R i~

: . Wc_." T et Vet e] gt lt R g, -, e e =R P L

< & : ,.‘ A DN o, S e e | R e iy v, b : € - i .

- ne \ . i “.‘k. ; TS ...%**. ¢ dl\ s "y R X o 2 i oY A _;. M‘“ S T —
= . s "ﬁ e S S, al o et Rl L & ey =

.....

a -9 ‘:'

- Software Testmg and Software Log' :
=¥, Analy31s When Will They Meet'? -

* Prof. Mika Mantyla,
Umver31ty of Helsmkl leand

& & S ‘& \\ N% , £ Z/A/

" [SUOMEN AKATEMIA

m . At

Outline

Size of Body of Knowledge
» Software Testing
* Log Analysis

Intersection
— Logs as Coverage targets
— Logs as Oracles

Both Software Testing and Log Analysis are big fields

» Software Testing 41,662

— TITLE-ABS-KEY ("software testing"
) AND (LIMIT-TO (SUBJAREA ,

"COMP"))

. Log Analysis 2,844

— TITLE-ABS-KEY ("log analysis") OR

TITLE ABS-KEY ("log anomaly detection"
) OR TITLE-ABS-KEY ("log file
analysis") OR TITLE-ABS-KEY ("log
file anomaly detection") OR TITLE-ABS-
KEY ("software log") OR TITLE-ABS-KEY
("software execution log")) AND (

LIMIT-TO (SUBJAREA , "COMP"))

41662

2844

Software Testing 41662
Log Analysis 2844

SOFTWARE TESTING

Software Testing is Information Seeking

* Many definitions exist

* Perspective:
— Verification: Are we building the product right?
— Validation: Are we building the right product?
— Regressions: Does the product still work?

* Type of information:
— Functionality

— Performance
— Security

Quality of testing You wish
A you are here
High
quality
testing
Many defects Few defects
>
Low quality product High quality product
Few defects Few defects
Low
quality
testing

You may be
here

Ref: Mark Fewster and Dorothy Graham

Quality of testing A

High
quality
testing

Many defects Few defects How do we

know our
location in Y-
| _— _———= .
axis?
. . >
Low quality product High quality product

Few defects Few defects
Low
quality
testing

Ref: Mark Fewster and Dorothy Graham

S
ARG

e il

27
~
o

N
/s | st P
§3§ $‘ :

J
vl

-‘ﬁb_\‘h %\ﬁ\ >

R A R

W
N
S ST
M

=

* There are 10 defects in the figure on the
right
* QA task : Find defects

I 1}

7—?——‘
V4
s

S

‘,”'7/.3,;
l: ;

AP i

al

A7

|
N

N
flo

\
i

Rk

Nz
,//’;f/“
=
\

A,

.
,/;/

7
Z
%

-‘ﬁb_\‘h %\ﬁ\ >

R
RN
\ A

* How do you know you have done a good
job in finding defects in the figure?

* Quality of testing?

100% Coverage -> Good testing

)
30
| 7 o

A,
A , .\ 57
Gl

Coverage grid!

22

\

7

2

© Buwrs

%

N
N
=
2

© Buirs

\

i

© Buwrs

i

© Buwrs

S
ARG

e il

27
~
o

N
/s | st P
§3§ $‘ :

J
vl

-‘ﬁb_\‘h %\ﬁ\ >

R A R

W
N
S ST
M

=

* Quality of testing?
* [s only about the coverage in this task

Quality of testing A

High
quality
testing

Many defects Few defects How do we

know our
location in Y-
| _— _———= .
axis?
. . >
Low quality product High quality product

Few defects Few defects
Low
quality
testing

Ref: Mark Fewster and Dorothy Graham

Coverage (defect locations) are given but “testing” job is not easy

What about right answer? Oracle?

Welding Oracle

| just right

Coverage &
Oracle

* In left we have the perfect
oracle

e i.e. the correct answer et Shaclie

* In this first task, detection
was dependent on the
coverage

* In the second task, detection
was dependent on the
Oracle

K T ok
S,

Software example of oracle problems

[¥®] Tekla Structures - C:\TeklaStructuresModels
Fie Edit View Points Parts Loads Analysis Detaling Drawing Properties Setup Tools Inquire Window Help Test

VP DALY SN FRN[TLCLE VY | MAYTOREAODOE UEE R M@l
l ‘o h .-. ’.\. ‘ lDelauIleo\pvm H

n:i

-3 UKY\N=1 OO =2:=0Ncc 0L Y1

Base plate (1004) Beam reinforcem .. Bent plate (151) Bolted gusset (11)

Bokted moment c. braci tube

B

Clip angle (141) Column with stiff. Concrete stairs (7) Corbel connectio.

- LEX » & b

Corbel reinforce. End plate (144) Haunch (40)

P K 2 .
— - ¢ e 4 ' II
B % x H iy
——— i / v

Hole reinforceme. . Pad footing reinf Rectangular colu... Round column re.

Round tube (23) Seating (30) Seating (39) Seating with dow.

INXN /[

- o))

I Tl S o N R

GJORN

v
-«

Current phase: 0, x1- 0 1 + 0 object(s) selected Kopona.NET.

Oracle - Are the colors correct in the
image? What is theZmeaning of the colors

CEX

[¥®] Tekla Structures - C:\TeklaStructuresModels
Fie Edt View Points Parts Loads Analysis Detaiing Drawing Properties Setup Tools Inquire Window Pp Test

D2H DOEY@Q Y% g G PuNMC LR VS A% MAHTEELO0OD0E UFE Ml
{alhnsi lDeleullG|v :) ‘ladrd vQ, Blolo(a|x|d2 v @l (s ¥[oumnepmes

PR = v 12 G:@B

e A Y - 777}
“’—" 4 e | §
‘ [— ;
o ; v (5o
= — =
- shis

Base plate (1004) Beam reinforcem .. Bent plate (151) Bolted gusset (11)

braci B

tube

&

% B

N XX /&

Bokted moment c.

Clip angle (141) Column with stiff. Concrete stairs (7) Corbel connectio.

. View 4 FEX

Corbel reinforce. End plate (144) Haunch (40)

A 2 \ Y
- ¥ N ¥
******* H d i b
. -—. b
s s
. - L . S Vo b

Hole reinforceme. . Pad footing reinf Rectangular colu... Round column re.

& y
N \ v _ a ,
—— N, i

Round tube (23) Seating (30) Seating (39) Seating with dow.
el _a .
< >

1 + 0 object(s) selected Kopona.NET:

O 2@l = oSN N T

GJORN

v
-«

Current phase: 0, x1-0

Oracle - Are all the components available?

] Tekla Structures - C:\TeklaStructuresModels (=13}
File Edit View Points Parts Loads Analysis Detaiing Drawing Properties Setup Tools Inquire Window Help Test

D2H DOEY@ % % %o G oM CLE VE
1 ol O & peeacon v B | Bigh oo V& B O|Pa|x]dE @ a0 ¥[oumepmes

i - View 1-3D (- [o]x Lol

& o
=R

% B
-3 UKY\N=1 OO =2:=0Ncc 0L Y1

Base plate (1004) Beam reinforcem .. Bent plate (151) Bolted gusset (11)

Bokted moment c. braci tube

B

Clip angle (141) Column with stiff. Concrete stairs (7) Corbel connectio.

. View 4 FEX
B 5

Corbel reinforce. End plate (144) Haunch (40)

P K 2 .
— - ¢ e 4 ' II
B % x H iy
——— i / v

Hole reinforceme. . Pad footing reinf Rectangular colu... Round column re.

Round tube (23) Seating (30) Seating (39) Seating with dow.

INXN /[

- o))

I Tl S o N R

GJORN

v
-«

Current phase: 0, x1- 0 1 + 0 object(s) selected Kopona.NET.

Quality of testing — Two dimensions

* Coverage — What areas have been tested
* Oracle — How good is the detection of defects (of the

areas that have been covered)
A are here
High

quality
testing

Many defects Few defects

Low quality product High quality product i’

Few defects Few defects

Low

quality
testing
You may be
here

You wish
A you are here
High
quality

Testing
* Information seeking |
* Max: Coverage
* Max: Oracle accuracy
* Minimize: Cost S— =

here

Ll
4z

2
i
1D
LD

LOG ANALYSIS

DR.[HIOU S E Log Analysis
Investigation of
Software Behavior

MEDICAL DIVISION

-BG S tedrn

* A software engineer investigating
software behavior is akin to...

EEaE=11")

— a medical doctor investigating a
patient

— a detective investigating a
crime

* Software behavior = What
happens in Testing or Operations

https://antoniogenna.com/2012/12/20/dvdserie-393-dr-house-medical-division-stagione-conclusiva-8/
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://con2bemolesradio.com/adaptaciones-de-sherlock-holmes/sherlock-holmes/
https://creativecommons.org/licenses/by-nc-sa/3.0/

Types of Log data

* Execution logs
— Textual
— Whatever the developer happened to log
— Series of events

* Metrics (CPU, Memory etc)

— Series continuous values

* Traces
— Tree of services of request and messages

— Microservices: Requests and messages sent between microservices as they
fulfill a user request

— Programs: Record of the execution of a program captured by a debugger or a
profiling tool.

Execution
Logs
in code

logging

g

- =
o a logger for the current module
b R " Tl o o — o L o Y el e =11 L o] e

M

logger = logging.getlLogger(__name__)

Configure the logger
logger.setlevel(logging.DEBUG) # Set the
Create a console handler
console_handler = logging.StreamHandlex()
Set level and format for the handler
formatter = logging.Formatterx(

console_handler.setFormatter(formatter)

: :‘I'-‘d alal= |-l r'a,-lq-ﬂ!.-l — el al= -.--,.--.--:r
al® L= | LT L e LI LUdigc

logger.addHandler(console_handler)

M

e L

of the logger

(8]

Example usa
logger.debug(
logger.info()
logger.warning(

logger.error()

logger.critical(

(1

o

Software Log Analysis - Objectives

Software

Internal State

148 INFQ dfs.Datalode$PacketResponder: PacketResponder 1 for block blk 38865049064139660 terminating

222 INFQ dfs.Datalode$PacketResponder: PacketResponder @ for block blk -6952295868487656571 terminating
35 INFO dfs.FSMamesystem: BLOCK* NameSystem.addStoredBlock: blockMap updated: 10.251.73.220:58010 is adde
308 INFQ dfs.Datalode$PacketResponder: PacketResponder 2 for block blk 8229193883249955861 terminating
329 INFQ dfs.Datalode$PacketResponder: PacketResponder 2 for block blk -6670958622368987959 terminating
148 INFQ dfs.Datalode$PacketResponder: PacketResponder 1 for block blk 38865049064139660 terminating

222 INFQ dfs.Datalode$PacketResponder: PacketResponder @ for block blk -6952295868487656571 terminating
35 INFO dfs.FSMamesystem: BLOCK* NameSystem.addStoredBlock: blockMap updated: 10.251.73.220:58010 is adde
308 INFQ dfs.Datalode$PacketResponder: PacketResponder 2 for block blk 8229193883249955861 terminating

Model

329 INFQ dfs.Datalode$PacketResponder: PacketResponder 2 for block blk -6670958622368987959 terminating

Is the internal state abnormal
situation? Yes / No

What type of anomaly?
Performance / Security / Functional

What service/component is the root
cause?

What events are the most
suspicious?

e—

Thunderbird HPC

€57 2m\®

Log Data

Log Processing Pipeline

Load and process to common format

Time Level Message

2024-03-07 Info |Connection opened

9:56:28 to 192.168.0.1

2024-03-07 Info |Reading data from

9:57:28 192.168.0.2
Dataframe

Add log representations

2 3
. wnlk
IR S Poy -,‘,‘.‘ "
L, W te . v
7 NE T
EA £
< v .8y
Char-3-grams Cluster

[Con onn nne .. 8.0 [E1
.0. 0.1]

[Rea ead adi .. 8.0 E2
.0. 0.2]

Enhancements

-+

Detect anomalies

Anomaly Ano score
0 0.02
1 0.95

Anomaly scores

LLoad & Process

 Slice different parts to different variables

— Time stamp, thread id, log level, component, log message

081109 203615 148 INFO dfs.DataNode$PacketResponder: PacketResponder 1 for block blk 38865049064139660 terminating
081109 203807 222 INFO dfs.DataNode$PacketResponder: PacketResponder @ for block blk -6952295868487656571 terminating

081109 204005 35 INFO dfs.FSNamesystem: BLOCK* NameSystem.addStoredBlock: blockMap updated: 10.251.73.220:50010 is added to blk 7128370237687728475

Load and process to common format New log representations Detect anomalies

e Level Message Char-3-grams Cluster Bnomaly Ano score
Es 2024-03-07 Info |Connection opened [Con onn nne 8.0 E1
= = 9:56:28 to 192.168.0.1 .0. 0.1 0
rrrrrrrrrrrrrr 2024-03-07 |[Info [Reading data from [Rea ead adi .. 8.0 [E2 i
—— 9:57:28 192.168.0.2 .0. 0.2]
&Tww E
Sabe

Log Data Dataframe + Enhancements + Anomaly scores

L.oad & Process
* Separate logs to correct sequences

— Log has phases: separate them -> different model for each
step

https://github.com/jekyll/jekyll/actions/runs/4915665388/jobs/8778424596

£ Run Tests (Ruby 2.7)

v
€ Run Tests (Ruby 3.0)

&
€ Run Tests (Ruby 3.1)
& Run Tests (Ruby 3.2) @
& Run Tests (JRuby 9.4.0.0) &
& Profile Docs Site (Ruby 2.7) &
& Style Check (Ruby 2.7) ..

&)

%) Usage

©

https://github.com/jekyll/jekyll/actions/runs/4915665388/jobs/8778424596

[Load & Process

* Separate logs to correct sequences
— Log has phases: separate them
 CI: Different steps

— Multiple threads push to single log file: separate them
* HDFS log data: Block ID

« HDFS log data : 10M log lines and 500k sequences

081109 203615 148 INFO dfs.DataNode$PacketResponder: PacketResponder 1 for block blk 38865049064139668 terminating
081109 203807 222 INFO dfs.DataNode$PacketResponder: PacketResponder @ for block blk -6952295868487656571 terminating

081109 204005 35 INFO dfs.FSNamesystem: BLOCK* NameSystem.addStoredBlock: blockMap updated: 10.251.73.220:50010 is added to blk 7128370237687728475

[Load & Process

* Separate logs to correct sequences
— Log has phases: separate them
 CI: Different steps

— Multiple threads push to single log file: separate them
* HDFS log data: Block ID

— Log has different tasks: separate them
» Test automation: Test cases

E nh an C e L O g S Load and process to common format New log representations Detect anomalies

5 2 o e i
PACiHE = ¢
i b I 10 |
i B W .] :
§\ Time Level Message

ety Char-3-grams Cluster Anomaly Ano score
° @\2024—03—07 Info |Connection opened [Con onn nne .. 8.0 [E1

() a r rlat = 9:56:28 to 192.168.0.1 .0. 0.1] 0 0.02

Thunderbird HPC 2024-03-07 Info |Reading data from [Rea ead adi .. 8.0 [E2 1 0.95
9:57:28 192.168.0.2 .0. 0.2]
o
BOUTIQUE
representation, € N
9 ° ° o an

Log Data Dataframe + Enhancements + Anomaly scores

— Message length

— Sequence duration
— Character 3grams
— Regex

* E.g., Normalize log message

081109 203615 148 INFO dfs.DataNode$PacketResponder: PacketResponder 1 for block blk 38865049064139660 terminating
081109 203807 222 INFO dfs.DataNode$PacketResponder: PacketResponder @ for block blk -6952295868487656571 terminating

081109 204005 35 INFO dfs.FSNamesystem: BLOCK* NameSystem.addStoredBlock: blockMap updated: 10.251.73.220:50010 is added to blk 7128370237687728475

081109 203615 148 INFO dfs.DataNode$PacketResponder: PacketResponder 1 for block <BLK> terminating

081109 203807 222 INFO dfs.DataNode$PacketResponder: PacketResponder @ for block <BLK> terminating

0811069 204005 35 INFO dfs.FSNamesystem: BLOCK* NameSystem.addStoredBlock: blockMap updated: <IP> is added to

Enhance Logs: Log Parsing or Log Clustering

* Many (~20) log parsers exist
— Research field in itself

Tools and Benchmarks for Automated LLog Parsing

Jieming ZhuY, Shilin He', Jinyang Liu*, Pinjia He%, Qi Xiell, Zibin Zhengt, Michael R. Lyuf

YHuawei Noah’s Ark Lab, Shenzhen. China
TDcparlmcnl of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong
ISchool of Data and Computer Science, Sun Yat-Sen University, Guangzhou, China
ﬁle:par’ctm’:rn[of Computer Science, ETH Zurich, Switzerland
ISchool of Computer Science and Technology, Southwest Minzu University, Chengdu, China

jmzhu@ieee.org, slhe@cse.cuhk.edu.hk, liujy@logpai.com, pinjiahe@gmail.com
gi.xie.swun@gmail.com, zhzibin@mail.sysu.edu.cn, lyu@cse.cuhk.edu.hk

Log Parser || Year Technique Mode | Efficiency
SLCT 2003 Frequent pattern mining Offline High
AEL 2008 Heuristics Offline High

[PLoM 2012 Iterative partitioning Offline High
LKE 2009 Clustering Offline Low
LFA 2010 Frequent pattern mining Offline High

LogSig 2011 Clustering Offline Medium

SHISO 2013 Clustering Online High

LogCluster | 2015 Frequent pattern mining Offline High

LenMa 2016 Clustering Online Medium

LogMine | 2016 Clustering Offline Medium
Spell 2016 | Longest common subsequence | Online High
Dirain 2017 Parsing tree Online High
MoLFI 2018 Evolutionary algorithms Offline Low

Enhance Logs : Log Parsing or Log Clustering

Separate fixed part (template) from variable part

(parameter)

Connection opened to 192.168.0.1

— Fixed (template) part:
Connection opened to <*>

— Variable (parameter): 192.168.0.1
Turns stream of messages to stream events
Benefits

— Simplifies analysis

Dataframe + Enhancements + Anomaly scores

— Enables next event prediction, state machines, look-

ahead pairs
« NEP: E1 E2E4->7
Drawbacks
— Takes times
— Can reduce anomaly prediction accuracy
— Parameters get lost

Log Message Cluster

Connection opened to 192.168.0.1 El
E2
E1l
E3

Reading data from 192.168.0.1
Connection opened to 192.168.15.1
Connection closed 192.168.0.1

Anomaly Detection

* Columns: Log Representations

* Rows: ML algos:

Nt d
BOUTIQUE
Y

Dataframe

+ Enhancements

— DT — Decision Tree, SVM — Support Vector Machine, LR — Logistic
Regression, RF — Random Forrest, XGB — Extrement Gradient Booosting

ANOMALY DETECTION F1-BINARY TRAINED ON 0.5% SUBSET OF HDFS

+ Anomaly scores

DATA.
Words Drain Lenma Spell Bert Average

DT 0.9719 09816 0.9803 0.9828 0.9301 | 0.9693
SVM 0.9568 0.9591 0.9605 09559 0.8569 | 0.9378
LR 0.9476 0.8879 0.8900 0.9233 0.5841 | 0.8466
RF 0.9717 09749 09668 09809 09382 | 0.9665
XGB 0.9721 09482 09492 09535 09408 | 0.9528
Average | 09640 0.9503 09494 0.9593 0.8500

Overview

148 INFO dfs.Dat EPacket
222 INFO dts.Dat

=02 INFO dfs.Dat

329 INFO dfs.DalaNodesPackelResponder:

148 INFO dfs.Dat EPacket

: Packet 1 for block blk 38865049064139660 terminating
: Packet © tor block blk_-6952205868487656571 terminating
35 INFO dfs.FSNamesystem: BLOCK® NameSystem.addStoredBlock: blockMap updated: 10@.251.73.220:50010 is adde]
: Packet 2 for block blk_2229193803249955061 terminating
PackelResponder 2 for block blk_-6670958622368987959 Lerminaling
: Packet 1 for block blk 38865049064139660 terminating
: Packet © tor block blk_-6952205868487656571 terminating

222 INFO dts.Dat

35 INFO dfs.FSNamesystem: BLOCK® NameSystem.addStoredBlock: blockMap updated: 10@.251.73.220:50010 is adde]

=02 INFO dfs.Dat

329 INFO dfs.DalaNodesPackelResponder-:

: Packet 2 for block blk_2229193803249955061 terminating

PackelRespunder 2 for- block blk_-6670958622368987959 Lerminaling

Software

Internal State
Is the internal state abnormal

) situation? Yes / No

| m——

Thunderbird HPC

€57, 018

Log Data

Load and process to common format

Dataframe

148 INFO dfs.DatalodejPacketResponder: PacketResponder 1 for block blk_38865049064139660 terminating
222 INFO dfs.Datalode$PacketResp : Pack
35 INFO dfs.FSHamesystem: BLOCK® NameSystem.addStoredBlock: blockMap updated: 16.251.73.220:50010 is adde]
308 INFO dfs.DataNodesPacketResponder: PacketResponder 2 for block blk_8229193863249955061 terminating
329 INFO dfs.DataNodesPacketResponder: PacketResponder 2 for block blk_-6670958622368987959 terminating
148 INFO dfs.DataNode$PacketResponder: PacketResponder 1 for block blk_38865049064139660 terminating

222 INFO dfs.DataNode$PacketResponder: PacketResponder 8 for block blk_-6952295868487656571 terminating
35 INFO dfs.FSNamesystem: BLOCK® NameSystem.addStoredBlock: blockMap updated: 10.251.73.220:50010 is adde]
308 INFO dfs.DataNodesPacketResponder: PacketResponder 2 for block blk_8229193863249955061 terminating
329 INFO dfs.DataNodesPacketResponder: PacketResponder 2 for block blk_-6670958622368987959 terminating

® for block blk_-56952295868487656571 terminating

Time Level Message
2024-03-07 Info |Connection opened
9:56:28 to 192.168.0.1

2024-03-07 Info |Reading data from
9:57:28 192.168.0.2

Add log representations

Char-3-grams ‘Cluster ‘

[Con onn nne .. 8.0 E1
.0. 0.1]

[Rea ead adi .. 8.0 |[E2
.0. 0.2]

+ Enhancements

What type of anomaly?

Performance / Security / Functional

Model

cause?

What events are the most
suspicious?

Detect anomalies

Anomaly Ano score
0 0.02
1 0.95

Anomaly scores

What service/component is the root

INTERSECTION BETWEEN SOFTWARE
TESTING AND LOG ANALYSIS

Both Software Testing and Log Analysis are big fields

» Software Testing 41,662

— TITLE-ABS-KEY ("software testing"
) AND (LIMIT-TO (SUBJAREA ,

"COMP"))

. Log Analysis 2,844

— TITLE-ABS-KEY ("log analysis") OR

TITLE ABS-KEY ("log anomaly detection"
) OR TITLE-ABS-KEY ("log file
analysis") OR TITLE-ABS-KEY ("log
file anomaly detection") OR TITLE-ABS-
KEY ("software log") OR TITLE-ABS-KEY
("software execution log")) AND (

LIMIT-TO (SUBJAREA , "COMP"))

41662

2844

Software Testing 41662
Log Analysis 2844

Intersection — Software Testing and Log Analysis

ﬁ ~1/3 assess both

41616 46 2798
5 papers as examples

Log Analysis

Software Testing

LOG ANALYSIS - COVERAGE

Knowledge sources and methods for testing

Test Tester’s Knowledge
Strategy View Sources Methods
Requirements Equivalence class
l Inputs document partitioning
Specifications Boundary value analysis
Black b - Domain knowledge State transition testing
ack box) :
Defect analysis Cause and effect graphing
data Error guessing
l Outputs
High-level design Statement testing
Detailed design Branch testing
White box Control flow Path testing
graphs Data flow testing
Cyclomatic Mutation testing
complexity Loop testing

Log analysis: From black to grey box testing

Test Tester’s
Strategy View
l Inputs
Black box -
l Qutputs

White box ﬁ

Knowledge source
Execution logs

Traces

Performance metrics

Knowledge
Sources

Requirements
document
Specifications
Domain knowledge
Defect analysis
data

High-level design
Detailed design
Control flow
graphs
Cyclomatic
complexity

Methods

Equivalence class
partitioning

Boundary value analysis
State transition testing
Cause and effect graphing
Error guessing

Statement testing
Branch testing
Path testing
Data flow testing
Mutation testing
Loop testing

Input Output

Logs as Test Coverage Target

* Search-based testing
— Objectives: max coverage, minimize execution time, generate crash
— Log objective:
* Max: unique log statements (=coverage),
* Min: count of log messages (=cost)
* Assess test suite realism

— Log objective: Max log message similarity between production and test
— Reliability and Load testing [1,2]

» Test case prioritization
— Past work: Diversity of test cases leads to better prioritization
— Log objective: Max diversity of test logs [3]

[1] Tian X, Li H, Liu F. Web service reliability test method based on log analysis. In2017 IEEE International
Conference on Software Quality, Reliability and Security Companion (QRS-C) 2017 Jul 25 (pp. 195-199). IEEE.

[2] Chen J, Shang W, Hassan AE, Wang Y, Lin J. An experience report of generating load tests using log-recovered
workloads at varying granularities of user behaviour. In2019 34th IEEE/ACM International Conference on Automated
Software Engineering (ASE) 2019 Nov 11 (pp. 669-681). IEEE.

[3] Chen Z, Chen J, Wang W, Zhou J, Wang M, Chen X, Zhou S, Wang J. Exploring better black-Box test case
prioritization via log analysis. ACM Transactions on Software Engineering and Methodology. 2023 Apr 26;32(3):1-32.

LOG ANALYSIS - ORACLE

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 41,

NO.5, MAY 2015 507

The Oracle Problem in Software
Testing: A Survey

Earl T. Barr, Mark Harman, Phil McMinn, Muzammil Shahbaz, and Shin Yoo

Abstract—Testing involves examining the behaviour of a system in order to discover potential faults. Given an input for a system,
the challenge of distinguishing the corresponding desired, correct behaviour from potentially incorrect behavior is called the “test
oracle problem”. Test oracle automation is important to remove a current bottleneck that inhibits greater overall test automation.
Without test oracle automation, the human has to determine whether observed behaviour is correct. The literature on test oracles
has introduced techniques for oracle automation, including modelling, specifications, contract-driven development and metamorphic
testing. When none of these is completely adequate, the final source of test oracle information remains the human, who may be
aware of informal specifications, expectations, norms and domain specific information that provide informal oracle guidance. All
forms of test oracles, even the humble human, involve challenges of reducing cost and increasing benefit. This paper provides a
comprehensive survey of current approaches to the test oracle problem and an analysis of trends in this important area of software

testing research and practice.

Index Terms—Test oracle, automatic testing, testing formalism

1 INTRODUCTION

UCH work on software testing seeks to automate as
much of the test process as practical and desirable,
to make testing faster, cheaper, and more reliable. To
this end, we need a test oracle, a procedure that distin-
guishes between the correct and incorrect behaviors of
the System Under Test (SUT).
However, compared to many aspects of test automation,
the problem of automating the test oracle has received signif-
icantly less attention, and remains comparatively less well-

might be a detailed, and possibly formal, specification of
intended behaviour. One might also hope that the code
itself contains pre- and post- conditions that implement
well-understood contract-driven development approaches
[135]. In these situations, the test oracle cost problem is ame-
liorated by the presence of an automatable test oracle to
which a testing tool can refer to check outputs, free from the
need for costly human intervention.

Where no full specification of the properties of the SUT

8.61

0861

5861

0661

S661

0002

5002

oLoz

L8

o
e

 Specinference &
L

- Semi-FormalDocs &

20 LD 00 66 86 L6 96 S6 ¥6 £6 26

#0

L0

60 80 L0

sa|oeIQ 1S8] payideds

g/-sud

R

98

SajoeiQ 1S9 paauag

88

06
sa|oeQ Jsal yoyduw)

£6
s9|9R1Q }59 J0 Hoe] ayy Buypuey

Z0

0L 60

g-81d

g4-aud

0o

20

S0

TA

Analysis of Test Automation Results
-> Better Oracle Granularity

TABLE 21

Approaches

Approaches to analyse test automation results

Description

Received: 6 July 2021 Revised: 22 November 2021

Accepted: 29 November 2021

DOI: 10.1002/stvr. 1804

SURVEY ARTICLE

WILEY

Improving test automation maturity: A multivocal literature review

Yuqing Wang | Mika V.M

Piivi Raulamo-jurvanen
M3S research unit, University of Oulu, Pentti
Kaiteran katu 1, Oulu, Finland

Correspondence
Yuging Wang, M3S research unit, University of

Interpret and classify
test automation

results

Analyse failed tests to find the root reason for failure and classify the
results to prevent potential incidents.

Dulu, Pentti Kaiteran katu 1, Oulu 90014,
Finland.
Fmail: yuging wang@oulu.fi

Funding information

TEA3: Tauno Tonningin Saitid; Business
Finland, Granv/Award Number: 3192/31/2017;
"auno Tonning, GranvAward Number:
0210086

More than ‘pass’ or

‘fail’

Store and review the artefacts (logs, screenshots, comparisons, or video
recordings of test runs, and others generated from executing automated
tests) to get complement information for debugging and fixing issues.

Notifications

Tool support

Smoke tests

Big picture

Keep history

Set the notifications (on test execution tools) to alarm the failures of
critical automated tests, so that the priority can be given to analyse and
solve the failures of critical automated tests when receiving the
notifications.

Use test tools that can give a clear overview of each step of the test flow so
that failures can be quickly identified.

Run smoke tests on automated test suites incrementally to expose reasons
for failures.

In addition to analyse a single test run results, it is essential to combine test
automation results collected from different sources (e.g., across
multiple test tools, test runs, configurations, integration builds, and
milestones) into a big picture view of outcomes.

Store test automation results for a period of time to enable progress
tracking, regression identification, and flaky tests identification.

dntyli | Zihao Liu | Jouni Markkula |

Abstract

Mature test automation is key for achieving software quality at speed. In this
paper, we present a multivocal literature review with the objective to survey
and synthesize the guidelines given in the literature for improving test automa-
tion maturity. We selected and reviewed 81 primary studies, consisting of
26 academic literature and 55 grey literature sources. From primary studies,
we extracted 26 test automation best practices (e.g., Define an effective test
automation strategy, Set up good test environments, and Develop high-quality
test scripts) and collected many pieces of advice (e.g., in forms of implementa-
tion/improvement approaches, technical techniques, concepts, and experience-
based heuristics) on how to conduct these best practices. We made main obser-
vations: (1) There are only six best practices whose positive effect on maturity
improvement have been evaluated by academic studies using formal empirical
methods; (2) several technical related best practices in this MLR were not pres-
ented in test maturity models; (3) some best practices can be linked to success
factors and maturity impediments proposed by other scholars; (4) most pieces
of advice on how to conduct proposed best practices were identified from expe-
rience studies and their effectiveness need to be further evaluated with cross-
site empirical evidence using formal empirical methods; (5) in the literature,
some advice on how to conduct certain best practices are conflicting, and some
advice on how to conduct certain best practices still need further qualitative
analysis.

KEYWORDS
improvement, maturity, practice, software, systematic literature review, test automation

Review 81 sources (26
academic, 55 grey sources)

Logs as partial Oracles or more granular Oracles

 Partial Oracle - State machine for logs [1]
— Developers explicitly include commands to log events of interest.

— Test oracles simulate execution of each individual state machine
reacting to only the logged events relevant to that state machine

* Granular Oracle - Next event prediction on Logs [2]

— Existing oracle tells that a long reliability test run failed
* 40-80k log lines

— Use next event prediction (from passing testing runs) to score log lines
of anomalousness

[1] Andrews JH. Testing using log file analysis: tools, methods, and issues. InProceedings 13th IEEE International
Conference on Automated Software Engineering (Cat. No. 98EX239) 1998 Oct 13 (pp. 157-166). IEEE.

[2] Mantyla M, Varela M, Hashemi S. Pinpointing anomaly events in logs from stability testing — n-grams vs. deep-
learning. In2022 IEEE International Conference on Software Testing, Verification and Validation Workshops (ICSTW)
2022 Apr 4 (pp. 285-292). IEEE.

LOG ANALYSIS - TESTING CONCLUSION

Other Future Work Ideas

* CI Logs - Failure prediction and analysis

— Unfortunately, raw CI data of TravisTorrent [1] no longer available
« Aggregates are not as useful
 Service providers have limited similar data collection efforts.

— CI service provides no longer allow data harvesting data

e What about LLMs

— LLMs are expensive and logs are massive -> Multi-level system
* LLMs top level lower level classical computing and MLs

* Microservice-based systems / Serverless
— Microservices offer logs but also traces and metrics collection

[1] Beller, M., Gousios, G., & Zaidman, A. (2017). TravisTorrent: Synthesizing Travis CI and GitHub for FullStack Research on Continuous
Integration. In Proceedings - 2017 IEEE/ACM 14th International Conference on Mining Software Repositories, MSR 2017 (pp. 447--450). IEEE .
1Tidboo o7 7 AN 11N /AN MCTD NN14™ N A

41616

Software Testing

Information seeking

Max: Coverage

Max: Oracle accuracy

Minimize: Cost

spatter

46 2798

Log AnaIysis‘

| S
HER

You wish
you are here
High
quality

testing

High quality product

Low quality product

Few defect Few defects

Low

quality
testing

g T R B
£ 3L ’MEE 7 | : Egt
”

o ra (= el 7 e)
Ay . > Ign - 2ol . A v v

Prof. Mika Mantyla mika.mantyla@helsinki

University of Helsinki, Finland
https:/ /github.com/EvoTestOps/Logl.ead

Load and process to common format

Time Level Message

2024-03-07 Info |Connection opened
9:56:28 to 192.168.0.1
2024-03-07 Info Reading data from
9:57:28 192.168.0.2

Dataframe +

Add log representations

Char-3-grams

[Con onn nne .. 8.0 E1
.0. 0.1]

[Rea ead adi .. 8.0 E2
.0. 0.2]

Enhancements

Cluster

Detect anomalies

Anomaly scores

Ideas on using Logs for Coverage and Oracles

» Coverage:
— Search-based testing

* Log objective: Max unique log statements (coverage), Min count of log

message (cost)
— Assess Test Suite Realism

* Log objective: Max log message similarity between production and test

— Test case prioritization

* Log objective: Max diversity of test logs

e QOracle:

— Partial Oracle: State machine for logs

— Oracle Granularity improvement: Next event prediction on Logs

mailto:mika.mantyla@helsinki
https://github.com/EvoTestOps/LogLead

	Slide 1: Software Testing and Software Log Analysis: When Will They Meet?
	Slide 2: Outline
	Slide 3: Both Software Testing and Log Analysis are big fields
	Slide 4: Software Testing
	Slide 5: Software Testing is Information Seeking
	Slide 6: Quality of testing
	Slide 7: Quality of testing
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16: Quality of testing
	Slide 17: Coverage (defect locations) are given but “testing” job is not easy
	Slide 18: What about right answer? Oracle?
	Slide 19: Welding Oracle
	Slide 20: Coverage & Oracle
	Slide 21: Software example of oracle problems
	Slide 22: Oracle - Are the colors correct in the image? What is the meaning of the colors
	Slide 23: Oracle - Are all the components available?
	Slide 24: Quality of testing – Two dimensions
	Slide 25: Testing
	Slide 26: Log Analysis
	Slide 27: Log Analysis Investigation of Software Behavior
	Slide 28: Types of Log data
	Slide 29: Execution Logs in code
	Slide 30: Software Log Analysis - Objectives
	Slide 31: Log Processing Pipeline
	Slide 32: Load & Process
	Slide 33: Load & Process
	Slide 34: Load & Process
	Slide 35: Load & Process
	Slide 36: Enhance Logs
	Slide 37: Enhance Logs: Log Parsing or Log Clustering
	Slide 38: Enhance Logs : Log Parsing or Log Clustering
	Slide 39: Anomaly Detection
	Slide 40: Overview
	Slide 41: Intersection Between Software Testing and Log Analysis
	Slide 42: Both Software Testing and Log Analysis are big fields
	Slide 43: Intersection – Software Testing and Log Analysis
	Slide 44: Log Analysis – Coverage
	Slide 45: Knowledge sources and methods for testing
	Slide 46: Log analysis: From black to grey box testing
	Slide 47: Logs as Test Coverage Target
	Slide 48: Log Analysis – ORacle
	Slide 49
	Slide 50: Analysis of Test Automation Results -> Better Oracle Granularity
	Slide 51: Logs as partial Oracles or more granular Oracles
	Slide 53: Log Analysis – Testing COnclusion
	Slide 54: Other Future Work Ideas
	Slide 55

