fileWriterPerson = new FileWriter(FILE_PERSONS);
 FileWriter fileWriterRelations = new FileWriter(FILE_RELATIONS);
 // Create temp variables
 Vector persons = personTableModel.getPersons();
 Vector relations = new Vector();
 Vector relationsToBeRemoved = new Vector();
 //Write persons to disk according to format:
 //"<id>,<firstName>,<lastName>,<female>;\n"
 for (Iterator iter = persons.iterator(); iter.hasNext();) {
 Person person = (Person) iter.next();
 fileWriterPerson.write(person.getId() + ",");
 fileWriterPerson.write(person.getFirstName() + ",");
 fileWriterPerson.write(person.getLastName() + ",");
 fileWriterPerson.write(person.isFemale() + ";\n");
 relations.addAll(person.getRelationships());
 }
 //Find duplicate Relationships
 for (int i = 0; relations.size() > i; i++) {
 Relation rel1 = (Relation) relations.elementAt(i);
 for (int j = i + 1; relations.size() > j; j++) {
 Relation rel2 = (Relation) relations.elementAt(j);
 if (rel2.equals(rel1)) {
 relationsToBeRemoved.add(rel2);
 }
 }
 }
 //Remove duplicate relationships
 for (Iterator iter = relationsToBeRemoved.iterator(); iter.hasNext();) {
 relations.remove(iter.next());
 }
 //Write relations to disk to format:
 //"person_id-relationtype-person_id"
 for (Iterator iter = relations.iterator(); iter.hasNext();) {
 Relation relation = (Relation) iter.next();
 fileWriterRelations.write(relation.getPerson1().getId() + "-");
 fileWriterRelations.write(relation.getRelationType(relation
 .getPerson1())
 + "-");
 fileWriterRelations.write(relation.getPerson2().getId() + ";\n");
 }
 //Clean up and close the files and streams
 fileWriterPerson.flush();
 fileWriterPerson.close();
 fileWriterRelations.flush();
 fileWriterRelations.close();
}

The third evaluated method can be seen in Listing 3. The topics selected for further
analysis of the method are in Table 16. Majority of the informants said that the method is
OK. OK-topic actually has three levels 1, 2, and 3. Three is the highest meaning the
method was praised in some way, and one is the lowest indicating acceptance of the
method but also having a minor complaint. In this method 8 out of 22 OK-topics where
level 3, and only one was level one OK-topic. Four people pointed out that gender

 Results 39

handling with string-variable and equals-command is a bit strange. Four people also
pointed out that the called method person.setFemale is badly named and it should be
changed to person.setGender. In this case, four informants’ answers indicated that they did
not completely understand what was going on in the method. Two of them where
wondering the intention of the last expression which uses variable rowIndex twice as an
argument in a single method call12. One was suggesting that separate methods should be
created for setting the different parameters. This makes no sense since this is user interface
code that is executed right after user has pressed apply in the user interface. The last
informant, that lacked understanding, commented in her answer that maybe she did not
completely understand the structure of method.

Automatic or metrics based detection of any of the problems of this method seem
impossible. We cannot see a way to detect automatically the naming problems or the gender
handling problems.

Table 16. Selected topic frequencies in method PersonTableModel.applyChangesToPerson

Topic name Number of informants Percentage (out of 36)
OK 22 61%

Gender handling 4 11%

Naming other methods 4 11%

Lack understanding 4 11%

Listing 3. Method PersonTableModel.applyChangesToPerson

/**
 * Update the selected persons data
 * @param firstName New first name
 * @param lastName New last name
 * @param gender New gender
 * @param rowIndex The row that contains the person to be updated
 */
public void applyChangesToPerson(
 String firstName,
 String lastName,
 String gender,
 int rowIndex) {
 Person person = (Person) persons.elementAt(rowIndex);
 person.setFirstName(firstName);
 person.setLastName(lastName);
 person.setFemale(gender.equalsIgnoreCase("female"));
 fireTableRowsUpdated(rowIndex, rowIndex);
}

The fourth method evaluated can be seen in Listing 4. The topics selected for further
analysis of the method are in Table 17. This method has many similar characteristics as the
method in Listing 2. In both methods, the method length or extracting method to smaller
pieces was the most mentioned topic. The second frequent topic in both cases was the

12 This part is actually partly confusing, but it is correctly coded and the informants could have checked this
from Java SDK API

 Results 40

Change Algorithm. In this method 11 out 12 informants with Change Algorithm topic
pointed out, that part of the code that is reading the data from disk could be more easily
implemented with using: Java’s String Tokenizer functionality, Java’s regular expression
functionality with String.split method calls, Java’s Serialization functionality, or using loop
with array instead of several index variables. Six informants thought the method was OK.
Although, there were no OK level 3 comments, which indicates the lack of praises in the
OK comments. Four informants also thought that the number of temporary variables
declared and used in the method should be reduced.

The metrics and refactoring analysis for this method is in many ways similar to the method
in Listing 2. However, some differences need to be discussed. The effect of change
algorithm refactoring to start using Java’s regular expression or String Tokenizer would
made individual statements simpler and it would reduce the code lines needed. The
temporary variable reduction refactoring could be detected by measuring the number of
temporary variables inside the method. The effect of this refactoring would reduce the
number variables, but it would not decrease the number of code lines or number state-
ments.

Table 17. Selected topic frequencies in method DiskManager.applyChangesToPerson

Topic name Number of informants Percentage (out of 36)
Long Method or Extract Method 16 41%

Change Algorithm 12 33%

OK 6 16%

Temps reduce 4 11%

Listing 4. Method DiskManager.readFromDisk

/**
 * Read familytree data from disk
 *
 * Read stored data of people and their relationships from disk
 *
 * @param personTableModel
 * The table data model that is populated by the method
 * @throws IOException
 * In case IO-fails
 */
public void readFromDisk(PersonTableModel personTableModel)
 throws IOException {
 // Open files so we can read the data
 LineNumberReader personReader = new LineNumberReader(new FileReader(
 FILE_PERSONS));
 LineNumberReader relativeReader = new LineNumberReader(new FileReader(
 FILE_RELATIONS));
 /*
 * This loop reads the persons from the disk Single person is stored in
 * the disk in the form: " <id>, <firstName>, <lastName>, <female>;\n"
 */
 String linePerson = personReader.readLine();
 while (linePerson != null) {
 // Read single person from disk
 int index_1 = linePerson.indexOf(",");
 int id = Integer.parseInt(linePerson.substring(0, index_1));
 int index_2 = linePerson.indexOf(",", index_1 + 1);
 String firstName = linePerson.substring(index_1 + 1, index_2);

 Results 41

 int index_3 = linePerson.indexOf(",", index_2 + 1);
 String lastName = linePerson.substring(index_2 + 1, index_3);
 int index_4 = linePerson.indexOf(";", index_3 + 1);
 String strFemaleTrue = linePerson.substring(index_3 + 1, index_4);
 boolean female = Boolean.valueOf(strFemaleTrue).booleanValue();
 // Restore the person and add it to table model
 Person person = Person.restorePerson(id, firstName, lastName,
 female);
 personTableModel.addPerson(person);
 linePerson = personReader.readLine();
 }
 /*
 * This loop reads relationships from the disk Single relation is writen
 * to disk in the form "person_id-relationtype-person_id"
 */
 String lineRelation = relativeReader.readLine();
 while (lineRelation != null) {
 //Read single relation from disk
 int index_1 = lineRelation.indexOf("-");
 int id1 = Integer.parseInt(lineRelation.substring(0, index_1));
 Person person1 = personTableModel.getPersonWithId(id1);
 if (person1 == null)
 throw new IOException(
 ERROR_MSG_NONE_EXISTING_PERSON_IN_RELATION);
 int index_2 = lineRelation.indexOf("-", index_1 + 1);
 String relationType = lineRelation.substring(index_1 + 1, index_2);
 int index_3 = lineRelation.indexOf(";");
 int id2 = Integer.parseInt(lineRelation.substring(index_2 + 1,
 index_3));
 Person person2 = personTableModel.getPersonWithId(id2);
 if (person2 == null)
 throw new IOException(
 ERROR_MSG_NONE_EXISTING_PERSON_IN_RELATION);
 // Restore relations as classes
 try {
 if (relationType.equals(Relation.DAUGHTER)
 || relationType.equals(Relation.SON)) {
 person1.addChild(person2);
 } else if (relationType.equals(Relation.FATHER)
 || relationType.equals(Relation.MOTHER)) {
 person2.addChild(person1);
 } else if (relationType.equals(Relation.WIFE)
 || relationType.equals(Relation.HUSBAND)) {
 person1.addSpouse(person2);
 }
 } catch (AddRelationException e) {
 throw new IOException(ERROR_MSG_ADD_RELATION_FAILED);
 }
 lineRelation = relativeReader.readLine();
 }
}

The fifth method that was evaluated can be seen in Listing 5. The topics selected for
further analysis of the method are in Table 18. Most (27/36) of the informants said the
method was OK and six of them made a level 3 praising OK comment. Four informants
pointed out poor readability. Two of the four mentioned that the children.add method call
was not easy to understand. The other two informants did not specify why they thought
that the method was not easy to understand. Answers with topics Reorganize internally
(need of reorganization of the method internals) were saying variable relation should be
declared outside of loop or that the iterator should be initialized before the loop structure.
Two people indicating the need for changing the algorithm suggested using different data
structure than Vector. One informant pointed out that with large amount of relatives, the
search becomes slow and therefore the parent should constantly hold a list of its children.
The minor coding convention topic included issues of changing the for-loop to a while-
loop and to use curly braces with the if-statement.

 Results 42

The problems of poor readability and the need to change algorithm cannot be detected
automatically. However, we can detect and measure the variable declaration inside of a
loop. The effects of the proposed refactorings to source code metrics would be very small
if not inexistent.

Table 18. Selected topic frequencies in method Person.getChildred

Topic name Number of informants Percentage (out of 36)
OK 27 75%

Readability poor 4 11%

Reorganize internally 3 8%

Change algorithm 3 8%

Minor coding conventions 3 8%

Listing 5. Method Person.getChildren

/**
 * Get children of this person
 * @return Vector containing the children
 */
public Vector getChildren() {
 Vector children = new Vector();
 for (Iterator iterator = vecRelations.iterator(); iterator.hasNext();) {
 Relation relation = (Relation) iterator.next();
 if (relation.isParent(this))
 children.add(((RelationParentChild) relation).getChild());
 }
 return children;
}

The sixth method that was evaluated can be seen in Listing 6. The topics selected for
further analysis of the method are in Table 19. Over half of the informants said that the
method was too long and should split up i.e. some suggested creating graphical user
interface (GUI) components for the two tabs in their own methods. This can be seen a bit
surprising since GUI code often contains long methods, as there seldom is possibility to
reduce the amount of code by generalization. Half of the informants said that the method
was not very easy to read or comprehend. These informants characterized the code as long,
messy, awful, and lacking proper grouping, but also pointed out that GUI code often looks
like this. The informants complaining about the layout said that there should more empty
lines to provide better grouping. Surprisingly, there were two informants saying that the
method’s internal grouping is good (OK) Four people said the method overall was OK,
although two of these four had level 1 OK-topics indicating some complain accompanying
the OK statement. However, there was one person praising the method and thus character-
ized as level 3 OK:

Metodi oli selkeä. Person ja Relation paneeleihin koskevat koodit oli selkeästi jaksotettu ryhmiinsä
ja myöhemmin jos tarvitaan lisää poimintoja, on ne helposti lisättävissä oikealle paikalleen koodia.

Here is an English translation of that comment

 Results 43

The method was clear. Code concerning Person and Relation panels was clearly grouped, and if
there is later, a need to add functionality it can be easily added to the correct place in the code

Again, in this method the method size could be easily measured with lines of code or
statement count measure. However, cyclomatic complexity measure would not have
indicated any problems since the method does not have any conditional statements.
Performing the extract method refactoring would decrease the size of this method, but it
would increase the number of methods in this class. Nothing can be said about detecting
or refactoring poor readability, as it is very general statement. The poor layout could have
been detected by the lack of blank lines compared to the lines of codes in the method. The
effect of improving layout would be seen in code lines versus blank lines ratios.

Table 19. Selected topic frequencies in method FamilyFrame.FamilyFrame

Topic name Number of informants Percentage (out of 36)
Long Method or Extract Method 22 61%

Readability Poor 18 50%

Layout poor 12 33%

OK 4 11%

Listing 6. Method. FamilyFrame.FamilyFrame

/**
 * Constructor of the main GUI class in the application
 * This method creates GUI components for the application
 */
private FamilyFrame() {
 super("Family Tree Professional");
 setDefaultCloseOperation(DO_NOTHING_ON_CLOSE);
 JTabbedPane tabbedPane = new JTabbedPane();
 JPanel personPanel = new JPanel(false);
 JPanel relativePanel = new JPanel(false);
 personPanel.setLayout(new BorderLayout());
 relativePanel.setLayout(new BorderLayout());
 // Two tabs are used. personPanel for showing all the persons
 // relativePanel for showing all the relations
 tabbedPane.addTab("Persons", null, personPanel, "Shows the persons");
 tabbedPane.setSelectedIndex(0);
 tabbedPane.addTab("Relationships", null,
 relativePanel,"Show the relationships");
 //Table for Person PersonTable
 personTableModel = new PersonTableModel();
 personTable = new JTable(personTableModel);
 personTable.setPreferredScrollableViewportSize(new Dimension(500, 70));
 //Table for Relations RelationTable
 relationTableModel = new RelationTableModel();
 relationTable = new JTable(relationTableModel);
 relationTable.setPreferredScrollableViewportSize(
 new Dimension(500, 70));
 //Create the scroll pane and add the PersonTable to it.
 JScrollPane scrollPane = new JScrollPane(personTable);
 personPanel.add(scrollPane, BorderLayout.CENTER);
 //Create the scroll pane and add the RelativeTable to it.
 JScrollPane scrollPane2 = new JScrollPane(relationTable);
 relativePanel.add(scrollPane2, BorderLayout.CENTER);
 //Create the panel where person data can be edited
 //Add it personPanel
 JPanel personPanelEdit = new JPanel();
 personPanelEdit.setLayout(new BorderLayout());

 Results 44

 //Text fields for editing person
 JPanel personFieldPanel = new JPanel();
 personFieldPanel.setLayout(new GridLayout(0, 3));
 personFieldPanel.add(jtfFirstName);
 personFieldPanel.add(jtfLastName);
 personFieldPanel.add(jcbGender);
 personPanelEdit.add(personFieldPanel, BorderLayout.NORTH);
 //Buttons for editing person
 JPanel buttonPanelPerson = new JPanel(new FlowLayout(FlowLayout.LEFT));
 buttonPanelPerson.add(jbAddPerson);
 buttonPanelPerson.add(jbApplyPerson);
 buttonPanelPerson.add(jbDeletePerson);
 personPanelEdit.add(buttonPanelPerson, BorderLayout.SOUTH);
 personPanel.add(personPanelEdit, BorderLayout.SOUTH);
 //Create the panel where relationships can be edited.
 //Add it to relativePanel
 JPanel relativePanelEdit = new JPanel();
 relativePanelEdit.setLayout(new BorderLayout(0, 1));
 JPanel relativeFieldPanel = new JPanel();
 relativeFieldPanel.setLayout(new GridLayout(0, 3));

 relativePanel.add(createTopRelativePanel(), BorderLayout.NORTH);
 relativePanelEdit.add(relativeFieldPanel, BorderLayout.NORTH);
 //Buttons for editing relationships
 JPanel buttonPanelRelative =
 new JPanel(new FlowLayout(FlowLayout.LEFT));
 buttonPanelRelative.add(jbAddRelation);
 buttonPanelRelative.add(jbApplyRelation);
 buttonPanelRelative.add(jbDeleteRelation);
 buttonPanelRelative.add(jcbRelationship);
 relativePanelEdit.add(buttonPanelRelative, BorderLayout.CENTER);
 //RelativeInfoPanel, where the person's info
 //who is edited/added/deleted as relative is added
 JPanel relativeInfoPanel = new JPanel();
 relativeInfoPanel.setLayout(new GridLayout(0, 3));
 jcbFullNameRelativeToBeAdded =
 new JComboBox(
 new DefaultComboBoxModel(personTableModel.getPersons()));
 relativeInfoPanel.add(jcbFullNameRelativeToBeAdded);
 relativeInfoPanel.add(jcbRelationship);
 relativePanelEdit.add(relativeInfoPanel, BorderLayout.SOUTH);
 relativePanel.add(relativePanelEdit, BorderLayout.SOUTH);
 //Add the tabbed pane to this window.
 getContentPane().add(tabbedPane, BorderLayout.CENTER);
 addListeners();
 readDataFromDisk();
}

The sixth method that was evaluated can be seen in Listing 7. The topics selected for
further analysis of the method are in Table 20. Over half of the informants were happy
with the method. Some informants pointed out that it is good thing the method is using
helper method inside the if-statement. However, there only two informants indicated that
the method should have been using parameter object. The informants were correct as
parameter object would make this method immune for the changes in the criteria (currently
passed as parameter list) used in searching and matching a person. Six informants that told
the method would need more comments were mostly pointing to the fact that parameters
had not been commented. Two informants indicated they would change the method
arguments to be in a single line. Finally, six informants pointed out that variable mathing-
Persons is spelled incorrectly.

The need for method parameter comments could have been automatically detected. The
effect of this change would increase the lines of comment measure. Spelling problems with
the single variable could not be detected; the use of spelling checker in this case is not
feasible because source code contains variables names like firstName, which would be

 Results 45

flagged by any regular spellchecker. Only special source code spell checker (if existing)
could point out this problem. The problem concerning the layout of method arguments
could be detected and even automatically enforced. This change in layout would reduce the
lines of code in the method but it would not affect the statement count measure. It is easy
to measure the number of the parameters and state that parameter object could be used.
However, this measure is not detecting the fact that all the parameters are used as a group
when they are referenced inside a method call. Referring them only as a group and not
making separate references to them makes the parameter object even more tempting
because there would be no need to make any method calls or field references to the
parameter object. Thus, the coupling to the parameter object would be minimal. To detect
the need for this refactoring we would have to somehow measure that parameters are only
used as a group and they are not referenced individually. Performing this with program
analysis is possible, but not necessarily very simple.

Table 20. Selected topic frequencies in method PersonTableModel.searchPersons

Topic name Number of informants Percentage (out of 36)
OK 21 58%

Comments Add 6 17%

Spelling & grammar 6 17%

Layout method arguments 2 6%

Parameter Object 2 6%

Listing 7. Method PersonTableModel.searchPersons

/**
 * Get the persons that match the arguments
 * @return Vector contain the matching persons
 */
protected Vector searchPersons(
 String firstName,
 String lastName,
 int gender,
 Calendar dateOfBirth,
 Calendar dateOfDeath) {
 Vector mathingPersons = new Vector();
 // Loop throught the persons and check if they match
 for (Iterator iter = persons.iterator(); iter.hasNext();) {
 Person person = (Person) iter.next();
 if (personMatch(person,
 firstName,
 lastName,
 gender,
 dateOfBirth,
 dateOfDeath)) {
 mathingPersons.add(person);
 }
 }
 return mathingPersons;
}

The eighth method that was evaluated can be seen in Listing 8. The topics selected for
further analysis of the method are in Table 21. Twelve informants were saying that the final

 Results 46

return statement is too long and it should be split up. This is similar to the complains
concerning the long statement problem in Listing 1 that also had a long return statement.
Seven informants said that the method is OK. Seven informants also indicated that
readability of the method is poor. Two of these seven did not indicate the problem in more
detail, but complained about the horrible appearance and said the method was not easy to
understand. The remaining five out of the seven were pointing that the return statement is
unreadable. Three out of the five layout complainers pointed out that the return-statement
is not correctly intended. The remaining two layout complainers complained about the lack
of blank line usage. Four informants would have extracted a new method from this
method. Three of them would make own methods from the comparisons of day, month,
and year. One pointed out that the bug avoidance should have been separated in to its own
routine, which is good idea, but the return value of that method should be an array or
other data structure. Three informants spotted that this method is almost identical to the
method just below this method called Person.dataOfDeathEquals and suggested combin-
ing them.

Table 21. Selected topic frequencies in method Person.dataOfBirthEquals

Topic name Number of informants Percentage (out of 36)
Long Statement or Statement Split 12 33%

OK 7 19%

Readability Poor 7 19%

Layout Poor 5 14%

Extract Method 4 11%

Duplication 3 8%

The measurement and the effect of refactoring a long statement were already discussed in
Listing 1. In addition, we have already discussed how the poor layout can be automatically
detected and corrected. The detection of extract method refactoring in this method would
have been difficult. One informant indicated that the bug fix should be extracted to own
method. Detecting this would have been challenging, and the only idea that comes in to
mind is to try to search for in-method comments that contain words “bug” and “fix” near
to each other. Three informants answered that they would extract own methods out of the
checks of day, month, and year. These three informants clearly indicate that they prefer
using small utility methods for condition testing. Automatically supporting this kind of
coding style would require a tool that could distinct between the utility methods and the
worker methods. Then the tool would need to detect statements in the worker methods
that do not utilize a utility method but still makes use of identical conditional comparisons.
Creating such detection tool would not be straightforward operation. The effects of extract
method refactorings to source code metrics have been previously discussed. Duplicate or
clone source code detection is an established research area look for example (Balazinska et
al. 2000; Ducasse et al. 1999) for more references. It seems likely that the duplication found
by the informants could have been automatically detected. The effect of removing the
duplication would reduce the class size measured as lines of code or number of statements,

 Results 47

but it would increase the method count in the class if both methods would retain their
presence and a new method would be created to contain the shared functionality.

Listing 8. Method Person.dataofBirthEquals

/**
 * Does the given birth day match with this persons birthday
 *
 * @param moment The moment that is checked as birthday.
 * It is possible to specify only only month, year or day in the moment variable
 * This way we can check whether his person was born in July for instance
 *
 * @return Whether the given moment includes the birthday
 */
public boolean dateOfBirthEquals(Calendar moment) {
 if (moment == null)
 return false;
 //Ugly hack to fix feature/bug by SUN, which causes
 //all calender fields to get set, when Calender.get(Field) is called
 Calendar day1 = (Calendar) moment.clone();
 Calendar day2 = (Calendar) moment.clone();
 Calendar day3 = (Calendar) moment.clone();
 Calendar bday1 = getDateOfBirth();
 Calendar bday2 = getDateOfBirth();
 Calendar bday3 = getDateOfBirth();
 return (
 //Check day of month
 (!day1.isSet(Calendar.DAY_OF_MONTH)
 || (bday1.get(Calendar.DAY_OF_MONTH) == day1.get(Calendar.DAY_OF_MONTH)))
 &&
 //Check month
 (!day2.isSet(Calendar.MONTH)
 || (bday2.get(Calendar.MONTH) == day2.get(Calendar.MONTH)))
 &&
 //Check year
 (!day3.isSet(Calendar.YEAR)
 || (bday3.get(Calendar.YEAR) == day3.get(Calendar.YEAR))));
}

The ninth method that was evaluated can be seen in Listing 9. The topics selected for
further analysis of the method are in Table 22. Two thirds of the informants said that the
method was OK. Seven informants pointed out that comments should be improved, two
of these were saying that the usage of Person parameters should made clearer. The rest of
the informants who complained about comments pointed that the Javadoc should tell what
the method does. Six people said that the naming of Person parameters should be made
more evident. However, none of them proposed how it should be done, and one of them
even admitted that he could not come up with names that are more descriptive. This
indicates that descriptive names are important, but not in all cases easy to come up.

Table 22. Selected topic frequencies in method FamilyFrame.addRelationClicked

Topic name Number of informants Percentage (out of 36)
OK 24 67%

Comments improve 7 19%

Naming improvement variables 6 17%

 Results 48

Detecting the problems listed for this method in Table 22 would be very difficult. Detect-
ing the problem in the comments is impossible because it requires interpretation of the
comments. Poor variable naming could be perhaps detected by searching variables having a
number as last part of their name. This could be used as an indication of lack of self-
documenting names. However, it seems likely that such solution would provide a great
amount of false positive results.

Listing 9. Method FamilyFrame.addRelationClicked

/**
 * This method is executed, when user adds a relation between to persons.
 * E.g. addRelation button is clicked
 * @param person1 Person participating in the relation
 * @param person2 Other person participating in the relation
 * @param relation The relation type
 */
 private void addRelationClicked(
 Person person1,
 Person person2,
 String relation) {
 try {
 if (relation.equals(Relation.CHILD)) {
 person1.addChild(person2);
 } else if (relation.equals(Relation.PARENT)) {
 person2.addChild(person1);
 } else if (relation.equals(Relation.SPOUSE)) {
 person1.addSpouse(person2);
 }
 relationTableModel.personAdded();
 } catch (AddRelationException e) {
 JOptionPane.showMessageDialog(
 this,
 e.getMessage(),
 "Adding relation failed",
 JOptionPane.ERROR_MESSAGE);
 }
}

The tenth method evaluated can be seen in Listing 10. The topics selected for further
analysis of the method are in Table 23. Half of the informants would have extracted this
method to smaller methods. Fourteen informants said that code appeared as unreadable
characterizing it for example as very unintuitive, very unclear, and very difficult to read. Eleven
informants pointed out excessive nesting. Four informants suggested a complete refiguring
i.e. going thoroughly through the code and rewriting it13. No informants said anything that
could have been categorized with topic OK.

The need for extract method and the excessive nesting would have been easy to detect with
tools. Complete refiguring needed is actually a qualitative comment indicating that the
method has become too complex. For detection of poor methods, such as the one in
Listing 10, a combination measure of lines of code and cyclomatic complexity could have
been used.

13 As the author of the code I may add that creating this coding horror was not particularly difficult. Maybe it
is easier to create poor source code than to understand it.

 Results 49

Listing 10. Method Person.illegalRelation

/**
 * Is the new relation illegal
 * Is there allready some kind of relationship between the two people
 * @param relation Relation that holds the people together
 * @return true if the two people already are in
 * any relationship with each other
 */
private boolean illegalRelation(Relation relationToBeAdded) {
 //Cannot have relationhips with yourself
 if (relationToBeAdded.getPerson1() == relationToBeAdded.getPerson2())
 return true;
 // Loop through this persons relationships
 for (Iterator iter = vecRelations.iterator(); iter.hasNext();) {
 Relation relation = (Relation) iter.next();
 // We allready have some kind of relation between the persons
 if (relationToBeAdded.equalsPersons(relation))
 return true;
 // Get direct reference to the person this person will have relation
 Person relativeToBe; // The person we will have relation with
 if (relationToBeAdded.getPerson1() == this)
 relativeToBe = relationToBeAdded.getPerson2();
 else if (relationToBeAdded.getPerson2() == this)
 relativeToBe = relationToBeAdded.getPerson1();
 else // this person does not partipate in this relation
 return true; // Should not be reached
 //Rule addition:
 //this person cannot have relation with it's siblings (=sister/brother)
 if (relation instanceof RelationParentChild) {
 RelationParentChild rpc = (RelationParentChild) relation;
 if (rpc.getChild() == this) { //Found Parent
 Person parent = rpc.getParent();
 for (Iterator iter2 = parent.getRelationships().iterator();
 iter2.hasNext();
) {
 Relation parentsRelation = (Relation) iter2.next();
 if (parentsRelation instanceof RelationParentChild) {
 RelationParentChild childRelation =
 (RelationParentChild) parentsRelation;
 if (parent == childRelation.getParent()) {
 //Found a child
 Person child = childRelation.getChild();
 if (child == relativeToBe) {
 //Found sibling illegal relation
 return true;
 }
 }
 }
 }
 }
 }
 }
 return false;
}

 Results 50

Table 23. Selected topic frequencies in method FamilyFrame.addRelationClicked

Topic name Number of informants Percentage (out of 36)
Extract method 18 50,0%

Readability poor 14 39%

Excessive nesting 11 31%

Complete refiguring 4 11%

OK 0 0%

4.3.3 Summary of the qualitative analysis
Cross case summary of the analyzed methods is in Table 24. In the table, refactoring
decision is measured on scale 1-5 with one indicating no need for refactoring and five
indicating immediate need for refactoring.

 Results 51

Table 24. Cross-case summaries of the analyzed methods

Refactor-
ing
decision:

Met
hod

OK

me
an

std.
dev

Summary

1 7 3,5 1,40 The informants indicated that the method has a long return
statement that should be split up (similar to method number 8).
Method documentation was not sufficient or was misleading
according to the informants. Method also had a large std. dev
in the Refactoring decision indicating conflicting opinions.

2 7 3,8 1,26 Method is too long and duplication removal functionality is not
needed if different algorithm is used according to informants.
Method number 4 is similar to this in the sense that they both
operate with the file system and are responsible for applications
I/O procedures.

3 22 2,3 1,37 Most informants considered this method OK. Poor naming of
called methods and the gender handling are the biggest
problems according to the informants.

4 6 3,8 1,28 Method is too long, and the algorithm that reads data from the
disk needs improvement according to the informants. Few also
pointed out excessive usage of temporary variables.

5 27 1,9 1,18 This is the best method under evaluation according to the
amount of the informants’ OK comment. There were only few
negative comments on minor issues by the informants: some
informants would have used other data structure instead of
vectors, declaration of parameter should have been done
outside of loop.

6 4 4,2 0,96 This is long constructor method that has a poor readability and
layout according to informants.

7 21 2,5 1,56 Mostly OK method according to the informants. Although, the
method’s standard deviation is highest among the methods that
indicates conflicting opinions. Most mentioned problems by
informants, poor method documentation, layout of parameters,
and spelling errors. Only two pointed out that using parameter
object would greatly benefit the method.

8 7 4,1 1,15 Method suffers from long return statement, and incorrect
layout that hinders readability according to the informants.
Some also pointed out that it has duplication with other
method in the same class.

9 24 2,2 1,21 Mostly OK method according to informants. Javadoc needs to
be updated to tell what the method does. Variable names
should be improved.

10 0 4,6 0,60 Suffers from too excessive nesting, is too long, and has a
complicated logic according to informants. This is worst
method according to number of OK comments.

 Results 52

Summary of the most frequently mentioned topics are in Table 25. The complete set of
topic frequencies are in Appendix C. Topics in italic are super topics meaning that more
than one topic is included in them. From the table we have removed topics that had less
than 20 references or were already included in one of the super topics.

The most frequently used topic was OK meaning that the method is fine and there is
hardly need for improvement. OK topic had three levels 1, 2, and 3 indicating the level
satisfaction expressed towards the method. The second frequent topic was a super topic
combining complain and improvement suggestion. Either the method was too long and/or
the informant was suggesting that a certain part of the method should be extracted to a
method of its own. The third topic was a general comment indicating the method was not
readable. The fourth topic, improve comments, was again super topic combining all the
complaints and improvement suggestion on the source code comments. The fifth super
topic combined the complaint and improvement suggestion on the layout of the code.
Sixth topic, change algorithm, indicated that a code can be improved by using a different
approach to implement it e.g. if one has coded a sorting routine with bubble sort the code
can be improved by using quick sort and if one is using self coded file format to store data
it can be replaced by using Java’s serialization functionality. At this point, a clever reader has
noticed that there is slight difference in the two examples presented above. In the first
example, the person programs the improved algorithm by himself / herself and in the
second, a pre-built functionality is used. However, both of these were categorized under
the change algorithm topic because they both indicate completely new approach in
implementing the existing functionality. The seventh super topic combined the complaints
of too long statement and the improvement suggestion of splitting up a single statement to
several smaller ones. High amount of this super topic could be seen in methods 1 and 8.
The eight topic, coding conventions, consisted of minor problems. This meant comments
that, by the interpretation of the author, would not have had big impact on the evolvability
and were more a matter of opinion e.g. were loop variables declared in the loop or before
the loop, for-loop structure instead of while-loop structure, or traversing the vector with
elementAt method call rather than using a iterator.

If we compare the most frequently used topics with Figure 9, in page 34, we can see that
each target from Figure 9 (visual representation, documenting, and structure) will include
one or more the most frequent topics. However, three most frequent topics do not fall in
to these categories. Topics OK, poor readability, and coding conventions cannot be put in
any of the target groups’ categories. The comments behind topics OK and poor readability
are likely formed from a combination effect of the three target groups e.g. readability is poor
when visual representation is not good, documenting is poor and structure could be slightly
better. Often the answers of those topics were also quite general that more specific topic
could not be assigned. Finally, coding conventions are a collection of minor issues
including problems in all three target groups. Thus, this category is created based on the
impact of the complain or the improvement suggestion rather than the target of it. Often
the texts coded with coding convections were also coded to some other category to
indicate the target of the problem.

Most frequent topics can be split to axes with ends general and specific. Topics OK, poor
readability will be the most general where as topics indicating that a method or statement
should be split up will be the most specific. Coding convention is also quite general as it
only indicates the impact of the issue. Topics indicating poor comments and layout are
somewhat general. The topic change algorithm would also appear to be more general than

 Results 53

specific because it may contain several changes. It is good to notice that the topics that
appear to be most general could not be placed inside of any single target group (visual
representation, documentation, structure). With comments that are more specific this
grouping can be easily achieved.

Table 25. Most frequent topics

Topics Methods

 1 2 3 4 5 6 7 8 9 10 Totals
OK 7 7 22 6 27 4 21 7 24 0 125

extractMethod + longMethod 0 15 2 16 0 22 0 4 0 18 77

readabilityPoor 4 0 1 5 4 18 0 7 1 14 54

commentsImprove 9 4 1 2 2 1 6 3 7 5 40

layoutPoor 1 3 1 4 2 12 2 5 3 4 37

changeAlgorithm 1 8 0 12 3 3 1 3 0 2 33

longStatement + statementSplit 17 0 0 0 2 0 0 12 0 0 31

codingConventions 1 7 1 2 3 0 2 1 2 4 23

4.3.4 Interpretation and summary
In Figure 9 we saw the different topic families that were created based on the answers. The
classification of answer types to positive, complain, and improvement suggestion is not very
interesting for the software engineering community. However, the classification of answer
targets to visual representation, documenting, and software structure could help researchers
distinguish the different sources affecting the evolvability.

By going individually through the evaluated methods we studied the individual characteris-
tics of each method and saw how the informants evaluated them. We saw the specific
problems of each method by studying at the coded answers. For example, method number
10 had problems with excessive nesting, but this problem was not mentioned in any of the
other methods as one can see from Appendix C. Similar patterns with other topics also
appeared where few methods produced the majority of the topics references. Table 25
showed that even the most frequent topics are not uniformly distributed to different
methods. This indicates that individual method characteristics play very important part in
the evolvability evaluation.

Based on the discussion on automatically detecting the problems (code smells) indicated by
the informants, we can say that in some cases automatic detection seemed usable, in others
it did not, and there were several cases that fall between these two categories. For example
detecting a long method is easily achieved by measuring the method length. However, it is
more difficult to measure cases where extract method refactoring should be applied i.e. if
individual prefers small utility routines for conditional comparisons. Long statement
problem could be automatically detected, but it might require development of some new
measures, as we are not currently aware of metrics measuring the statement weight or size.

 Results 54

It is nearly impossible to detect problems such that change algorithm or improve readabil-
ity. The latter is difficult to detect because it is two vague. Perhaps it could be detected by
forming a profile of several methods that suffer from this problem. The former cannot be
detected because it requires understanding of the semantics, and knowledge of better
solutions and the pre-built functions available in APIs. These functions are not currently
possessed by automatic detection tools.

The affect of the proposed refactorings to commonly used source code metrics were also
discussed. Generally, the refactorings will cause some metrics to decrease while others
increase. For example extract method decreases the size of a single method, but increases
the method count of a class. Statement split refactoring will increase method size measured
with lines of code, number of statement or cyclomatic complexity, but it will decrease the
size or weight of an individual statement. Change algorithm is one of the few refactorings
that can decrease some measures without increasing any of the other measures, but as
previously discussed, its automatic detection is virtually impossible.

We saw that some of the most frequent topics were very general and that some of them
were quite specific. The problem with the general topics is that they hide the interesting
details and that that they cannot be effectively categorized. The problem with specific
topics is that it is difficult compare them between cases due to the very uneven distribution.
Thus, the specific topics greatly reflect the software that was under evaluation. The
differences between the specific and general topics are likely to become evident if more
studies of this nature are made. It is possible that in the future studies the specific topics
can be completely different to the ones we had in here. On the other hand, the general
topics and their frequencies should be more or less the same. This way general topics make
it easier to perform comparisons cross studies while specific topics increase the existing
body of knowledge concerning different problems that may appear in the code.

4.4 Factors Explaining Evaluations – Regression Analysis with
Qualitative Data

In this section, we shall return to regression analysis and study whether the topics found in
informants answers could be used to explain the refactoring decision. On one hand, this
might sound pointless as the informants answers were exactly the rationales for their
refactoring decisions. On the other hand, we must acknowledge that if an informant
recognized a certain problem, e.g., method is too long, it still does not indicate that the
informant would have refactored it. It is possible that the informant did not consider
method length to be a very bad problem. Regression analysis makes it possible to compare
the effects of topics. For instance we can study which topic families (structure, layout,
visual representation), classified as targets in Figure 9, have the biggest impact on the
refactoring decision.

4.4.1 Regression models
The regression models are in Table 26. We can see that the Simple model, consisting of
OK topic in ordinal scale and number of topics in topic family negatives, is able to explain
over 70% of the variation. The Target model, consisting of the topics that could grouped
to different targets of Figure 9 in page 34, is only able explain little over 40% of the
variation. However, the Target&OK model is almost as powerful as the Simple Model

 Results 55

explaining 69,6% of the variation. The Pure Topics model, consisting of all individual
topics excluding super topics and OK topics, is only able to explain 37,7% of the variation.
The Pure Topics Model has R squared 0,587, but the model suffers when adjusted R square
is calculated, because it has 61 topics as the explaining variables Pure Topics model is also
performing better when OK topic is added to the model resulting in adjusted R square
0,662. OK topic is part of the original topics, and, therefore, it could be seen as part of the
Pure Topics model.

Table 26. Qualitative regression models

Model Adjusted R Square p-value
Simple model 0,702 0,000

Target model 0,403 0,000

Pure Topics model 0,377 0,000

Betas and correlations for Simple Model are Table 27. The model is easy to understand.
OK topic is a suppressor term for the refactoring decision and the topic family negatives
increased the refactoring decision. Both values have high correlation with refactoring
decision. OK topic alone is able to predict 66,6% (adjuster R Square) of the refactoring
decision, and similarly topic family negatives is able to predict 62,4% (adjuster R Square) of
the refactoring decision. Based on the adjusted R square values of OK topic and topic
family negatives one might expect the combined model to have higher values than 0,702.
To explain this we studied the correlation between the two variables and found out that the
variables had significant (p<0,01) Spearman correlation minus 0,709. This indicates that the
two variables often act simultaneously i.e. if one has high values the other has low values
and vice versa. This explains why the Simple Model’s adjusted R is not higher.

Table 27. Predictors in the simple model

Topic Standardized Beta p-value Correlation
OK -0,508 0,000 -0,815

Topic family negatives 0,370 0,000 0,791

Table 28 shows the independent variables of the Target model. From the model, we can
see that the topic family Structure, which indicates the number of comments concerning
structure, was the most import predictor. Visual Representation also had some effect, while
topic family Documenting, which means the number of complaints or improvement
suggestion affecting comments or naming, did not have an affect on the refactoring
decision. It is not surprising that the refactoring decisions were mostly influenced by the
software structure. However, Visual Representation also plays a role in the refactoring
decision.

 Results 56

Table 28. Predictors in the target model

Topic Standardized Beta p-value Correlation
Topic family Structure 0,610 0,000 0,608

Topic family Visual Representation 0,197 0,000 0,199

Topic family Documenting 0,035 0,400 0,016

Because Pure Topics Model contained over 60 topics, it is not informative to study them in
a one table. However, we can narrate it in text. Three topics had standardized betas over
0,2. They were extract method 0,481, add blank lines 0,237, and long statement 0,210.
Especially extract method appears to be strong indicator of the refactoring decision. The
problem with pure topics regression model is that there were over 60 predictors and many
of the predictors were seldom active, when the methods were evaluated by the informants.
Over 40 predictors are active less than ten times, and a regression model that was equally
good was created without the variables that were active less than five times. The problem
with Pure Topics model is that there really are not enough cases to create a good regression
model for over 60 predictors. The Pure Topics model also lacks a measurement of the
problem level that the OK topics had as they were classified to three groups. To illustrate
this consider the differences in saying “method seems somewhat long” when compared to
“method is way too long, and the original programmer should be shot”.

4.4.2 Interpretation and summary
From the regression models, we can see that the Simple model performs very well and is
able to explain over 70% of the refactoring decision variation. The model has only two
independent variables. First, the topic OK measures with three levels the satisfaction the
informant feels towards the evaluated software element. Topic family negatives contain the
number of different negative comments made on the evaluated software. With these two
simple variables, it was possible to explain 70% of the refactoring decision. This indicates
that the informants’ rationales have real connection with their refactoring decision.

The second regression model called Target Model had three topic families as independent
variables. The topic families included the negative comments that could be grouped to one
of the groups: structure, documenting, and visual representation. The most important
predictor was structure but also the visual representation had some impact while docu-
menting was insignificant predictor. This regression model was only able to explain 40% of
the variation. The models weakness was that it lacked all the positive comments of the
evaluations. When the OK topic was added to the model, it was almost as good as the
Simple model. Additionally, the model lacked the negative comments that could not be put
to any of the groups, but this did not have a big impact on the model performance. Based
on this data it seems that it is not enough to measure just the negative comments, but one
must also take the positive comments in to consideration when trying to predict if certain
piece of code will be refactored or not. This idea is very natural since in many cases a piece
of software can have good and bad sides, and it seems natural the refactoring decision is
based on weighing the both sides.

 Results 57

The Pure topics regression model, lacking all topic families and the OK topic, is able to
predict 37,7% of the variation. Although, this model contains some positive topics like
“comments are OK” it lacked the most important positive predictor the general OK topic
measured in three levels. Adding this to the model greatly increases the models prediction
power. We found three variables that had standardized betas over 0,2. Extract method topic
had beta 0,478 making it the most important predictor. However, it seems likely that most
of the betas can be explained by the evaluated methods i.e. different types of methods
would have resulted in different topics getting high betas. However, the beta in extract
method is clearly higher than the rest. Thus, it could indicate that this topic would be
important predictor in studies containing different methods as well. It is also interesting
that extract method performs much better than general negative comment readability poor
although they both have more than 50 mentions. It could be that when informant indicates
that a new sub method should be extracted he/she is much more certain about the
refactoring decision than when stating rather vague complain about the readability. This
would indicate that the decision whether to refactor would be affected by the informants’
knowledge on how to make refactorings.

 Discussion 58

5 Discussion

This chapter recaptures the work done to answer the research questions, summarizes the
answers to the research questions, discusses the limitations of the study, and finally
provides ideas for further research.

5.1 Answering the Research Questions
This section will answer the research questions from Section 3.1 based on the results that
were presented in Chapter 4. We will also make comparisons to prior work.

5.1.1 Research question 1
Is there an interrater agreement in subjective evolvability evaluation?
This research question was studied in Section 4.1. Kendall’s coefficient of concordance,
also known as Kendall’s W, was used to measure the agreement between raters.

In the evolvability evaluations, we saw that code smells Long Method and Long Parameter
List produced a high agreement between raters having Kendall’s Ws of 0,777 and 0,816
respectively. The high agreement on these smells is not surprising, since both of them
should be easy to evaluate and rank. Long Parameter List can be clearly seen by looking at
how many parameters are passed to the method. Long Method could be little more difficult
to recognize since the definition given told that such methods have low cohesion, are
difficult to understand, and reuse. Still the informants had very high agreement on the
Long Method smell, as well.

The Feature Envy smell had the lowest coefficient of concordance with 0,238. However,
from the feedback of the experiment it was learned that some informants (3/46) felt that
they did not completely understand what was meant by Feature Envy smell, although this
was not specifically asked. This can partly explain the low interrater agreement on this case.
However, the two persons that were used to pre-validate Experiment A did not make such
comments. Therefore, there was no possibility to fix this problem beforehand. The fact
that two persons used to pre-validate the experiment did not indicate that the lack of
understanding in Feature Envy smell suggests that this problem may not have affected all
of the informants.

The Kendall’s W for the refactoring decision in Experiment A was 0,353 and in Experi-
ment B 0,397. This was considerably lower than on code smells Long Method and Long
Parameter List. W values in the refactoring question in both experiments were very close to
each other (only a difference of 0,044). This indicates that the level of interrater agreement
is not affected by the different setups in the experiments. However, one might expect the
agreement on the refactoring decision to be higher in Experiment A where the informants
had the smell descriptions available to help them in making the refactoring decision.

The refactoring question really was at the heart of the experiments because it asked if the
method is in such a bad shape that it should be improved to make it more evolvable. It
seemed unlikely for any misunderstanding concerning this question. Hence, the result
seems to indicate that there are differences in people’s opinions on if a certain piece of
code should be refactored.

 Discussion 59

Based on the data the answer to the research question 1 is two-folded. For simple code
smells Long Method and Long Parameter List there was a high agreement between the
raters. For the refactoring decision and the Feature Envy smell, the level of agreement was
considerably lower. Since all evaluations are significant, we must conclude that there is
partial concordance among the raters in all evaluations. However, the level of agreement is
not satisfactory in all cases.

Comparison to prior work (Coleman et al. 1994; Coleman et al. 1995; Kafura and Reddy
1987; Kataoka et al. 2002; Shepperd 1990; Shneiderman 1980; Welker et al. 1997) is
challenging due to: lack of proper representation of the evaluation data (Coleman et al.
1994; Coleman et al. 1995; Oman and Hagemeister 1994; Shepperd 1990; Welker et al.
1997), lack of statistical power (Kataoka et al. 2002; Mäntylä et al. 2004), use of non-
standard statistical methods14 (Mäntylä et al. 2004; Shepperd 1990; Shneiderman 1980). All
the prior work lacked calculation of statistical significance on the interrater agreement and
the Kendall’s W, which makes it impossible to say whether the raters really had agreement
on the software evaluated or not. To make things even worse, the data is not available to
public except in the Shneiderman’s study (Shneiderman 1980), who has included some of
the raw data in his book. Unfortunately, even in Shneiderman’s study, which could be
excellent comparison point for this study, the data is reported in a way that makes it
impossible to track an individual evaluator’s answers through the programs she had
evaluated. Therefore, we cannot compare our results with any prior work.

5.1.2 Research question 2
How much of the evolvability evaluation of a software element can be explained by the software element
and the informant?
This research question was studied in Section 4.2. The factors affecting the evolvability
evaluations were searched through the measurable characteristics of a software element
(source code metrics) and the demographic data of an informant. This research question
was studied using categorical regression founded on optimal scaling, which makes it
possible to use continuous and non-continuous variables as both dependent and independ-
ent variables.

We saw that the evaluations on code smells Long Method and Long Parameter List could
be predicted with good accuracy by the regression models. In Long Method smell 71,2%
of the evaluations could be explained by the regression model consisting of source code
metrics. As expected, the lines of code metric was the most important predictor for the
Long Method evaluations. However, the Metric model without the lines of code metric
also explained 61,8% of the evaluations. This is caused by the correlation the source code
metrics have with each other. In Long Parameter List smell evaluations the Metric model
explained 76,1% of the evaluations. The most important predictor in the model was the
number of parameters, and unlike in the Long Method evaluations there was no substitute
for this predictor.

The explanation power of the source code metric based regression models diminished
when we studied the refactoring decision and the Feature Envy code smell evaluations. The

14 The researchers have calculated the percentage of answers that were off by n steps in ordinal scale, or they
calculated averages and standard deviations from the ordinal scale. In such procedure, no statistical
significance can be calculated.

 Discussion 60

source code metrics explained only 9,8% of the Feature Envy smell evaluations. For the
refactoring decision, the percentage of the evaluations explained by the Metric models was
31,9% in Experiment A and 26,1% in Experiment B. This number was lower than what
one would expect. In these experiments, the source code metrics also suffered from high
collinearity, which makes it difficult or nearly impossible to say how good predictor each of
the metric was. Based on the experiments we can only say that a line of code metric
appears to be the best refactoring decision predictor. The prediction power of the rest of
the metrics cannot be ranked because of having small beta values, having very different
beta values in experiments A and B, or having negative beta values when having positive
correlation with the refactoring decision while also having strong correlation with the best
predictor and therefore suffering from multicollinearity. For interesting empirical study on
C&K source code metrics (Chidamber and Kemerer 1994) multicollinearity look for (Succi
et al. 2005).

In Experiment A we were able to use the smell evaluations of each informant to create
regression model that explained 61,8% of the refactoring decision variance. This result is
not surprising because the smell evaluations and the refactoring decisions were subjective
evaluations that should have connection with each other. The experiment set up could have
affected this as well: first, the informants were told that smells are bad, then they were
asked to evaluate the existence of the smells, and finally they were asked whether they
would refactor the method to remove the smells in order to keep the software evolvable.
Thus, we could expect the regression model with the smells to explain even greater deal of
the variation.

We also studied the demographic variables as predictors for a refactoring decision, but their
explanatory power was low. We even tried to improve the gathering of demographic data in
Experiment B grounded on Experiment A, but still the background variables had only
minor explanatory power. In fact, the demographic variables performed slightly better in
Experiment A, but this was affected by having more demographics variables in Experiment
A rather than a real improvement in the data variables.

Comparing these results to the results of research question 1 reveals us that both the
interrater agreement and the explanatory power of metric regression model have similar
two-folded structure. Both perform well on Long Method and Long Parameter List smell
evaluations. Similarly, both the inter-agreement and the regression models have low values
when it comes to refactoring decision and especially to Feature Envy evaluations. Clearly,
there is a connection between these two, and it is caused by the fact that the source code
metrics of any method will remain the same even if there is disagreement between raters.
Thus, if there is a disagreement whether a certain method should be refactored, it auto-
matically means that the code metrics of that method cannot make up a strong regression
model that would predict the refactoring decision because there is a disagreement on the
issue. Naturally, this does not affect the regression model created from the smell evalua-
tions because the possible disagreement in the refactoring decision is likely to be reflected
in the smell evaluations.

Comparison to prior studies is not clear-cut because they have not utilized regression
analysis. Regardless, we can try to make some comparisons. Kafura and Reddy (Kafura and
Reddy 1987) concluded that the expert evaluations on maintainability were in conformance
with the complexity source code metric. This conflicts with our results since we showed
that metrics were not effective predictors of the refactoring decision i.e. the evolvability
improvement need. However, their results are based on interviews on software maintain-
ability while we used the refactoring decisions on an ordinal scale survey. Software

 Discussion 61

Engineering Test Lab at the University of Idaho used subjective evaluations to create a
metrics based maintainability measure (Coleman et al. 1995; Welker et al. 1997). It is
therefore quite natural that their metric correlated well with subjective evaluations.

Our prior work (Mäntylä et al. 2004), which studied code smell evaluations at the module
level on an industrial setting, concluded that source code metrics and code smell evalua-
tions did not correlate. However, this study shows that simple code smells and source code
metrics have a relationship. The difference is likely to stem from three limitations in our
prior study. First in our prior work, we used higher (module) level evaluations. Second, the
evaluations were based on recollection. Third, the evaluators had been working with the
software modules and, thus, had a more personal bond with the software under evaluation.
We think that these dissimilarities can explain the different results.

5.1.3 Research question 3a
What factors act as the rationales for the refactoring decision, could these factors be automatically detected,
and what would be the effect of the improvement suggestion factors to common source code measures?
This research question was studied in Section 4.3 by exploring the qualitative data provided
by the informants of Experiment B. The informants were required to give rationales for
their refactoring decision. These rationales, which consisted of one to ten lines of text,
were analyzed with the coding paradigm by using atlas/ti software.

The rationales were grouped to one or more of the following three topic types. The
informant could praise, complain, or suggest improvements to the software element. Often
complain was accompanied by an improvement suggestion and vice versa. It was evident
that complains and improvement suggestions had a relationship with each other. The
complain was the cause for the improvement suggestion e.g. a rational might have com-
plain pointing out that the method is too long and it would additionally contain suggestion
splitting the method into sub-methods. This is hardly surprising and similar complaint-
improvement pairs can be found for example in Fowler’s work (Fowler 2000) where we can
see Code Smells as the complaints and the appropriate refactorings as the improvements.
The praises given by the informants indicated that the method was already in a good shape,
and therefore they are opposite of the complaints and improvement suggestions. Thus, it is
possible to further classify the answers to two types one containing the positive comments
and other containing the negatives.

In addition to their types, the rationales were also classified based on their targets. Three target
groups, namely Visual Representation, Documentation, and Structure were identified. Visual
representation means issues that make a method easy for a human eye to study, indenta-
tion, blank line usage, etc. Documentation contains all the (textual) information within the
source code that makes the programs easier to comprehend, e.g. naming of variables and
comments. Structure stands for the source code composition that is eventually parsed by
the compiler to a syntax tree. Structure is clearly distinguishable from documentation and
visual representation, because the latter two have no impact on the program run-time
operations or the syntax tree generated from the source code.

Not all the answers could be classified to any target group because they were too general e.g.,
comments such as “method is difficult to understand” cannot be classified to any of the
three target groups. Additionally, many positive comments were given that were very general.
They were classified to three OK groups based on how positive the comment appeared to
be.

 Discussion 62

It is difficult to provide a brief overview of the detailed topics that that fall inside of the
target groups discussed above. However, here we will try to summarize the most interesting
points. Firstly, over 60 different topics, given as the rationale for the refactoring decisions,
were discovered. This number indicates that the informants were able to discover wide
range of different issues in the evaluated software. Secondly, many topics were method
specific, meaning that there could be several mentions of a single topic in one method and
only few or not any in the rest of the methods. Thirdly, refactoring change algorithm,
which means implementing some functionally with completely different approach (e.g. use
Java’s serialization functionality to save data rather than implementing own file format),
appeared frequently in the answers. We feel that it could offer one of the greatest potentials
to make code more evolvable. Fourthly, hardly any answers pointed out the excessive
number of parameters in the methods where such comment would have been appropriate.
This is interesting because in answer to research question one, in Section 5.1.1, we saw that
Long Parameter List code smell evaluations had the highest agreement among the infor-
mants. Still only few informants mentioned this as a problem to be fixed in Experiment B.
Likewise, too excessive coupling from the method, in Listing 1, to another class, and the
fact that actually this method should have been moved to inside of the class it was
excessively coupled with, was only mentioned by two of 36 informants. These results
indicate that the given evaluation criterion can greatly affect the issues found in the
evaluated code. Fifthly, there were conflicting opinions in the informants rationales, for
example in the method, in Listing 6, an informant claimed that the method was nicely
grouped, while another informant claimed just the opposite saying that the method was
poorly grouped. These kind of conflicts found in the qualitative data provide insight to the
cases where there is low interrater agreement.

Automatic detection of some topics is possible while in others it is not. In general, it easy
to measure method length and then use a threshold to determine whether the method is
too long. It is more difficult to discover whether certain piece of method should extract to
a method of it own because preferences vary greatly, e.g. some people for instance may
prefer small utility methods for Boolean expressions. In some cases, automatic detection
would also require new (according to our knowledge) specialized metrics like statement size
or weight metric. Change algorithm refactoring was recognized as important, but currently
its detection does not seem feasible. Detection of general topics seems hard to do in
practice. Maybe this could be done by imputing several (tens or preferable hundreds of)
methods’ to a machine learning system that could then generate a profile of what is meant
by the general topic. However, even such a machine learning system would require
agreement between raters in order it to work correctly.

The effects of the suggested refactorings to common source code metrics are in some
cases trade-offs. Splitting long statement will result in more statements and increased
cyclomatic complexity, but it will reduce the weight of individual statement. The move
method refactoring on the other hand will not cause tradeoffs in the metrics, as it will
ideally just reduce couplings leaving every other metrics as they were. Change algorithm is
another refactorings detected that can decrease some measures without increasing any of
the others. Unfortunately, it seems that the refactorings’ effects to source code metrics
cannot be better summarized based on this study.

Siy and Votta (Siy and Votta 2001) studied data of 130 code inspection sessions. They
focused on “soft maintenance-issues” that are similar to the rationales analysed in our

 Discussion 63

work. They also categorized part15 of their qualitative data based on the goals the issue
tried to resolve. They came up with four groups, namely Documentation, Style, Portability
and Safety. Documentation contained 47% of the issues while style had 46% of the issues.
Thus, combined these two groups were responsible for 93% of the issues.

Siy and Votta further categorized the documentation group to sub-groups called Clarifica-
tion, Correction, and Documentation of Future work. Similarly, this work has the target
group Documenting. However, our definition is larger as we also considered the naming of
source code elements (e.g. variables and routines) to be part of Documenting, where as Siy
and Votta only consider the comments in the code. In our data, we had no topics that
could be categorized under the Documentation of Future work in grouping by Siy and
Votta. Perhaps this is because our informants were not the developers of the application,
and thus their mind set might not been so future development oriented. This work has only
one topic that could be place under the Correction group by Siy and Votta. This is topic
commentsPoor. However, our commentsPoor topic also contained few answers where
topics were not incorrect, but just poor, or incomplete. Rest of our topics referring to the
comments would be placed under the group Clarification by Siy and Votta.

Siy and Votta further categorized the Style group to sub-groups called Clean-up, Renaming,
Debugging, and Cosmetic. The Clean-up group has perfect match in this work’s target group
Structure. The Renaming group means the naming of source code elements (e.g. variables
and routines). In this work renaming was included in the target group Documenting. The
Debugging group has no match in this work. The Debugging contained suggestion of
adding debugging and trace statements to the source code. Finally, the cosmetic group has
a perfect match in this work with target group Visual Representation.

The above comparison between this work and the study of Siy and Votta shows many
similarities in the classification. However, the classifications also have differences. Siy and
Votta had groups Documentation (with sub-groups Clarification, Correction, and Docu-
mentation of Future work), Style (with sub-groups Clean-up, Renaming, Debugging,
Cosmetic), Portability, Safety. This work had target groups Structure, Documentation, and
Visual Representation. The differences in the groupings are probably caused by the
different environments in which the data was gathered. Therefore, it is pointless to argue
why one grouping would be superior to the other. Maybe in the future there will grouping
that will take best sides of both groupings.

According to our knowledge other similar prior work of this kind has not been performed.

5.1.4 Research question 3b
Can the factors of the rationales predict the refactoring decision, and, if yes what are the most important
factors?
This research question was studied in Section 4.4. Similar to research question 2 this was
studied by using categorical regression based on optimal scaling. The predictors were the
coded answers given by the informants in their refactoring decision rationales.

Three regression models Simple model, Target model, and Pure Topics models were
created. Simple model consisted of two predictors: positive OK topics and the topic family

15 The source (Siy and Votta 2001) does not reveal how many code inspection session’s data was used to
create the grouping

 Discussion 64

Negatives, which was created by summing up all the different negative comments made in
each answer. Target model was created from all the negative comments that we were able
to categorize under code families Visual Representation, Documentation, or Structure.
Finally, Pure Topics model contained all the topics identified during the coding process.
Simple model was able to explain 70,2% of the refactoring decision variation. Both of its
predictors were important with std. betas -0,508 and 0,370 for OK topics and topic family
Negatives respectively. Target model was able to explain 40,3% of the variation. Topic
family Structure was the most important predictor with std. beta of 0,610 while topic
family Visual Representation had std beta of 0,197. Topic family Documenting was not
significant predictor in the model. Pure Topics model was able to explain 37,7% of the
variation. In Pure Topics model there were over 60 predictors, but only three of them had
std betas over 0,2. Those topics were extract method, add blank lines, and long statement
with betas 0,481, 0,237, and 0,210 respectively. Target model and pure codes model were
both created without the OK topics. If the results of this positive OK topic were added to
these models, their predictive power increased considerably, but not to the level of the
simple model.

Based on the results we can conclude that the factors discovered in the qualitative answers
can be used to predict the refactoring decision. It appears that for successful regression
model we must measure both the positive and negative comments discovered in the
answers. The most important positive predictor is the OK comment that indicates the
amount of positive comments given to the method in three-point ordinal scale. There were
several negative comments. The best predictor out of the negative comments was created
by summing up all the negative comments in to a topic family called negatives. When
studying the negative comments with the Target model we saw that code Structure is the
most important predictor while Visual Representation also had some impact. Studying this
further with pure codes model revealed that suggestions to extract method and complain
concerning long statement were most important structural predictors. From topic family
Layout add blank lines rose as the most important predictor.

Comparison to the answers of research questions 2 in Section 5.1.2 shows that the
qualitative elements provided by the informants are far better refactoring decision predic-
tors than the source code metrics or the demographics. Now we can compare the predic-
tion power of the qualitative elements gathered in experiments A and B. In Experiment A,
the qualitative elements were gathered by asking the informants about three code smells. In
Experiment B, the qualitative elements were gathered from the refactoring decision
rationales. The qualitative regression model in Experiment A, i.e. the Smell model, was able
to explain 61,8% of the refactoring decision variation. The qualitative regression model, i.e.
simple model, in Experiment B performed slightly better explaining 70,2% of the variation.
Maybe a better prediction power could have been achieved in Experiment A if opinions on
more code problems would have been asked.

We are not aware of any studied were qualitative answers concerning code evolvability
would have been used as a basis for regression analysis. Therefore, we are not able to
perform any comparison on prior work.

5.2 Limitations
This section assesses the limitations of the study. Threats to internal validity and external
validity are studied as well as some special considerations on experimental design. Finally,
we will propose some improvements to the experiments. Threats to validity were identified

 Discussion 65

based on Campbell and Stanley(1966), and Coolcan (Coolican 1999) who cites Cook and
Campbell (1979). The special considerations to experiment design are done based on
Juristo and Moreno (2001).

5.2.1 Threats to internal validity
In Experiment B, the reliability of the respondents’ procedures was questionable since it
was done as a web survey, and there was no control over the respondents. However, a
similar situation could have occurred in Experiment A, because we had no means to make
sure that the informants actually paid attention to the introduction lecture they were given
prior to the experiment.

Experiment B lacked the randomization of the methods evaluated. The evaluation order of
the methods could have caused bias to the evaluation results. In Experiment B, the
informants had the possibility to go back and forth in their answers if they wanted to
check or change something in their prior answers. This should have limited the effect cause
by the lack of randomization.

In both experiments, collection of demographics could have been improved. In Experi-
ment A, we did not collect any information of the students’ success in prior programming
or software engineering courses. In Experiment B, we collected the students grades on
selected programming courses, but even this could have been improved by allowing
students to list other relevant programming or software engineering course that were not
specifically asked for. However, we feel that this limitation in Experiment B would not have
had big impact on the prediction power of demographics based regression models.

5.2.2 Threats to external validity
There could be interaction between the selection of evaluators and the issue studied in the
experiments. In both experiments, the population was the students participating in the
course. However, proper sampling was not done to select the individuals who would
become the evaluators of the experiment. Instead, the informants were those interested in
receiving the extra credit for their course grade. This sampling method could have caused
bias. It is possible that students who were more interested in this topic participated in the
experiment. Based on the course grades there actually was a slight bias in both experiments
towards better performing students.

Another threat to external validity comes from the population. Generalizing the results
obtained using students to developers in industry might not be possible. We may argue that
students are a too homogenous group, and, therefore, the results are too good. Further-
more, one may argue that as the evaluators had a varying amount of industrial program-
ming experience (from zero to fifteen years), the population is too heterogeneous.
However, also teams of industrial developers can have fluctuating levels of homogeneity.

The selection of the evaluated software elements is another threat to external validity. It is
possible that with a different set of software elements different results could be obtained.
This is particularly crucial for the individual topics mentioned in the refactoring decision
rationales that were studied in Section 4.3. Therefore, this mainly concerns answer to
researcher question 3a

The source code metrics used to measure the evaluated methods were limited to six
different metrics, which were introduced in Section 3.2.5. With a different set of metrics,
the results could have been different. However, it must be pointed out that the goal was

 Discussion 66

not to discover the best metrics to predict refactoring decisions, but to test how a few
widely used measures perform in predicting the evaluations.

It is possible that the results represent more the effect of the experimental setting than
what it would be in the real world. One may argue that in the real world the agreement
between raters would be better since the raters would understand and study the evaluated
piece of software longer and more thoroughly.

Finally, the qualitative data and the results are sensitive to researcher bias, i.e. a researcher
will discover whatever the researcher thought he/she should discover. Therefore, different
researcher might have discovered different topics and topic families to be important in the
refactoring rationales. This limitation cannot be efficiently avoided in qualitative studies.

5.2.3 Considerations of experimental design
Juristo and Moreno (Juristo and Moreno 2001) list consideration for experimental design in
software engineering. This section will explain how these considerations were addressed in
the experiments.

Learning effect means that informants apply the technique differently after they have
learned to use it.

In Experiment, A this could have caused differences in the evaluations of the methods
depending on the order of the methods. To prevent this in Experiment A, the order of
methods was randomized, so that no two informants evaluated the methods in the same
order. This prevents the learning effect from biasing the results.

In Experiment B, no randomization was performed because the web-based system lacked
such feature. In Experiment B no pre-determined refactoring criteria were given. This
means that there was less material to learn from. Finally, in Experiment B the informants
had the possibility to go back to their previous answers if they later changed they mind.
However, it must be concluded that the lack of randomization makes Experiment B
weaker compared to Experiment A when evaluating the learning effect.

Boredom effect means that informants get tired or bored during the experiment, which
will lead in poorer performance due to the end of the experiment. As with the learning
effect, the randomization of the methods can partly block this effect from the results.

Experiment A lasted only for about hour and half. The informants were motivated with
extra-point given to them if properly finishing the experiment. It is possible that infor-
mants got bored since they had five minutes to evaluate each method. For the shorter
methods this was clearly too long. However, even if the informants got bored when waiting
for the permission to move to the next method, this extra time was necessary in order to
make sure that the evaluation was not performed too quickly. Performing the evaluation
too quickly can happen when informants are bored and want to complete the experiment
quickly. Although the five minute evaluation time caused boredom, we believe it also
reduced the haste effect and thus affected positively on the evaluation quality.

In Experiment B, the informants were allowed to evaluate the methods and provide
rationales in their own pace. Only the final result was controlled in grading the evaluations
and making sure no one got any points without actually studying the methods. As there
were only ten methods to be evaluated and informants were allowed to proceed at their
own pace it seems unlikely that boredom might have biased the evaluations. However, it is
possible that some informants got bored and proceeded more rapidly than they should

 Discussion 67

have. Still, we believe that by grading the rationales we prevented most of the haste that
might have occurred through boredom effect. Experiment B seems to be stronger than
Experiment A when evaluating against the boredom effect.

Enthusiasm effect concerns mostly cases where two different techniques are applied. In
this type of scenario, it is possible that the informants using the new technique are ecstatic
while the informants using the old technique are less motivated. However, our experiments
did not involve a comparison of two techniques this effect is not an issue.

Experience effect deals with the case where informants are more experienced with the
traditional technique and thus perform better. Again, this effect cannot occur in this
experiment.

Unconscious formalization means that informants learn from the first technique and
unconsciously apply it to the second technique. Again, this effect cannot occur in this
experiment.

Assurance concerning the procedure implemented by the subjects raises the issue of
being sure that the informants actually used the technique as instructed.

In Experiment A, there was no particular technique for locating the smells or evaluating the
refactoring need. The students were given the description of the smells, and the UML
description of the application. Additionally, an application demonstration was shown.
During Experiment A two instructors were present who made sure that the students
actually looked at the methods and did not proceed to the next method until given
permission to do so. Therefore, the setting of Experiment A was quite controlled. The
informants were also told that they would not receive the additional points if they did not
evaluate the methods according to the smell descriptions. Still we cannot ever be sure that
the students actually did as they were told. However, in this setting it seems likely that at
least most of the students did as they were told.

In Experiment B, there was no control of over the subjects. However, there was no
technique for making the refactoring decision or finding suitable arguments to support
their decision. The only control came through the subject refactoring decision rationales.
Experiment A had better control over the individuals. However, Experiment B had better
control of the answers as written output required.

Setting effect deals with the emotional state of the informants. This can occur when
experiment runs over several days. This effect means that it is not advisable to have two day
experiment on Thursday and Friday, because the informants’ emotional state will be
different in Friday because of the upcoming weekend. Experiment A only lasted for two
hours in Monday afternoon with no holidays in sight. Experiment B was performed as a
web-survey and therefore the student might have performed in different days with different
emotional state.

 Discussion 68

Table 29. Summary of the experiment design consideration in the experiments

Consideration Applicable, prevention
 Experiment A Experiment B
Learning effect Partly. Randomization Partly. There was no

prevention, but there was
no particular technique
utilized either.

Boredom Yes. Randomization and Forced time
to spent on evaluation to avoid hastily
evaluations

Yes. Grading of the
rationales provided by the
informants to prevent
hastily evaluations.

Enthusiasm effect Not Applicable Not Applicable
Experience effect Not Applicable Not Applicable
Unconscious
formalization

Not Applicable Not Applicable

Assurance concerning
the procedure
implemented by the
subjects

Partly, Instructors present during the
whole time of the experiment,
controlled time for each evaluation,
thereat to take additional points away
if not evaluating as instructed

Partly. No control over
the subject. No procedure
given. We controlled the
quality of the answers.

Setting effect No, performed on Monday night
with no holidays in sight.

Yes. We had no control
over subjects. Therefore,
they might have per-
formed the experiment
on any day.

5.2.4 Improvements of the experiments empirical design
This section can be valuable to those who wish to study this area further.

1. The selection of the evaluators should be random.

2. The population should be more diverse.

3. More software elements should be used for evaluation to reduce the possible bias.

4. More source code metrics not suffering from collinearity16 should be used.

5. More code smells should be studied to allow better comparison between the evalua-
tions.

6. There should be several questions describing each smell to allow assessing reliability
of answers.

7. A pre-exam should be held to see how well the evaluators understand the issues to
be evaluated.

16 Collinearity means a linear or near linear relationship among the independent variables of a regression
model.

 Conclusions and Future Work 69

6 Conclusions and Future Work

The purpose of this work was to study the subjective software evolvability evaluation, i.e.
evaluation of the existence of certain code problems called code smells and the refactoring
decision. First, we suggested the use of the term software evolvability over the traditional
term software maintainability. To position our research, we provided four viewpoints to
software evolvability. Based on these viewpoints, we focused our empirical study on the
subjective evolvability evaluation. The empirical research was carried out with two student
experiments where we assessed the interrater agreement and the factors explaining the
evolvability evaluations.

We have seen that the interrater agreement is high for the simple code smells Long Method
and Long Parameter List, but considerably lower for the refactoring decision and the
Feature Envy code smell. Regression models based on source code metrics explained over
70% of the evaluations of Long Method and Long Parameter List smells, but explained
only about 30% of the refactoring decision. The best predictors of the refactoring decision
were the rationales of the refactoring decision explaining over 70% of the variation and the
evaluations of the code smells explaining more than 60% of the decisions. It is hardly
surprising that the subjective evaluation of smells and the rationales for the refactoring
decision were the best predictors. Our regression analysis of rationales also revealed, that
the positive comments were good predictors of the lack of refactoring need. They were
better at predicting the lack of refactoring need than the negative comments were at
predicting the refactoring need.

Analysis of the qualitative data, i.e. refactoring decision rationales, revealed that the method
under study greatly affect the contents of the rationales. We also proposed categorization
of the negative comments and improvement suggestion to three groups, namely Structure,
Documenting, and Visual Representation. By studying the qualitative data of Experiment B
and comparing it to the smells evaluations of Experiment A we found that the given
evaluation criteria greatly effects the evaluation results. For example, Long Parameter List
was identified often in Experiment A and yet it was seldom mentioned in the refactoring
decision rationales of Experiment B even though the evaluated code was identical. Some
of our qualitative findings confirm that evaluators can have very conflicting opinions of
the same method. Based on the qualitative data we also considered the automatic detection
of code problems and improvement suggestion. We found out that some code problems
would need new code metrics, e.g. statement weight, and that some code problems could
not be detected or measured at all. Finally, when considering the effects of the improve-
ment suggestion to code metrics, we found that most refactorings would decrease some
metrics while increasing others.

High interrater agreement on the simple code smells implies reliability of the smell
evaluations. Thus, there should be no need to double-check the evaluations of those smells
by tools or another developer. Additionally, for the simple code smells the prediction by the
code metrics based regression model was also quite accurate. This suggests code metrics
tools usage as an effective approach in highlighting straightforward problems in the code.

Lower interrater agreement of the refactoring decision indicates a possible unreliability in
the developers’ evaluations. To compensate this it seems advisable to double check the
evaluation at least from time to time because false judgments may lead to poorly evolvable
software.

 Conclusions and Future Work 70

The results indicate that it might not yet be feasible to build tool support simulating real-
life subjective refactoring decisions. This is based on three findings. First, the refactoring
decisions had low interrater agreement. Second, the metrics-based regression models were
only able to explain 30% of the refactoring decisions. Third, some refactoring decision
rationales were difficult or impossible to measure and detect, or would require new metrics
to make the detection possible.

The success of subjective and qualitative data in predicting the refactoring decision is not
surprising. Nevertheless, they are the best predictors for the refactoring decision. Although,
there are reliability issues with subjective and qualitative evaluation, this study has shown
that subjective evaluation can be reliable if given criteria is simple enough, e.g., code smell
Long Parameter List. Therefore, we are planning to make more studies with more diverse
code set and with industrial developers to study the qualitative elements of software
evolvability in more detail. Hopefully, this way we can come up with criteria that will
achieve high interrater agreement and be applicable in real world code evaluation cases.
This type of criteria can be used to train the developers in making code that is more
evolvable. Qualitative data can also suggest new code metrics, i.e. which aspects of the
source code are actually worth measuring. Understanding qualitative aspects of software
evolvability would also enable us to build better tool support for the refactoring decisions.

 References 71

References

AFOTEC. 1996. Software maintainability evaluation guide. DEPARTMENT OF THE AIR
FORCE, HQ Air Force Operational Test and Evaluation Center.

Arnold, R.S. 1989. Software restructuring. Proceedings of the IEEE 77: 607-617.

Balazinska, M., Merlo, E., Dagenais, M., Lague, B., and Kontogiannis, K. 2000. Advanced
clone-analysis to support object-oriented system refactoring. Proceedings of Seventh
Working Conference on Reverse Engineering, , 98-107.

Bandi, R.K., Vaishnavi, V.K., and Turk, D.E. 2003. Predicting maintenance performance
using object-oriented design complexity metrics. Software Engineering, IEEE Transactions
on 29: 77-87.

Bansiya, J., and David, C.G. 2002. A hierarchical model for object-oriented design quality.
Software Engineering, IEEE Transactions on 28: 4-17.

Briand, L.C., Daly, J.W., and Wüst, J.K. 1997. A unified framework for cohesion measure-
ment in object-oriented systems. Proceedings of the Fourth International Software
Metrics Symposium, , 43-53.

———. 1999. A unified framework for coupling measurement in object-oriented systems.
Software Engineering, IEEE Transactions on 25: 91-121.

Brown, W. J., R. Malveau C., H. W. McCormick, and T. Mowbray J. 1998. AntiPatterns:
Refactoring software, architectures, and projects in crisis. New York: Wiley.

Campbell, D. T., and J. C. Stanley. 1966. Experimental and quasi-experimental design for research.
Chicago, USA: Rand Mcnally College Publishing Company.

Chidamber, S.R., Darcy, D.P., and Kemerer, C.F. 1998. Managerial use of metrics for
object-oriented software: An exploratory analysis. Software Engineering, IEEE Transac-
tions on 24: 629-639.

Chidamber, S.R., and Kemerer, C.F. 1994. A metric suite for object oriented design. Software
Engineering, IEEE Transactions on 20: 476-493.

Chikofsky, E.,J., and Cross, J.,H. 1990. Reverse engineering and design recovery: A
taxonomy. IEEE Software 7: 13-17.

Coleman, D., Lowther, B., and Oman, P.W. 1995. The application of software maintainabil-
ity models in industrial software systems. Journal of Systems and Software 29: 3-16.

 References 72

Coleman, D., Ash, D., Lowther, B., and Oman, P.W. 1994. Using metrics to evaluate
software system maintainability. Computer 27: 44-49.

Cook, T. D., and D. T. Campbell. 1979. Quasi-experimentation: Design and analysis issues for field
settings. Chicago, USA: Rand Mcnally College Publishing Company.

Coolican, H. 1999. Research methods and statistics in psychology. 3rd ed. London, United
Kingdom: Hodder & Stoughton.

Cusumano, M. A., and R. W. Selby. 1995. Microsoft secrets. USA: The Free Press.

Ducasse, S., Rieger, M., and Demeyer, S. 1999. A language independent approach for
detecting duplicated code. Proceedings of the International Conference on Software
Maintenance, Oxford, England, UK, 109-118.

Fowler, M. 2000. Refactoring: Improving the design of existing code. 1st ed. Boston: Addison-
Wesley.

Fowler, M., and K. Beck. 2000. Bad smells in code. In Refactoring: Improving the design of
existing code. 1st ed. , 75-88. Boston: Addison-Wesley.

Genero, M., Piatini, M., and Manso, E. 2004. Finding "early" indicators of UML class
diagrams understandability and modifiability. Proceedings of International Sympo-
sium on Empirical Software Engineering, , 207-216.

Genero, M., Piattini, M., and Calero, C. 2002. Empirical validation of class diagram metrics.
Proceedings of the International Symposium on Empirical Software Engineering, ,
195-203.

Grady, R.B. 1994. Successfully applying software metrics. Computer 27: 18-25.

Halstead, M.,H. 1977. Elements of software science. New York: Elsevier.

Harrison, R., Counsell, S.J., and Nithi, R.V. 1998. An evaluation of the MOOD set of
object-oriented software metrics. Software Engineering, IEEE Transactions on 24: 491-496.

Henderson-Sellers, B. 1996. Object-oriented metrics. Upper Saddle River, New Jersey, USA:
Prentice Hall.

Hitz, M., and Montazeri, B. 1996. Chidamber and kemerer's metrics suite: A measurement
theory perspective. Software Engineering, IEEE Transactions on 22: 267-271.

IEEE. 1990. IEEE standard glossary of software engineering terminology. New York: The Institute
of Electrical and Electronics Engineers, Inc.

 References 73

———. 1998. IEEE standard for software maintenance. New York: The Institute of Electrical
and Electronics Engineers, Inc.

Juristo, N., and A. M. Moreno. 2001. Specific considerations for experimental designs in
software engineering. In Basics of software engineering experimentation. 1st ed. , 116-119.
Boston: Kluwer Academic Publishers.

Kafura, D.G., and Reddy, G.R. 1987. The use of software complexity metrics in software
maintenance. Software Engineering, IEEE Transactions on 13: 335-343.

Kataoka, Y., Ernst, M.D., Griswold, W.G., and Notkin, D. 2001. Automated support for
program refactoring using invariants. Proceedings of International Conference on
Software Maintenance, Florence, Italy, 736-743.

Kataoka, Y., Imai, T., Andou, H., and Fukaya, T. 2002. A quantative evaluation of main-
tainability enhancement by refactoring. Proceedings of the International Conference
on Software Maintenance, Montreal, Canada, 576-585.

Kendall, M., Sir. 1948. The problem of m ranking. In Rank correlation methods. 5th ed. , 117-
143. London: Edward Arnold.

Legendre, P. 2005. Species associations: The kendall coefficient of concordance revisited.
Journal of Agricultural, Biological and Environmental Statistics 10: 226-245.

Lehman, M.M. 1980. On understanding laws, evolution, and conservation in the large-
program life cycle. The Journal of Systems and Software 1: 213-221.

Li, W., and Henry, S.M. 1993. Object-oriented metrics that predict maintainability. Journal of
Systems and Software 23: 111-122.

Lorenz, M., and J. Kidd. 1994. Object-oriented software metrics. Upper Saddle River, New Jersey,
USA: Prentice Hall.

Mäntylä, Mika V. 2003. Master's thesis: Bad smells in software - a taxonomy and an
empirical study.

Mäntylä, M.V., Vanhanen, J., and Lassenius, C. 2003. A taxonomy and an initial empirical
study of bad smells in code. Proceedings of the International Conference on Soft-
ware Maintenance, Amsterdam, The Netherlands, 381-384.

———. 2004. Bad smells - humans as code critics. Proceedings.20th IEEE International
Conference on Software Maintenance, 2004. Chicago, Illinois, USA, 399-408.

Maruyama, K., and Shima, K. 1999. Automatic method refactoring using weighted
dependence graphs. Proceedings of the International Conference on Software Engi-
neering, Los Angeles, CA, USA, 236-245.

 References 74

McCabe, T.J. 1976. A complexity measure. Software Engineering, IEEE Transactions on 2: 308-
320.

McConnell, S. 2004. High-quality routines In Code complete 2. 2nd ed. , 161-186. Redmond,
Washington, USA: Microsoft Press.

Mens, T., and Tourwe, T. 2004. A survey of software refactoring. Software Engineering, IEEE
Transactions on 30: 126-139.

Meulman, J. J. 1998. Optimal scaling methods for multivariate categorical data analysis. SPSS, SPSS
White Paper (accessed 03/03/2005).

Meulman, J. J., and W. J. Heiser. 2001. SPSS categories 11.0. Chicago, USA: SPSS Inc.

Miles, M. B., and M. A. Huberman. 1994. Qualitative data analysis. 2nd ed. Thousand Oaks,
California, USA: Sage Publications.

Moilanen, T., and S. Roponen. 1994. Kvalitativiisen aineiston analyysi atlas.ti-ohjelman avulla.
Helsinki, Finland: Kuluttajatutkimuskeskus.

Muthanna, S., Stacey, B., Kontogiannis, K., and Ponnambalam, K. 2000. A maintainability
model for industrial software systems using design level metrics. Proceedings of Sev-
enth Working Conference on Reverse Engineering, Brisbane, Australia, 248-256.

Oman, P. W., J. Hagemeister, and D. Ash. 1991. A definition and taxonomy for software maintain-
ability. Software Engineering Test Lab, University of Idaho, 91-08.

Oman, P.W., and Hagemeister, J. 1994. Constructing and testing of polynomials predicting
software maintainability. Journal of Systems and Software 24: 251-266.

Pigoski, T. M. 1996. Practical software maintenance. John Wiley & Sons Inc.

Rajlich, V.T., and Bennett, K.H. 2000. A staged model for the software life cycle. Computer
33: 66-71.

Rombach, D.,H. 1987. Controlled experiment on the impact of software structure on
maintainability. Software Engineering, IEEE Transactions on 13: 344-354.

Seaman, C.B. 1999. Qualitative methods in empirical studies of software engineering.
Software Engineering, IEEE Transactions on 25: 557-572.

Shepperd, M.J. 1990. System architecture metrics for controlling software maintainability.
IEE Colloquium on Software Metrics, , 4/1-4/3.

 References 75

Shneiderman, B. 1980. Software psychology: Human factors in computer and information systems.
Cambridge, Massachusetts, USA: Winthrop Publishers.

Siegel, S. 1956. Nonparametric statistics for the behavioral sciences 1st ed. New York: McGraw-
Hill.

Simon, F., Steinbruckner, F., and Lewerentz, C. 2001. Metrics based refactoring. Proceed-
ings Fifth European Conference on Software Maintenance and Reengineering, Lisbon,
Portugal, 30-38.

Siy, H., and Votta, L. 2001. Does the modern code inspection have value? , 281-289.

Sommerville, I. 2001. Software engineering. Reading, MA, USA: Addison-Wesley / Pearson.

Succi, G., Pedrycz, W., Djokic, S., Zuliani, P., and Russo, B. 2005. An empirical exploration
of the distributions of the chidamber and kemerer object-oriented metrics suite. Em-
pirical Software Engineering 10: 81-104.

Szulewski, P.A., and Budlong, F.C. 1996. Metrics for ada 95: Focus on reliability and
maintainability. CrossTalk - the Journal of Defence Software Engineering 1996.

Tourwé, T., and Mens, T. 2003. Identifying refactoring opportunities using logic meta
programming. Proceedings of the Seventh European Conference on Software Main-
tenance and Reengineering, 2003, Benevento, Italy, 91-100.

Vasama, P., and Y. Vartia. 1979. Johdatus tilastotieteeseen osa 2. 3rd ed. Pori: Gaedeamus.

Welker, K.D., Oman, P.W., and Atkinson, G.G. 1997. Development and application of an
automated source code maintainability index. Journal of Software Maintenance: Research
and Practice 9: 127-159.

 Appendix A – Lecture Slides of Experiment A A-I

Appendix A – Lecture Slides of Experiment A

This appendix contains the lecture slide of Experiment A.

Bad Smell in Code – Inspection Exercise

T-76.613 – Software Testing & Quality Assurance
<mika.mantyla@soberit.hut.fi>

2

Contents of the lecture

Bad Code Smells
Motivation
Exercise notes & Grading
Software under study
Smells under inspection
Inspection

 Appendix A – Lecture Slides of Experiment A A-II

This slide contained the image of shanty town, which are
commonly seen in the surroundings of big cities in the
countries with lower economical status. For copyright
reason the image has been removed.

4

Refactoring

Can be used to avoid structure seen in the previous slide
Definition of Refactoring adopted from Fowler

Controlled way to improve the software’s structure without changing its
observable behavior

Benefits of Refactoring according to Fowler and Arnold
It improves software design
Programs are easier to understand
It helps you finding bugs
Increased software development speed
Easier testing, auditing, documenting
Reduced dependency on individuals
Greater job satisfaction
Extending system’s lifetime
Preserving software asset value to organization

 Appendix A – Lecture Slides of Experiment A A-III

5

Bad Code Smells

Bad Code Smells (Fowler & Beck 2000) are an aid for
developers in deciding when software needs refactoring
Smells are structures that indicate bad software design

They were covered in more detail in previous lecture
E.g. Large Class, Duplicate Code
Of course, the list of bad smells can never be complete

Why are they called smells?
Fowler & Beck think that when it comes to refactoring decision: “no
set of metrics rivals informed human intuition

Smells are
More solid than common criteria of good programming style
Deliberately vague so that human judgment can be applied

This contained the image of middle aged nurses smelling at
men’s armpits likely as a part of some sort of deodorant
testing experiment.

 Appendix A – Lecture Slides of Experiment A A-IV

7

Subjective vs. objective measures of sw structure

Subjective measures
Bad code smells

Objective measures
Automatic measurement with metrics

has no wide adaptation
Lines of code per method, coupling between objects

Subjective opinions are more often used in practice
Process is often ad hoc or gut feeling based
E.g. Programmer constantly evaluates the code under work “This code
looks like spaghetti”

Especially when working on some else’s code
Very little is known about subjective opinions

Conflicting opinions about source code formatting
Historically: Curly brace wars have caused some problems
Standards and pretty printers have pretty much solved the problem

How about software structure?
Opinions on: Number of parameters for method, Method size?

8

Exercise notes

There are no right answers in this survey
We expect that 99% of you will receive full points.
However, your opinions should be reasonable

For example: Claiming that method with zero parameters has a
lot of Long Parameter List smell will not be reasonable

I will provide group averages after the exercise
You can compare your opinions against the others

 Appendix A – Lecture Slides of Experiment A A-V

9

Grading

Contents of the exercise
inspection and demographic data

Grading of the course
Maximum 3 points from this exercise
Maximum 40 points come from the exam
Maximum 10 points come from weekly exercises

10

Software under study

Quick demo
This software is only prototype

It is lacking huge amount of features
In future it should support visualizations of family trees
How ever the data model is about complete

UML-model
The visible methods are to be evaluated

 Appendix A – Lecture Slides of Experiment A A-VI

11

Smells under inspection

All smells under inspection focus at method level
There is no time to go through smells involving class relationships

12

Long Method

Description:
Long methods have low cohesion

Low cohesion means that method tries to do several things.
Rather than performing just single task

Method that is too long is difficult to understand

Benefits of small methods:
Easier to use descriptive method names

No need to look at the method body
Name tells the purpose of the code

Methods that perform single tasks are easier to reuse

Fix:
Split big method into several smaller methods

 Appendix A – Lecture Slides of Experiment A A-VII

13

Long Parameter Lists

Description:
Are constantly changing as more data is needed
Are hard to understand

Before OO everything routine needed was to be passed as
parameter

The alternative was global data, which usually is even worse
With OO there really is no need for long parameter lists

The method host already has much of the data that method needs
You can always ask other objects for more data or/and pass whole
objects instead

Fix:
You can always ask other objects for more data or/and pass whole
objects instead

14

Feature Envy

Description:
Method is more interested in other class(es) than the one it is in
E.g. If method invokes several getter and setter methods of other
classes it is envying data.
The key idea of OO is that data and the logic are in the same place

Design Patterns don’t necessarily follow this principle
DP’s should be used only when necessary

Fix:
Move method to the class it really should be in

 Appendix A – Lecture Slides of Experiment A A-VIII

15

Doing the inspection

Work alone
Evaluate each method for all the presented smells

Does the smell exist in the method?
Scale 1-7 Not at all - Yes very much

Evaluate whether you would refactor this method in order to
keep software easy to understand and develop further
There are total of 10 methods to be evaluated
For each method you have 5 minutes to evaluate it and answer
the questions

I will make a note when there is one minute left
Do not proceed to the next method before I say you should
The time for each method might feel like too long or short

16

Material

Everyone should have
Smell descriptions (one paper)
UML class diagram of the software (one paper)
The exercise sheet (11 papers)

 Appendix B – Web Page of Experiment B B-I

Appendix B – Web Page of Experiment B

This appendix contains the web-page that was used to give the exercise instruction in
Experiment B.

Exercise description

Your job is to familiarize yourself with the software called Family Tree Professional. After getting a
general overview of the software you will then review ten methods from the software's source code.
During the exercise you will also need to answer some questions concerning your background. After
reviewing each method:

 * You will indicate whether you would refactor the method or not in order to keep this software easy
to understand and develop further.

 * You will also need to give a short rationale for you choice. (Short = 1-3 sentences).

 * You may answer in Finnish, Swedish or English.

What is refactoring

Definition adapted from [2]: Refactoring is a controlled way to improve the software’s structure without
changing its observable behavior.

Benefits of refactoring according [1,2]

 * Improves software design

 * Programs are easier to understand

 * Reduced dependency on individuals

 * Easier testing, auditing, documenting

 * Makes bugs easier to find

 * Increased software development speed

 * Greater job satisfaction

 * Extended system’s lifetime

 * Preserving software asset value to organization

Thus, by improving the software structure, we should should receive some or all of the above presented
benefits.

Grading

The exercise will be graded based on the rationale you provide for your refactoring decision. Strictly
speaking there are no right or wrong answers for this exercise.

 * You can freely select any of the choices for the refactoring questions as long as you are able to
provide good rationale.

 * Getting 100% from the exercise should not be very difficult as long as you put some thought and
effort writing up your rationale.

 * Also try to keep your rationale short. More than 5 sentences is definitely too much

 * Finally: we are not interested in what your "guru" buddy thinks. Please answer only based on your
own opinions!

Effort

The exercise should take 1-2 hours to complete.

 * About 15-30 minutes should be spent in getting an overview of the software by looking at the
screen shots, the UML-diagram, and the source code

 * About 5-10 minutes to answer the demographic questions.

 Appendix B – Web Page of Experiment B B-II

 * Then 40-80 minutes should be spent in evaluating the ten methods. This will mean that you will
have 5-10 minutes to study each method and write your rationales. However, the methods are
somewhat different so you might spend just few minutes studying the shorter methods.

 * Also when you study the methods you will need to get back and forth between the UML and the
source code so that you can better understand the method and its context.

How the exercise information may be used

 * The refactoring choices for each method will be published through the web so that students can
study the opinions of other students. However it will be impossible to recognize individual respondents.

 * The rationales for the refactorings will not be published as is. However the issues will be covered
during the lecture.

 * All the data provided may be used for scientific purposes, but the results will be published in a way
that makes it impossible to recognize individual respondents.

 Appendix C – Topic Frequencies C-I

Appendix C – Topic Frequencies

This appendix contains the codes discovered from the evaluated software elements, i.e.
methods. The software elements are referenced as primary docs 1-10 and they can found in
Listings 1-10 in Section 4.3. Codes that have *-mark in front of them indicate super codes
that have been created by combining several codes. Combining in this case does not mean
adding, e.g. adding number of extractMethod topics and longMethod topics does not give
the number of super topic extractMethod+longMethod because many informant specified
both topics and such cases are only counted as one.

The topic frequency means the number of informants who mentioned the issue; however,
one individual may have specified several topics. Thus, the addition of all topic frequencies
can be larger than the number of informants; however number of individual topic
mentions can be only as large as the number of informants.

 PRIMARY DOCS
CODES 1 2 3 4 5 6 7 8 9 10 Totals

*commentsImprove 9 4 1 2 2 1 6 3 7 5 40
*extractMethod + lon 0 15 2 16 0 22 0 4 0 18 77
 gMethod
*layoutPoor 1 3 1 4 2 12 2 5 3 4 37
*longStatement + sta 17 0 0 0 2 0 0 12 0 0 31
 mentSplit

Totals 27 22 4 22 6 35 8 24 10 27 185

 PRIMARY DOCS
CODES 1 2 3 4 5 6 7 8 9 10 Totals

callerProblems 1 0 0 0 0 0 1 0 0 0 2
changeAlgorithm 1 8 0 12 3 3 1 3 0 2 33
codingConventions 1 7 1 2 3 0 2 1 2 4 23
coditionalsCombine 0 0 0 0 0 0 0 0 0 2 2
commentsAdd 7 3 1 1 2 1 6 1 6 1 29
commentsOK 0 1 2 0 0 0 1 2 2 0 8
commentsPoor 1 1 0 1 0 0 0 1 1 4 9
commentsPosition 1 1 0 0 0 0 0 1 0 0 3
commentsRemove 2 0 0 0 0 0 0 0 0 0 2
complexLoop 0 0 0 1 0 0 0 0 0 1 2
conditionalsTooMany 0 0 0 0 0 0 0 0 0 2 2
correctness 3 3 1 2 0 0 1 2 2 3 17
coupling 0 0 2 0 0 0 0 0 1 0 3
couplingLow 0 0 0 0 0 0 0 0 1 0 1
duplication 0 0 0 1 0 0 0 3 0 0 4
dynamicConcept 0 0 0 0 0 0 0 0 1 0 1
exctractCommonMethod 0 0 0 0 0 0 0 3 0 0 3
extractClass 0 0 0 0 0 1 0 0 0 0 1
extractMethod 0 13 2 16 0 21 0 4 0 18 74

 Appendix C – Topic Frequencies C-II

extractVariable 0 0 0 1 0 1 0 0 0 0 2
genderStoredString 0 0 4 0 0 0 0 0 0 0 4
generalize 0 0 0 0 0 0 0 0 0 1 1
improve 0 0 0 0 0 0 0 0 0 1 1
inlineMethod 0 0 0 0 1 0 0 0 0 0 1
inlineResponsibility 0 0 0 0 0 1 0 0 0 0 1
lacksUnderstanding 0 1 4 0 1 0 1 3 1 0 11
largeClass 0 0 0 0 0 1 0 0 0 0 1
layoutAddBlankLines 0 3 1 4 1 9 0 3 2 3 26
layoutComments 0 1 0 0 0 0 0 0 0 0 1
layoutGroupingGood 0 0 0 0 0 2 0 0 0 0 2
layoutGroupingPoor 0 1 0 1 0 8 0 0 0 1 11
layoutIndent 1 0 0 0 0 0 0 3 0 0 4
layoutMethodArgsMore 0 0 0 0 0 0 2 0 1 0 3
layoutSplitLines 0 1 0 1 0 0 0 0 0 0 2
layoutWhiteSpace 0 1 0 1 1 3 0 0 1 2 9
longMethod 0 9 0 5 0 15 0 1 0 1 31
longStatement 17 0 0 0 2 0 0 10 0 0 29
methodNameOK 0 0 0 0 0 0 1 0 0 0 1
methodNamePoor 0 0 0 0 0 0 0 0 0 2 2
methodVisibility 0 0 0 0 0 0 1 0 0 0 1
moveMethod 2 0 0 0 0 0 0 0 0 0 2
moveResponsiblity 1 0 1 0 0 0 1 0 0 0 3
namingImprovmentOthe 0 0 4 0 0 0 0 0 0 0 4
namingImprovmentVars 0 0 0 3 1 0 0 3 6 2 15
nestingTooMuch 0 0 0 0 0 0 0 0 0 11 11
nonsense 3 1 2 0 1 0 1 1 2 0 11
OK %1 2 1 1 2 5 2 1 4 2 0 20
OK %2 2 5 13 4 16 1 15 3 19 0 78
OK %3 3 1 8 0 6 1 5 0 3 0 27
overloadingNeeded 1 0 0 0 0 0 0 0 0 0 1
parameterListLong 1 0 1 0 0 0 1 0 0 0 3
parameterObject 1 0 1 0 0 0 2 0 0 0 4
parametersAreNotChec 0 0 0 0 0 0 0 0 1 0 1
parametersModify 0 0 1 0 0 0 0 2 0 0 3
performance 0 3 1 0 1 0 0 1 0 0 6
readabilityOK 0 0 2 0 0 1 3 0 1 0 7
readabilityPoor 4 0 1 5 4 18 0 7 1 14 54
refiguringComplete 0 0 0 0 0 0 0 1 0 4 5
reOrganizenternal 0 2 0 2 3 0 2 0 0 1 10
spellingGrammar 0 0 0 1 0 0 6 0 1 0 8
statementSplit 14 0 0 0 1 0 0 8 0 0 23
statmentsMerge 0 1 0 0 0 0 0 0 0 0 1
tempsAdd 0 0 1 1 2 0 0 1 0 0 5
tempsReduce 0 0 0 4 0 0 0 0 0 0 4

Totals 69 68 55 71 54 89 54 72 57 80 669

