
 

HELSINKI UNIVERSITY OF TECHNOLOGY 

Department of  Computer Science and Engineering 

Software Business and Engineering Institute 

 

 

 

 

 

 

 

Mika Mäntylä 

Bad Smells in Software – a Taxonomy and an Empirical 
Study 

 

 

 

 

 

 

 

 

 

 

Supervisor:  Professor Casper Lassenius 

 

Instructor:  M. Sc. Jari Vanhanen 



 

 

HELSINKI UNIVERSITY OF    ABSTRACT OF THE
 TECHNOLOGY     MASTER’S THESIS 

Author: Mika Mäntylä 

Title of  the thesis: Bad Smells in Software – a Taxonomy and an Empirical Study 

Date: May 8th, 2003 Number of  Pages:  75 

Department: 
Department of  Computer Science and 
Engineering 

Professorship: 
T-76 Software Business and Engineer-
ing 

Supervisor: Professor Casper Lassenius 

Instructor: M.Sc. Jari Vanhanen 

In this work, the bad code smells are studied empirically and their relationship to 
source code metrics is evaluated. This work also presents an initial taxonomy for the 
bad code smell, which improves their understandability and feasibility  

The bad code smells, presented by Martin Fowler and Kent Beck, are dissatisfactory 
structures in the source code of  software that decrease software quality by making it 
less maintainable. The maintainability of  software is important, because it is one of  
the factors affecting the cost of  the future development activities.  

The literature study looks at the concept of  software maintainability, discusses how 
software maintainability can be measured, and provides motivation and migration 
techniques to achieve more maintainable software. Based on the literature study, this 
work proposes a taxonomy for the bad code smells and evaluates the measurability of  
each bad code smell with source code metrics.  

A survey is used to collect the developers’ opinions on the existence of  bad code 
smells in particular software modules. The results of  this survey show that the 
developers’ opinions on a particular smell in a particular software module are not 
very uniform. The survey also provides more support to the theoretical taxonomy by 
showing that there are many strong correlations within the taxonomy’s categories.    

This study also compares the results of  the smell survey to the source code metrics 
collected with automatic tools. The results show that developers’ evaluations of  the 
bad code smells do not correlate with the actual source code metrics. This means that 
the smell evaluations from developers are not very reliable and that there is a need for 
automatic smell measurement. 
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Tässä työssä tutkitaan pahoja koodihajuja empiirisesti. Lisäksi arvioidaan niiden 
suhdetta lähdekoodimetriikoihin ja niille luodaan luokittelu, joka parantaa niiden 
ymmärrettävyyttä ja käytettävyyttä. 

Pahat koodihajut, jotka Martin Fowler ja Kent Beck esittelevät, ovat ohjelmiston 
lähdekoodissa olevia huonoja rakenteita. Ne heikentävät ohjelmiston kokonaislaatua 
heikentämällä ohjelmiston ylläpidettävyyttä. Ohjelmiston ylläpidettävyys on eräs 
avaintekijä, joka vaikuttaa ohjelmiston jatkokehityksestä tuleviin kustannuksiin.  

Kirjallisuuskatsauksessa tutustutaan käsitteeseen ohjelmiston ylläpidettävyys, esitellään 
tapoja, joilla ylläpidettävyyttä voidaan mitata ja tarkastellaan miten ohjelmiston 
ylläpidettävyyttä voidaan parantaa. Kirjallisuuskatsauksen pohjalta esitellään luokittelu 
pahoille koodihajuille ja tarkastellaan lähdekoodimetriikoiden avulla koodihajujen 
mitattavuutta. 

Kyselytutkimuksella selvitettiin ohjelmistokehittäjien mielipiteitä koodihajujen 
esiintymisen määrästä valituissa ohjelmistomoduuleissa. Kyselytutkimuksen tulokset 
osoittavat, että  ohjelmistokehittäjien mielipiteet hajujen määrästä eivät ole erityisen 
yhtenäisiä Kyselytutkimuksen tulokset tukevat myös aiemmin esitettyä teoreettista 
koodihajujen luokittelua, koska suurin osa vahvoista korrelaatioista on samaan 
hajuluokkaan kuuluvien hajujen välillä. 

Lopuksi tutkimuksessa verrataan kyselytutkimuksella kerättyjä arvioita koodihajujen 
määrästä automaattisesti kerättyihin lähdekoodimittauksiin. Tehty vertailu osoittaa, 
että kehittäjien arviot koodihajuista eivät korreloi vastaavien lähdekoodimittausten 
kanssa. Tämä tarkoittaa, että kehittäjien arviot koodihajuista eivät ole kovin luotettavia 
ja että automaattinen koodihajujen mittaus vaikuttaa tarpeelliselta 

Avainsanat: pahat koodihajut, ohjelmiston ylläpidettävyys, ohjelmistometriikat, 
ohjelmistotuotanto 
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1 Introduction 

1.1 Background 
The mission of  the Software Business and Engineering Institute (SoberIT) is to improve the global 
competitiveness of  the Finnish software industry by providing world-class education and research. SoberIT 
is a part of  the Department of  Computer Science at Helsinki University of  Technology 
(HUT). During the writing of  this thesis, the author worked in SoberIT with the research 
project called Software Engineering Management System (SEMS), which aimed at improving the 
profitability and growth opportunities of  small and medium-sized software product companies by ensuring a 
fit between SW development and management practices and business models.  
Martin Fowler is the author of  many well-known computer science books1. In his book 
Refactoring (Fowler 2000) Fowler presents 22 bad code smells and instructions for 
removing them, i.e., refactorings. The author of  this study has previously applied refactor-
ing to legacy software whose original developer was no longer available. Based on those 
experiences, the author wrote a seminar report for SoberIT’s course Software Engineering 
Seminar. 

The SEMS research project also had several industrial partners. One of  the industrial 
partners, whom we shall call by the name BeachPark2, had showed interest in refactoring. 
BeachPark had two software products that had been constantly developed for 4-5 years. 
During that time, some parts of  the products had become quite complex and some people 
at BeachPark thought that refactoring the source code of  the products would help to 
enhance the maintainability of  their products. 

1.2 Motivation 

1.2.1 Personal Motivation 
While working as a programmer in software industry and university, I have personally seen 
software that was difficult to maintain and develop further. Often the original developer of  
this kind of  software had left the organization, leaving other developers to deal with the 
situation. I feel that detecting badly structured code will help preventing these problems 
and benefit the working environment of  software developers, and also help organizations 
by making their software development more productive.  

                                                 

1 UML Distilled: A Brief  Guide to the Standard Object Modeling Language, Refactoring: Improving the Design of  Existing 
Code, Planning Extreme Programming, Analysis Patterns: Reusable Object Models just to name a few 

2 To see a description of  the case company refer to Section 6.1.1  
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1.2.2 Research Motivation 
The laws of  software evolution were introduced in the nineteen seventies by researchers 
Belady & Lehman who studied how the IBM’s operating system 360-series evolved. One of  
the key messages of  software evolution is that software products need to be continuously 
modified in order to maintain the competitive edge. Another main point is that continuous 
modification makes software structure more complex, unless effort is made to reduce this 
complexity. One way to reduce this complexity is to apply a technique called refactoring, 
which aims to improve the software structure without changing the software’s observable 
behavior. Good programmers have always modified their code to improve its structure, i.e., 
they have applied refactoring without knowing it. However, only in recent years has 
continuous refactoring been recognized as an important part of  software development thus 
making it more popular. 

In order to identify candidate spots for refactoring Fowler and Beck (Fowler & Beck 2000) 
give a list of  bad smells that can exist in source code. Bad smells bear close resemblance to 
development level AntiPatterns (Brown et al. 1998), which also describe different problems 
the software structure can retain. Little academic work has been done to investigate these 
issues, which are widely recognized in software industry3. So I feel there is a need for this 
kind of  academic research.  

1.3 Research Problem 
According to Fowler and Beck (Fowler & Beck 2000) a bad code smell4 is a structure that 
needs to be removed from the source code by refactoring to improve the maintainability of  
the software. As examples of  such structures I can mention classes that are too large, 
utilization of  a switch statement instead of  inheritance, and duplicate code. Since little 
research has been done on the bad code smell, I cannot elaborate an exact research 
problem that this thesis tries to answer. However, the goal of  this thesis is to: 

Study the bad code smells and software maintainability 
The research goal is achieved by answering the following research questions:  

1. How effectively can the different code smells by Fowler & Beck be measured by 
tools? 

2. How can the smells be made more understandable? 

3. Do software developers have a uniform opinion on the “smelliness” of  the source 
code? 

a. How do developers’ experience and capability affect the smell evaluations? 
                                                 

3 The Yahoo!Groups refactoring mailing list, which discusses refactoring and bad code smells, was founded in 
14.9.2001, and has today (1.5.2003) 1864 members. Martin Fowler’s book Refactoring, which introduces the 
bad code smells, has a sales rank of  3512 at Amazon and 80 people have reviewed it. To put that information 
into a right context we can compare it to a true classic among software engineering books: Design Patterns by 
Gamma et al. has sales rank of  1376 at Amazon and 150 people have reviewed it 

4 See Section 4.4.3 for a detailed description of  bad code smells 
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4. Do the developers’ evaluations on code smells correlate with the appropriate 
source code metrics? 

Fowler & Beck think that there is no substitution for informed human intuition when it 
comes to deciding whether a certain code smell should be refactored. I still feel that first 
research question is worth pursuing, because automatic smell measurement can help 
developers by providing them more information. In addition, if  smells are ever to be used 
as a part of  automatic smell measurement, their measurability must be addressed. Finally, I 
also need measures for bad code smells to be able to answer the fourth research question.    

The second research question is motivated by the fact that currently Fowler & Beck only 
provide a single flat list of  the smells. This flat list of  22 bad code smells is not ideal for 
understanding the smells, because it is too long for a human mind to understand. The flat 
list also fails to recognize the common aspects that some of  these smells share and it fails 
to put the smells into a larger context. I think that a shorter taxonomy based on common 
concepts from a larger context will make them more understandable. 
The motivation for the research question 3 comes from Fowler & Beck’s idea that no 
precise criteria for evaluating code smells can be given. Since human judgment is in a 
significant role when evaluating smells, it is interesting to see if  evaluations are uniform. 
The developers should have a common view, or otherwise the usability of  bad smells as 
indicators of  software maintainability is very questionable. The research question 3a deals 
with the idea that it is unlikely that developers with different experience and capability 
would evaluate the smells consistently. 

In the last research question, it will be interesting to see, whether the smell evaluations on 
different modules correlate with the source code metrics for a particular smell. This is 
essential, because if  the human evaluations and source code metrics do not correlate, it 
undermines the smell usability as a maintainability indicator. 

1.4 Research Methods 
To answer the first research question, I made a literature study on the source code metrics 
and the bad code smells. Based on what I had learned from the literature, I tried to propose 
possible measures for the smells and evaluate how measurable the smells are. The measur-
ability would be based on my personal evaluation of  how good a chance the measure has 
of  detecting the smell correctly. 

To answer the second research question, I utilized the information gathered from the 
literature and my personal knowledge as a programmer. Based on this I created a taxonomy 
that maps the 22 smells to 7 higher-level categories.  

To answer the research questions 3, 3a, and 4, I conducted a web-based survey in which the 
developers of  the case company participated. The survey contained 22 questions that asked 
each respondent to evaluate how much of  each smell exists in the modules they had 
primarily worked with. The case company had 18 software developers and 12 of  them 
participated the survey. To answer the research question 3, I used the developers’ opinions 
on the bad code smells. Then I studied how uniformly the developers had evaluated the 
particular smells in the same software modules. In this effort, I used the standard deviation 
of  the smell evaluation in a particular module. In research question 3a I tried to find 
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differences in smell evaluations based on experience, knowledge of  the software module, 
and role. I feel that the role and knowledge should give enough indication on the devel-
oper’s capability. I compared the means and utilized the standard t-test to find the differ-
ences in smell evaluations. For the research question 4, I additionally measured the source 
code of  the case company. After that I compared the source code metrics of  the particular 
smells with the smell evaluations I had received. The idea here was to see whether high 
smell evaluations would also indicate high results from source code metrics.  

1.5 Structure and Outline of  the Thesis 
This chapter has introduced the issues to be discussed in this work. The research goals and 
questions were described in Section 1.3.  

The literature study of  this thesis is introduced in the following chapters. Chapter 2 will 
discuss literature on software maintainability and some important issues around it. Chapter 
3 introduces the research that has tried to measure software maintainability with ap-
proaches that are close to code level. Chapter 4 discusses the ways to keep source code 
maintainable and the benefits of  maintainable source code. Chapter 4 also introduces the 
bad code smells as a measure of  maintainability. Chapters 2, 3, and 4 motivate the research, 
present the most significant prior work, and present a larger context for it.   

My own contribution comes in Chapters 5 and 6, which also provide answers for all 
research questions. Chapter 5 will provide a taxonomy and measures for the bad code 
smells. Chapter 6 contains the results from the bad code smell survey and the comparison 
with source code metrics. Finally, Chapter 7 contains the conclusions and ideas for further 
research based on this thesis.   
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2 Software maintainability 

2.1 Introduction 
This chapter discusses software maintainability. In order to understand what software 
maintainability is, we must understand what is meant by software maintenance. Software 
maintenance and maintainability are studied in Section 2.2. To better understand what is 
meant by software maintenance we also need to look at software life cycles. The effects of  
continuous software development and maintenance on software’s source code are known 
as a phenomenon called software evolution. Software evolution, its laws, and software life 
cycles are studied in Section 2.3.  

2.2 Software Maintenance and Maintainability 

2.2.1 IEEE Definitions on Software Maintenance 
The Institute of  Electrical and Electronics Engineers (IEEE) defines software maintenance 
in their IEEE Standard for Software Maintenance (IEEE 1998) as follows: 

“Modification of a software product after delivery to correct faults, to improve performance or other 
attributes, or to adapt the product to a modified environment.” 

Basically, this means that any activity that modifies software product after its release is 
software maintenance. Further down the line the document defines three different types of  
maintenance tasks: 

• Adaptive maintenance is defined as: “Modification of  a software product performed after delivery to 
keep a computer program usable in a changed or changing environment.” 

• Corrective maintenance is defined as: “Reactive modification of  a software product performed after 
delivery to correct discovered faults.” 

• Perfective maintenance is defined as: “Modification of  a software product after delivery to improve 
performance or maintainability.” 

Those three maintenance activities listed above are the most widely known and they were 
actually first introduced by Swanson (Swanson 1976). The definitions of  adaptive and 
corrective maintenance are pretty much self-explanatory. However, we should realize that the 
definition of  Perfective maintenance covers all kinds of  improvements like new features, not 
only performance issues.  
There is also a fourth type of  maintenance activity in addition to those three presented 
above. It is listed for example in the IEEE Standard for Software Maintenance’s Annex A on 
‘Maintenance Guidelines, but not in the official part of  the standard. 

• Preventive maintenance is defined as: “Maintenance performed for the purpose of  preventing 
problems before they occur.” 



 Software maintainability  6 
 

 

What this kind of  maintenance might mean to software is still quite unclear even to 
software maintenance community. This confusion was discussed in a workshop titled “Do 
we know what preventive maintenance is?” (Chapin 2000). Because the term is somewhat 
ambiguous and not very much in use, I shall make no further references to it. 

2.2.2 Other Definitions on Software Maintenance 
According to Haikala and Märijärvi (Haikala & Märijärvi 1998), software maintenance is 
resolving customer’s problems, fixing bugs, changing program’s behavior while require-
ments change, and adding new features. The book also notes that software products often 
do not have a maintenance period in their life cycle. On the other hand, we could argue 
that for a software product everything after the first public release is maintenance. This is 
also supported by Glass and Noiseux (Glass & Noiseux 1981) who stated that essentially 
everything is maintenance. 

Pigoski (Pigoski 1996) quotes several definitions and concludes that all maintenance 
activities occur in the post delivery stage of  software. He is supported by Schach (Schach 
2002) who says that all changes to a product after it has been accepted by the client are 
maintenance. Similar definitions can also be found in Sommerville (Sommerville 1996). 

2.2.3 Software Maintenance Economics 
Schach (Schach 2002) has combined figures from several sources from 1976 to 1981 and 
has found out that maintenance makes up 67% of  the effort spent on software during its 
life cycle. Other sources from 1990s give different numbers for maintenance, varying from 
the low of  40-60% (Coleman et al. 1994) up to 95% (Pigoski 1996) of  the effort of  total 
software life-cycle costs spent in maintenance. The problem with the numbers from 90s is 
that they are highly speculative and not based on very accurate data. Sommerville 
(Sommerville 1996) also reminds us that maintenance costs fluctuate greatly between 
application domains. 

Although maintenance seems to make up a very big part of  the total cost of  a software 
product, we must bear in mind that the maintenance costs are mostly influenced by the 
things that happen prior to the maintenance period (pre-delivery phase). According to 
several sources, high maintenance costs are the result of  a poor coding and lack of  design, 
and maintenance costs can be reduced by putting more effort into the pre-delivery phase 
(Haikala & Märijärvi 1998;Pigoski 1996;Sommerville 1996). It is true that the effort spent 
into and the comprehensiveness of  the pre-delivery phase will greatly influence the length 
and the efforts of  the maintenance period. However, the target of  reducing the mainte-
nance costs may not always be desirable. In many cases the customer wants to start using 
the software as early as possible, even when the software has faults and lacks features. This 
way the customer can be sure that development is building the right product and the 
development can also benefit from early customer feedback.  

There are also several software processes like Evolutionary prototyping (Sommerville 
1996), Incremental development (Sommerville 1996), Rational Unified Process (Kruchten 
2000), and eXtreme Programming (Beck 2000) that encourage the customer to start using 
the system as early as possible. Those processes are not optimized to keep maintenance 
costs low, but to make sure that the customer gets the right product and that they can start 
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using and getting business benefits from the system as early as possible. In the software 
product business it would be pointless to delay the software delivery, since this may result 
in high maintenance costs, because from the business perspective it can be crucially 
important to beat competition to the market with the new release. A good example on how 
software product business operates can be found in Cusumano’s work (Cusumano & Yoffie 
1999), which illustrates how Microsoft and Netscape used scheduled releases in their 
operation.  Those companies could not have cared less about the high maintenance costs 
involved with early releases. On the other hand, it must be pointed out that in software 
product business the software product is in the maintenance phase a major part of  its life 
cycle.   

More support on why one should not care about the high life cycle effort percentage spent 
on maintenance phase comes from the fact that most of  the maintenance effort is spent on 
enhancements. Pigoski (Pigoski 1996) quotes several studies made between 1980 and 1990, 
which all show that the effort spent on corrective maintenance varied from 16% to 22%. 
Pigoski also conducted his own studies while working at the U.S. Navy software mainte-
nance organization and got similar results. Basically, this means that 80% of  the mainte-
nance effort is spent either on Perfective or Adaptive maintenance, which constitutes as 
enhancements. So it really makes no difference whether the software is developed during 
the maintenance period or not, because you are still doing the same things as you would do 
in pre-maintenance period, which is developing software and fixing bugs. 

In the end I would like to suggest that organizations should not pay too much attention on 
reducing maintenance costs from the software’s total life cycle cost, because maintenance 
really is the state that most software products are in. As discussed above, software product 
development also benefits from the maintenance phase in the form of  increased user 
feedback. In addition, in most cases organizations start to get money from the software 
only after the software is deployed or sold. This does not mean that one should rush 
through initial development period too fast, since lack of  design rational and poor coding 
done in a hurry might result in serious problems when the software is developed further. 
The key point here is to deploy the software product as fast as possible without making its 
further development too expensive. 

2.2.4 About The Term Software Maintenance  
Interestingly, the term software maintenance that was defined in Sections 2.2.1 and 2.2.2 
poorly describes what happens after the software is released or deployed. A much better 
term for the activities that happen after the initial release would be in most cases software 
evolution, and this idea is also supported by Sommerville (Sommerville 1996).  

The term “maintenance” is derived from the verb “maintain”. The best definitions in this 
context for the word maintain according to Merriam-Webster’s dictionary 
<http://www.m-w.com/> are as follows: 

To keep in an existing state (as of  repair, efficiency, or validity)  
Preserve from failure or decline (maintain machinery) 

So the word maintenance clearly does not imply that there would be an activity, which 
would enhance the state of  the object to be maintained. In this sense, it is quite awkward 
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that most of  the activities performed in software maintenance are aimed to further develop 
or improve the software. 

2.2.5 Definitions on Software Maintainability 
As a rule of  thumb we could think of  maintainability as an attribute of  how easy it is to 
perform software maintenance. 

IEEE has defined software maintainability in (IEEE 1990) as follows: 

The ease with which a software system or component can be modified to correct faults, improve per-
formance or other attributes, or to adapt to a changed environment 

In that definition we can easily find the three maintenance (corrective, adaptive, perfective) 
activities defined by the IEEE, which were introduced in Section 2.2.1. Pigoski (Pigoski 
1996) quotes several sources, which have almost similar definitions as the IEEE.  

2.3 Software Evolution and Lifecycle 
The term software evolution does not have an official definition, but some parts of  software 
engineering community have used it as a replacement for software maintenance (Bennett & 
Rajlich 2000). As previously noted in Section 2.2.4, the term software evolution also 
describes more accurately the phase currently known as software maintenance.  

2.3.1 Laws of  Program Evolution 
M.M. Lehman and L. A. Belady made foundational work on computer programs life cycle 
in the 1970s. They discovered a set of  laws of  program evolution that are still valid today. 
We will look into the first two laws that are considered to be the most relevant.  

The 1st law of  program evolution is called The Law of  Continuing Change and it is defined by 
Lehman (Lehman 1980) as follows: 

A program that is used and that, as an implementation of  its specification, reflects some other real-
ity undergoes continuing change or becomes progressively less useful. The change or decay process con-
tinues until it is judged more cost effective to replace the program with a recreated version. 

The first sentence, which asserts that programs must evolve or they became less useful, has 
endured well until our days. Currently, there is also a software process called eXtreme 
Programming (XP) developed by Beck (Beck 2000) that embraces change rather than tries to 
avoid it. One of  the main ideas in XP is that change is inevitable, so there is no point in 
trying to avoid it. However, the second sentence, which states that program decay results in 
a program substitution, has received some conflicting opinions. Tamai & Torimitsu (Tamai 
& Torimitsu 1992) found out that the most important reason to replace a program was to 
satisfy user requirements. On the other hand, we could say that Tamai’s results are not 
disagreeing with Lehman’s, because the inability to satisfy user’s requirements could be one 
indication of  software decay. It has to be pointed out that Lehman & Belady were studying 
the IBM’s operating system 360-series, while Tamai’s research was targeted on Japanese 
business applications.  
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The 2nd law of  program evolution is called The Law of  Increasing Complexity and it is defined 
by Lehman (Lehman 1980) as follows: 

As an evolving program is continuously changed, its complexity, reflecting deteriorating structure, in-
creases unless work is done to maintain it or reduce it. 

This law has also stood the test of  time well and it is still applicable today. Some techniques 
can be applied to contradict this law and we will study them in more detail in Chapter 4. 
However, based on my personal experiences, I think that programming done without 
adequate design or vision also results in very complex and poorly maintainable software. 
This way we could speculate that program deterioration has different velocities based on 
the processes used and people involved.  

2.3.2 Software Lifecycle Models 
Traditionally, the software product lifecycle has been described with the waterfall model 
introduced by Royce (Royce 1970). An illustration of  the model can be seen in Figure 1.  

 
Requirements

definition

System and 
software design

Implementation 
and unit testing

Integration and 
system testing

Operation and 
maintenance  

Figure 1 The software lifecycle described by the waterfall model 

One of  the problems with the waterfall model is that it basically covers only the initial 
development phase that ends to operations and maintenance phase. In Section 2.2.3 we saw 
data that showed how maintenance phase takes most of  the effort in software lifecycle. 
Keeping that in mind, it seems irrational to describe the maintenance phase as just one box. 
On the other hand, the waterfall model poorly describes a case where an enterprise builds a 
software product and issues incremental releases of  the product in certain intervals. Going 
even further, I could claim that the waterfall model is not even a software lifecycle model, 
but more like a software development model. Here the waterfall model just acts as an 
example, which demonstrates the problems that many other lifecycle models also have 
when describing the software maintenance phase. 
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In my opinion, a more suitable model for viewing the software maintenance phase and the 
software evolution that happens is the staged model introduced by Rajlich and Bennett 
(Rajlich & Bennett 2000). Two figures describing the different versions of  staged models 
can be seen in Figure 2 and Figure 3. Figure 2 represents the whole life cycle of  a single 
product, while Figure 3 can be thought of  as an elaboration of  shrink-wrap software’s 
evolution stage. 

Initial development

Evolution

First running 
version Evolution changes

Servicing

Phaseout

Closedown

Servicing patchesLoss of evolvability

Servicing discontinued

Switchoff

 
 

Figure 2 The simple staged model (Rajlich & Bennett 2000) 

The staged model has 5 basic phases that can be seen in Figure 2. During the Initial 
development phase the software is built from scratch and the phase ends with the first 
operational version of  the software. If  the first version is released to the markets and 
delivered to the customer, this is where the maintenance phase, according to the mainte-
nance definition introduced in Section 2.2.1, would begin. In the Evolution phase, the 
software is further developed in iterative manner, and the customer demands, competition 
pressures, and learning guide the development direction. According to Rajlich and Bennett 
(Rajlich & Bennett 2000), in most cases the software is released at some point during the 
evolution period, possibly after some alpha and beta releases. After the evolution period 
comes the Servicing phase. During this stage, the software product can no longer be 
effectively developed, because of  the degraded architecture and/or lack of  skilled develop-
ers from the original development team. In this phase, changes are minimized, because big 
changes can no longer be made, or they would be too difficult and expensive to make. This 
phase consists mostly of  bug fixes and minor improvements. In the Phaseout period, the 
company no longer makes any changes to the software, but it still tries to generate revenue 
from it as long as possible. In the Closedown phase, the company no longer offers any 
version of  the software to markets and guides interested users to other products. Another 
interesting thing in the staged model is that going backwards is most likely impossible and 
that transition between phases is not only affected by the program decay, but also by the 
availability and the skills of  original developers.  



 Software maintainability  11 
 

 

Initial development

Evolution, version 1

First running 
version Evolution changes

Servicing, version 1

Phaseout, version 1

Closedown, version 1

Servicing patches

Evolution, version 2

Servicing, version 2

Phaseout, version 2

Closedown, version 2

Servicing patches

Evolution changes

Evolution, version …

Evolution of 
new version

Evolution of 
new version

 
 

Figure 3 The versioned staged model (Rajlich & Bennett 2000) 

The so called “shrink-wrap” software companies often follow the versioned staged model, 
which can be seen in Figure 3 (Bennett & Rajlich 2000). In this model, each evolution 
version could be understood as an incremental product version release to markets. In the 
versioned staged model it is more likely that moving a certain version to Servicing, 
Phaseout, or Closedown stage is based on a precise decision.  In the regular staged model 
this change is more likely to happen for other reasons such as software decay. 

2.4 Summary  
In this chapter, the term software maintainability, one of  the key elements in this work, was 
discussed. In order to understand what software maintainability is, the term software 
maintenance was defined and discussed. It appeared that software maintenance describes 
quite poorly for the things happening in software maintenance phase. Therefore I can 
conclude that software maintenance should be replaced with the term software evolution.  
However, later in this work I will use the term software maintainability instead of  software 
evolvability, because software maintainability has much wider usage and it is also more 
generally accepted. In this chapter, the software life cycle was also studied and it appeared 
that the traditional software lifecycle models do not properly describe software evolu-
tion/maintenance. The laws of  software evolution were also discussed and it became 
evident that continuous work is needed in order to keep software maintainable  



 Measuring Maintainability  12 
 

 

3 Measuring Maintainability  

3.1 Introduction 
In the previous chapter the concept of  software maintainability was addressed. This 
chapter introduces the most relevant research that has been done in order to measure the 
vague concept of  software maintainability. Software maintainability, like any other software 
quality attribute, needs to be measured, if  we wish to understand it or make comparisons 
based on it. In Tom DeMarco’s words: You cannot control what you cannot measure (DeMarco 
1982).  

The focus will be on those maintainability measurement studies that have used an approach 
close to code level, because bad code smells are a code level approach as well. Unfortu-
nately, to my knowledge there are no maintainability studies, where the bad code smells or 
development level antipatterns (Brown, Malveau, McCormick, & Mowbray 1998), which 
bear close resemblance to bad code smells, would have been studied. Therefore, most of  
the maintainability studies will focus on source code metrics.   

First, in Section 3.2 I will give a short introduction to different source code metrics. Source 
code metrics are introduced for two reasons: 1) nearly all of  the relevant research on 
software maintainability has utilized the source code metrics 2) I also plan to compare the 
bad code smells with source code metrics. Many of  these metrics are also originally claimed 
to be a measures of  software maintainability as well. 

After introducing the source code metrics, I will look at the research on software maintain-
ability in two sections. In Section 3.3 I will discuss the maintainability measurement in 
connection with procedural languages, and Section 3.4 will focus on object-oriented 
maintainability. Of  course, various people who have created the different metrics for 
software engineering community have claimed that their metric is a good indicator of  
software maintainability. The problem with this approach has been that usually only a single 
metric has been used to evaluate the maintainability, and the evaluators have been the very 
same people who introduced the metric in the first place. More recently researchers have 
focused their effort on evaluating software maintainability with respect to a spectrum of  
metrics. This approach is more solid, since it gives different measures to maintainability, 
and it also allows dropping out metrics that do not correlate with maintainability. Sections 
3.3 and 3.4 will show that code metrics can be used to predict software maintainability that 
is measured with different aspects. This is important, since I believe that bad code smells 
are a measure of  software maintainability, and I also plan to measure them automatically.   

3.2 Source Code Metrics 
 

Measuring software size also presents great difficulties because of  the different aspects 
(and their different interpretations) involved: effort, functionality, complexity, redundancy, 
and reuse (Fenton & Pfleeger 1996). Two different programs that have essentially the same 
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features, but different authors can illustrate such a problem. If  the authors have a big 
difference in programming experience, it is likely that the program created by the more 
experienced author is smaller in terms of  effort, complexity, and redundancy, but greater in 
terms of  reuse and functionality.  

This section will look at some of  the most recognized source code metrics. This section 
will focus only on metrics that can be calculated directly from the source code. Therefore, 
function points and other similar measures are not discussed here. Easy-to-calculate source 
code metrics are studied, because they are the most utilized and easiest to apply later on in 
the sections that deal with smell measurement. 

In Section 3.2.1 I will first introduce the traditional and the oldest source code metrics, and 
then I will look at the most important source code metrics for object-oriented program-
ming in Section 3.2.2. Object-oriented programming is studied separately, because the 
concept of  bad code smells is only introduced in the object-oriented context. Object-
oriented programming is the paradigm currently dominant in software development.  

3.2.1 Traditional Source Code Metrics 
Line of  Code (LOC) is the most commonly used software size metric. This is likely due to 
the fact that the LOC is also the most available size metric, since almost all editor programs 
count the lines of  the file being edited. Fenton & Pfleeger (Fenton & Pfleeger 1996) point 
out that some code lines are different from others and that we must define what is meant 
by a line of  code. Different cases in lines of  code are for example blank lines, comment 
lines, lines with more than one instruction, program headers, and so on. Fenton & Pfleeger 
(Fenton & Pfleeger 1996) refer to the work by Grady & Caswell at Hewlett-Packard (Grady 
& Caswell 1987) for the most widely accepted definition of  a line of  code. According to 
this definition a line of  code is any statement in the program except comments and blank 
lines. This often abbreviated as NCLOC or just NLOC non-commented lines of  code.   

Halstead metrics, introduced by Maurice Halstead in 1977 (Halstead 1977), are one of  
the first metrics for trying to capture software size by other means than just counting lines 
of  code (Fenton & Pfleeger 1996). Halstead’s idea was to create a software measure that 
captures disciplines in physical and psychological measurements. The building blocks of  
Halstead metrics are: 

operands of occurences  total
operators of occurences  total

operands unique ofnumber  the
operators unique ofnumber   the

2

1

2
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=
=
=
=

N
N
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This means that the following statement has two operands (y and x) and two operators (= 
and sin). 
y = sin(x); 

From those building blocks Halstead derived a wide range of  different metrics. Those 
derived metrics will not be discussed here in more detail, because they do not offer any 
new elements in capturing the different aspects of  the source code. Those derived metrics 
are also quite confusing and lack theoretical or empirical basis. Consequently, Halstead 
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metrics have received a great amount of  criticism (Card & Glass 1990;Fenton & Pfleeger 
1996;Hamer & Frewin 1982;Weyuker 1988). Fenton & Pfleeger (Fenton & Pfleeger 1996) 
characterize Halstead metrics as follows: 

Halstead’s software science measures provide an example of  confused and inadequate measurement. 
Although Halstead metrics have been questioned widely, they are still used in some cases, 
like in Section 3.3.3, which introduces some of  the most recognized work in the area of  
maintainability measurement. Personally, I think that the derived Halstead metrics are 
something that we should not pay any attention to. Still the basic building blocks of  
Halstead metrics seem reasonable and can provide meaningful information on the source 
code. 

McCabe’s Cyclomatic Complexity measures the number of  independent execution 
paths in a computer program and it was introduced by Thomas McCabe (McCabe 1976). 
The cyclomatic complexity is calculated as follows: 
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As an example consider the following piece of  code,  
int max (int a, int b){ 
 int max = a; 
 if (a < b) { 
  max = b; 
 } 
 return max; 
} 

whose flowgraph can be seen in Figure 4. This program has 4 edges and 4 nodes, thus the 
cyclomatic complexity is 2. 

int max = a

if (a < b)

max = b

return max  
Figure 4 Flow graph of  an example program 
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McCabe (McCabe 1976) originally suggested that small cyclomatic number per program 
module increases the testability and understandability of  the module. In a study at Hewlett-
Packard (Grady 1994) 830,000 lines of  Fortran code were analyzed and it was found out 
that there was a strong relationship between the number of  updates in the module and the 
cyclomatic number. Based on the data, the researchers determined that no module should 
have cyclomatic complexity higher than 15.  

Some studies have tried to correlate the cyclomatic complexity with fault metrics. This can 
be considered sidetracking, since cyclomatic complexity was not originally intended to be a 
fault predictor. Nevertheless, Schach (Schach 2002) refers to a study by Walsh (Walsh 1979) 
that showed a correlation between cyclomatic complexity and fault numbers per module. A 
study by Fenton & Ohlsson (Fenton & Ohlsson 2000) showed that cyclomatic complexity 
as such does not correlate with fault metrics. However, when cyclomatic complexity was 
combined with another metric known as SigFF (for details see (Ohlsson & Alberg 1996)), 
some correlation between the combined metric and fault metric was found. Card & Glass 
(Card & Glass 1990) also present some data that provides a weak correlation between the 
cyclomatic complexity and fault metric. Overall, it seems that the cyclomatic complexity 
cannot directly be used as a reliable fault number indicator.   

3.2.2 Object-Oriented Metrics 
The main idea of  object-oriented programming in contrast to other programming 
techniques is to put the data and the logic that manipulates it inside a single unit known as 
a class. In procedural programming, good programmers have structured their programs to 
different modules that have their own data and logic. Even the idea of  a constructor has 
been represented in procedural programming with each module having its own initializa-
tion function that must be called before using the module. So it seems that good program-
ming style and design in procedural languages have always contained the main ideas behind 
object-oriented programming. This means that some metrics can be directly applied from 
procedural programming modules to object-oriented language classes. 

The most cited work in the area of  object-oriented metrics is written by Chidamber and 
Kemerer (Chidamber & Kemerer 1991;Chidamber & Kemerer 1994), who proposed the 
following metric suite for object-oriented design in the early nineties: Weighted Methods Per 
Class, Depth of  Inheritance Tree, Number of  Children, Coupling Between Object Classes, Response for a 
Class, and Lack of  Cohesion Methods.  
The ideas of  cohesion and coupling were presented nearly two decades ago by IBM 
researchers Stevens, Myers, and Constantine (Stevens, Myers, & Constantine 1974). 
However, their suggestions are still very valid, because they can be applied to object-
oriented programming as well. I believe that they are the two most important aspects of  
object-oriented programming and I will study them next.  

Coupling in object-oriented programming regularly means the dependence between 
objects and/or classes. Chidamber and Kemerer (Chidamber & Kemerer 1994) presented a 
coupling metric called coupling between object classes (CBO) and they define it as follows:  

CBO for a class is a count of  the number of  other classes to which it is coupled 
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They further define that coupling occurs when methods of  one class use the methods or 
instance variables5 of  another class (Chidamber & Kemerer 1994). So the CBO tells the 
number of  classes that the measured class interacts with. However, it does not take into 
account the tightness of  the coupling, i.e., how much the measured class uses the methods 
or instance variables of  the other class. 

One way to look at the tightness of  the coupling is shown in the work of  Ma, Chang, 
Cleland-Huang (Ma, Chang, & Cleland-Huang 2001). Their work discusses coupling 
tightness as what actually happens in the object-to-object connection. In C++ there is a 
mechanism called friendship that can exist between classes. Briand, Devanbu and Melo 
(Briand, Devanbu, & Melo 1997) note that the friendship mechanism increases coupling, 
because it allows the friend class to access the body of  the other class. Java’s package 
mechanism also has similar an effect as C++ friendship, so it also affects coupling. There 
has also been some discussion on whether inheritance should be considered coupling. Even 
Chidamber and Kemerer (Chidamber & Kemerer 1991) earlier included the coupling 
created by inheritance, but later excluded it (Chidamber & Kemerer 1994). Here we saw 
just a few different coupling schemas. To get a better overview on different coupling types, 
refer to an excellent article by (Briand, Daly, & Wüst 1999).  

To get some idea on the usefulness of  coupling we shall look at Chidamber’s and 
Kemerer’s (Chidamber & Kemerer 1994) claims on their CBO metric: 

• Excessive coupling prevents class reuse. 

• To improve modularity and encapsulation coupling should be minimized. 

• High coupling rate hinders the maintenance work. 

• Higher coupling indicates need for more complex and rigorous testing. 

Several studies (Basili, Briand, & Melo 1996;Briand et al. 1999;El Emam, Melo, & 
Machado 2001;Yu, Systä, & Müller 2002) indicate that coupling indeed correlates with fault 
metrics. So there appears to be empirical evidence to the last of  Chidamber and Kem-
merer’s claims. However, it must be noted that the coupling studies presented above found 
that not all couplings are equally significant as fault predictors. 

Cohesion like coupling was already briefly discussed. There we saw how cohesion dates 
back deep to the era of  procedural languages. The best type of  cohesion according to 
McConnell (McConnell 1993) is functional cohesion. It means that function performs one and 
only one task. A prime example of  this would be a function called sin(). In object-oriented 
programming, functional cohesion can easily be applied at method level. Measuring class 
level cohesion is slightly more difficult. According to Grigg (Grigg 2002) an indication of  a 
class being too big can be found in the number of  and-words in the answer to the question 
“what does this class do?”. In my opinion, this is a good rule of  thumb for class level cohesion. 
Unfortunately, this does not help us if  we need an unambiguous measure for class level 

                                                 

5 It is interesting that Chidamber and Kemerer (Chidamber & Kemerer 1994) restrict the coupling through 
variables only to instance variables. One could argue that the use of  other classes’ static variables should also 
be considered. However, then the metric would have to be extended to mean more than coupling between 
object classes. 
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cohesion. Chidamber and Kemerer (Chidamber & Kemerer 1994) propose a class level 
cohesion measure called Lack of  Cohesion in Methods (LCOM). We can see the definition of  
the metric (Chidamber & Kemerer 1994) below: 

Consider a Class 1C  with n  methods nMMM ,,, 21 L . Let =}{ jI  set of  instance variables 
used by method jM . There are n such sets }{,},{ 1 nII L . Let }|),{( ∅=∩= jiji IIIIP  
and }|),{( ∅≠∩= jiji IIIIQ . If  all n  sets }{},{ 1 nII L  are ∅  then let ∅=P . 

LCOM QP −= , if  QP >   

LCOM = 0 otherwise 

So the LCOM is the number of  method pairs whose similarity (measured with used 
instance variables) is zero minus the number of  method pairs whose similarity is not zero. 
The equation shows only the lack of  cohesion, not the strength of  it, i.e., the classes which 
all have an LCOM value zero can still vary in cohesiveness.  

Chidamber and Kemerer (Chidamber & Kemerer 1994) characterize their LCOM measure 
as follows: 

• High cohesion of  methods in a class promotes encapsulation. 

• Low cohesion implies complexity and therefore the likelihood of  errors. Also low 
cohesion classes should likely to be split up into two or more classes. 

• Measuring differences between methods helps to identify problematic areas in the 
class design. 

Whether a class cohesion is a good fault predictor is still under discussion. Some studies  
(Basili, Briand, & Melo 1996;Briand, Wüst, Ikonomovski, & Lounis 1999) claim that 
cohesion provides no indication about the fault-proneness, whereas others (Yu, Systä, & 
Müller 2002) have found evidence that it does. 

Like with coupling, which was discussed earlier, there is a wide range of  different measures 
to capture the different aspects of  class cohesion. To get a better overview on different 
cohesion measures refer to the study of  Briand, Daly and Wüst (Briand, Daly, & Wüst 
1997). In a more recent work Misic (Misic 2001) also presents a new approach to cohesion. 
He suggests that cohesion (or coherence as he calls it) could be measured by looking at 
how external classes use the class to be measured. A recent work of  Counsell, Mendes and 
Swift (Counsell, Mendes, & Swift 2002) also discusses why the definition of  cohesion has 
been so elusive.  
This section has introduced only a few most recognized object-oriented metrics. To get 
more information on other possible object-oriented source code metrics, refer to good 
books on this topic, such as Henderson-Sellers or Lorenz and Kidd (Henderson-Sellers 
1996;Lorenz & Kidd 1994). 

3.2.3 Conclusions  
This chapter has introduced the most recognized source code metrics. These metrics have 
been introduced to provide the reader with a general idea of  the most applied source code 
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metrics and their claimed and researched benefits. The source code metrics are used in 
many maintainability measurement studies that we will discuss in the following section. I 
also plan to propose source code measures for the bad code smells, and that is the main 
target of  this work.  

3.3 Maintenance Models for Procedural Languages 
This section will discuss the early work of  maintainability measurement that has focused on 
source code metrics. This section will discuss the maintainability of  procedural languages in 
Sections 3.3.1, 3.3.2, 3.3.3, and 3.3.4. 

3.3.1 Case: University of  Kaiserslautern 
A research study conducted in Germany (Rombach 1987) reveals us that source code 
metrics can be used as maintenance effort predictors. Two programs were used, both of  
which had been implemented twice using two different languages. So the researchers had a 
total of  four systems, which varied from 1,5 to 15,2 KLOC in size. They had also planned 
identical maintenance tasks that were implemented in each system. The researchers’ results 
propose with high significance (p <0,001) that source code metrics can predict maintain-
ability, comprehensibility, locality, and modifiability. In the study, the maintainability was 
measured by the impact of  software structure to maintenance effort.  

3.3.2 Case: Virginia Tech 
A study conducted by Kafura and Reddy (Kafura & Reddy 1987) in Virginia tech showed 
that there is a correlation between software code metrics and the perceived maintainability 
by the developers. In the study, the researchers used seven different software measures. The 
system under study was a database management system built by graduate students with 
Fortran programming language and it had an average size of  16 KLOC. Although the 
system was small, they followed its evolution through three different versions in three 
years. The developers felt that metrics were useful, as they helped them to pinpoint the 
poorly structured components of  the system. 

3.3.3 Case: Maintainability Index 
The most famous study in the field of  maintainability metrics is most likely the construc-
tions of  the maintainability index conducted in the mid-nineties that is reported at least in 
(Ash et al. 1994;Coleman, Ash, Lowther, & Oman 1994;Coleman, Lowther, & Oman 
1995;Zhuo et al. 1993). In this case, the researchers wanted a quick and easy-to-use 
maintainability measure that software developers could use. So they created a polynomial 
measure called maintainability index that was used to track, record, and compare the code 
maintainability of  at least two software systems having roughly a size of  240 KLOC. 
During the work, 50 different polynomial measures where created, tested, and calibrated 
against software developers subjective evaluation. The subjective evaluations were collected 
from 15 different software modules with reduced Afotec’s maintainability evaluation 
pamphlet (AFOTEC 1989). The only drawback in the study is that it fails to report which 
different source code measures were used in different polynomials that were neglected. 
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Nevertheless, the research revealed that Halstead’s effort and volume, which are calculated 
from the basic elements of  Halstead’s measures (see Section 3.2.1 for more details), were 
the best predictors of  maintainability. This was somewhat surprising because of  the 
amount of  criticism Halstead’s measures have received. The final polynomial used in the 
study to measure maintainability was as follows: 
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Here aveVol, aveV(g’), and aveLoc are the average Halstead volume, extended cyclomatic 
complexity, and the lines of  code per function or procedure. The perCM is the percent of  
comments in functions or procedure. According to the study, the idea of  the polynomial 
metric is that maintainability can be divided into three dimensions, which are:  

1. Control structure,  
2. Information structure,  
3. Typography, Naming, Commenting  

This maintainability study seems to be the most reported. It is a shame that there are not 
more reports on how the maintainability index has stood the test of  time, i.e., if  it is really 
helpful and in use over several years.  

3.3.4 Case: Canadian Industry 
A somewhat similar approach as introduced in Section 3.3.3 was also adopted in a study 
conducted for Canadian industry. In this study, the researchers claimed to focus on design 
level metrics rather than on code level metrics (Muthanna et al. 2000). In this study, the 
scientists started with 18 metrics, which they first narrowed down to six, because most of  
the metrics had very high correlation among themselves. From the remaining six metrics 
they chose three metrics, which were found as the best maintainability predictors. The 
approach in this study is particularly solid in how the metrics for predicting maintainability 
were chosen. From the three best maintenance predictor metrics, they created the following 
linear model: 

avgavg MCDFFANSMI ⋅−⋅−⋅−= 123,1954,0989,3125  

In the equation, SMI is the software maintainability index for a given module. avgFAN  is 
the average number of  external calls coming from this module. DF is the number of  
incoming and outgoing dataflow for the module. avgMC  is the average cyclomatic com-
plexity for the module. 

They also validated the model in a single industrial software system with the size of  92 
KLOC. In this validation, they compared model maintainability prediction with developers’ 
opinions. In most cases, the prediction model was in line with developers’ opinions, but 
there were also cases where it was not. Another restriction is that for the model to work, 
the software system needs to be broken up to modules whose sizes are from 1 to 2 KLOC. 
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3.3.5 Conclusions 
This section showed that source code metrics correlate with maintainability measured with 
maintenance effort as well as with perceived maintainability by software developers. We 
also saw two different polynomial models that predict software maintainability. The 
software maintainability predictions model would, however, benefit from more empirical 
studies. Now it is impossible to conclude that they are really applicable in real world cases. 

3.4 Object-Oriented Software Maintenance  
When object-oriented programming started to become popular in the early 1990s, it was 
considered an answer to virtually every software engineering problem. This section tries to 
offer a review on object-oriented maintenance models. Although object-oriented measures 
have been widely used as fault predictors (see Section 3.2.2 for details), not many object-
oriented maintainability studies have been conducted. Section 3.4.1 will introduce the 
significant maintainability studies that do not use source code level approach. Sections 3.4.2 
and 3.4.3 will introduce two cases, where object-oriented source code measures are used to 
predict maintenance effort. 

3.4.1 Maintainability of  Object-Oriented Software 
There is actually some empirical evidence that object-oriented systems are more maintain-
able than systems built using procedural languages (Henry, Humphrey, & Lewis 1990). This 
study was made with university students, but nevertheless it provides some empirical data 
on the issue. To my knowledge, there are no similar studies that would compare maintain-
ability of  object-oriented and procedural programs. Another study made by Briand et al. 
(Briand et al. 1997) showed that object-oriented paradigm offers no benefits when it comes 
to maintainability of  the design documents. On the other hand, a survey study with nearly 
300 respondents (Daly et al. 1995) showed that object-oriented developers clearly view 
software made with object-oriented paradigm more maintainable6. Unfortunately, it is 
unclear to what extent these views derive from personal experience and how much the 
“marketing hype” has influenced these opinions. 

3.4.2 Case: Software Productivity Solutions Inc. 
Li & Henry (Li & Henry 1993a;Li & Henry 1993b) studied the correlation of  maintenance 
effort and object-oriented metrics. They studied two commercial systems that were 
developed with a proprietary object-oriented language called Classic-Ada™. The object-
oriented metrics used were those introduced by Chidamber and Kemerer (Chidamber & 
Kemerer 1991), but they were slightly modified. Maintenance effort was measured in a 
number of  changed code lines per class. Li & Henry rightly point out that change of  code 
lines is more a measure of  size than effort. Still they chose to use it rather than other (real) 
effort measures, claiming that it is easier to verify the accuracy of  the data. They conclude 

                                                 

6 Developers also think that object-oriented is beneficial in terms of  ease of  analysis and design, programmer 
productivity, and software reuse. 
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with high significance level that the chosen object-oriented metrics can be used as mainte-
nance predictors. They also compared the object-oriented metrics and simple size metrics 
such as lines of  code, and number of  methods and attributes. Based on the comparison, 
they presented numbers which indicate that object-oriented metrics are better maintenance 
effort predictors than simple size metrics (such as lines of  code) alone. This is important, 
because many object-oriented metrics have high correlation with the simple measure of  
program size. 

3.4.3 Case: A Controlled Experiment with University Students 
A more recent study that links object-oriented source code metrics and maintainability was 
conducted by Bandi, Vaishnavi and Turk (Bandi, Vaishnavi, & Turk 2003). Their study 
setting suggested that maintenance performance is dependent on design complexity, 
maintenance task, and programmer ability. In this work, the researchers studied only the 
effect of  design complexity. The design complexity was measured with interaction level, 
interface size, and operation argument complexity (A more accurate description of  these 
metrics can be found in the article). The study showed with high significance that all three 
measures were useful maintenance effort predictors. The limitations of  the study were that 
1) the subjects of  the experiment were students, 2) the software under maintenance was 
quite small, consisting of  only few classes, 3) and the study consisted of  only two different 
maintenance tasks that lasted between 90-120 minutes.  

3.4.4 Conclusions 
Section 3.4.1 reviewed the studies comparing the maintainability of  object-oriented and 
procedural programs. These studies did not offer conclusive support to the assumption 
that object-orientation would bring benefits with software maintainability. Sections 3.4.2 
and 3.4.3 studied the correlation between object-oriented software measures and software 
maintainability. Those studies showed that object-oriented measures can predict maintain-
ability and that they are better than simple size metrics alone.  

3.5 Summary  
This chapter has studied the various approaches to measuring the vague concept of  
software maintainability. First, some of  the most recognized source code metrics were 
introduced and then the source code maintainability measurement of  procedural and object 
oriented programming was studied. As I already mentioned, to my knowledge there are no 
maintainability studies where the bad code smells or development level antipatterns 
(Brown, Malveau, McCormick, & Mowbray 1998), which bear close resemblance to bad 
code smells, would have been studied. Therefore, my maintainability measurement review 
focused on studies that have used source metrics as a link to source code.  

In this chapter we saw that source code metrics can be used as maintainability indicators. 
This is important, because it shows that by studying the aspects of  source code, the vague 
concept of  software maintainability can be measured. Therefore it should be possible to 
use bad code smells as maintainability indicators, which makes it important to study them. 
It would also be beneficial to use bad code smells to construct a polynomial similar to the 
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studies introduced in Sections 3.3.3 and 3.3.4. However, this kind of  study is outside of  the 
scope of  this work. 
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4 Keeping The Software Maintainable 

4.1 Introduction 
This chapter will look into some ways of  keeping the source code maintainable, thus 
contradicting the laws of  software evolution discussed in Section 2.3.1. The idea here is to 
look at ways to keep the software product evolvable. The basic ways of  keeping software 
maintainable will be studied, but the main focus will lie on a technique called refactoring. 
Refactoring is one way to keep software maintainable. Together with refactoring, I will 
introduce the bad code smells that tell a programmer, when software needs refactoring. 
The bad code smells can be understood as a new measure of  software maintainability, 
because removing those bad smells from the code is claimed to make software more 
maintainable. In this chapter, I will also present my critique against the bad code smells, 
and these will be basis of  my own study. This chapter is organized as follows: Section 4.2 
will discuss the problem when software needs to be rewritten from scratch. Section 4.3 will 
briefly introduce re-engineering, a well-known concept to improve maintainability. Section 
4.4 contains an introduction to refactoring and bad code smells.  

4.2 Replacing and Rewriting Software 
There will eventually be a time when the maintenance of  a software product is discontin-
ued. This will happen regardless of  how maintainable or evolvable the software is, because 
computer platforms (hardware, operating systems, databases, runtime environments, etc.) 
continuously advance and change.  

A study conducted by Tamai and Torimitsu (Tamai & Torimitsu 1992) showed that in 
Japanese industry the average replacement times of  business applications (categorized as 
personnel, accounting, sales support, manufacturing) was 10 years. The software discussed 
in this study were not software products, but mostly in-house made or tailored software for 
business needs. There are no similar studies available from companies that make software 
products. However, we could assume that the need to rewrite the software in product 
companies is greater, since the evolution of  the product is quicker due to continuous 
development effort and changes in business direction.  

In software product business, the decision to rewrite software from scratch almost always 
proposes high risks. This is due to the fact that while the company is rebuilding the 
product, there is a good chance that competition might knock the company out of  the 
market. For example, Netscape tried to rewrite its browser product for the version 5.0, but 
failed, and so Microsoft’s Internet Explorer took over on the markets (Spolsky 2000a). 
Cusumano and Yoffie (Cusumano & Yoffie 1998) reveal that Netscape’s code base, in the 
times of  Communicator 4.0, was in such a bad shape that Netscape employees thought that 
if  they had shown their source code in the interview for the programmer prospects, they 
would not have had any new programmers to work for them. According to Cusumano and 
Yoffie (Cusumano & Yoffie 1998) Netscape’s browser client version 5.0 was to be released 
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on 12/1998. However, 5.0 never made it to the markets and the next major release of  
Netscape’s web browser was versioned as 6.0 and it was released in 11/2000, about two 
years late of  schedule. Even that release was far from the quality that at least I expected and 
only the version 7.0 (released 8/2002) was in the state that 5.0 should have been almost 
four years earlier. Spolsky (Spolsky 2000a;Spolsky 2000b) also refers to other cases or 
projects that went to disaster when doing complete code rewrite, such as Ashton-Tate, 
Lotus’s 123, and Apple’s MacOS, Borland’s Arago and Quatro Pro. Spolsky  (Spolsky 
2000b) continues that even Microsoft got into trouble when they tried to rewrite document 
processor Word from scratch in the project called Pyramid, which was later shut down. 
However, Microsoft had also continued to work on the old Word code base, so they were 
still able to issue the next release and stay on the market. Still according to Spolsky (Spolsky 
2000b)  the worst strategic mistake that a software company can make is the decision to rewrite the code 
from scratch. Spolsky’s articles certainly are far from scientific, but on the other hand I have 
no reason to cast doubt to the cases he presents. After all, we must bear in mind that 
software companies rarely brag about projects that lead to a failure. There is also a 
contradicting report to Spolsky’s articles. Cusumano & Yoffie (Cusumano & Yoffie 1998) 
report that Microsoft redesigned their IE web browser in a project leading to version 3.0, 
but they note that at that time the code base was still quite small and thus manageable, 
which was not the case with Netscape’s 5.0 project.  

Thus, it appears that the decision to rewrite the software from scratch proposes a high risk, 
and that this risk increases in relation to the size of  the software to be rewritten. In 
software business, the decision to rewrite the software has to come from economics. An 
economical model on software rewriting has been introduced by Chan, Chung and Ho 
(Chan, Chung, & Ho 1996). Some of  the managerial implications that their study brings are 
that one should avoid rewriting large applications, and impose strict quality control in 
maintenance in order to prevent source code from degenerating. Thus it seems that 
maintaining high code quality will be more beneficial as the application size increases. 

4.3 Re-Engineering 
The maintenance standard of  the IEEE (IEEE 1998) defines re-engineering as follows: 

A system-changing activity that results in creating a new system that either retains or does not retain 
the individuality of the initial system. 

Traditionally, re-engineering consists of  two components called reverse engineering and forward 
engineering. In reverse engineering, the system’s structure and internal functionality is re-
discovered and documented, but the system’s behavior is not modified in any way. In 
forward engineering, the reverse-engineered system is then further developed and en-
hanced. Re-engineering is a recognized area of  software maintenance, which has been 
studied for several years. There are many case studies that describe the different re-
engineering projects and the approaches used in them (Adolph 1996;Bianchi et al. 
2003;Bray & Hess 1995). Sneed (Sneed 1995) discusses the planning of  re-engineering 
from the financial point of  view. To get the latest practical information on how to actually 
conduct a re-engineering project, see the book that discusses object-oriented re-engineering 
by Demeyer, Ducasse and Nierstrasz (Demeyer, Ducasse, & Nierstrasz 2003). 
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4.4 Refactoring 

4.4.1 Refactoring - Introduction 
Refactoring was previously known as software restructuring. There is no great distinction 
between these terms. However, restructuring is often used with procedural programming, 
while refactoring is its supplement in the era of  object-oriented programming. Refactoring 
can be thought as a super-set of  restructuring, because it basically contains all the tech-
niques in restructuring, but also adds the object/class specific techniques.  

History of  refactoring goes back to 1960s and 1970s, when it was based on structured 
programming guidelines. These techniques focused on replacing goto-statements and 
refining case-statements. The first restructuring tools appeared in the early 1980s. To get 
more information on the history of  refactoring, see Arnold and Opdyke (Arnold 
1989;Opdyke 1992).    

Refactoring changes the structure of  a program without changing its external behavior. 
The prime target of  refactoring is to improve the design of  existing code (Fowler 2000). Opdyke 
(Opdyke 1992) made the first academic contribution to the issue with the term refactoring 
in his PhD thesis, which concentrated on automatizing the refactorings. Opdyke’s motiva-
tion for his work came from his experiences in the world of  telecommunications, where 
the maintenance periods are long and code decay is a serious problem. Currently refactor-
ing is vastly popular7, riding with the wave of  the agile methodologies and especially 
eXtreme Programming (XP) (Beck 2000), which has adopted refactoring as one of  its 
practices. XP is a software methodology that disregards heavy up-front design and 
embraces change rather than tries to avoid it. Therefore, XP needs refactoring to cope with 
continuous change and also to compensate the lack of  design.  

In a way refactoring offers nothing new, because good programmers have always restruc-
tured their code when required. Even the author of  this thesis has done refactoring before 
he even became aware of  such a technique. A good thing about the recent enthusiasm 
around refactoring is that it increases developers’ awareness of  the technique and that it 
helps discovering better ways of  doing refactoring. If  we compare refactoring to re-
engineering, we see that they can be used together and that refactoring can be one 
technique in the re-engineering process. 

4.4.2 Refactoring – The Business Case 
Benefits of  refactoring might not be clear particularly to those who have never done 
programming work with large software systems. Unfortunately, those people sometimes sit 
in the management and therefore persuading them to allow developers to do refactoring 
might not be easy. Fowler (Fowler 2000) even suggests that when a manager is schedule-
oriented, developers do not tell the manager that they are doing refactoring.  

                                                 

7 The Yahoo!Groups refactoring mailing list, which was founded in 14.9.2001, has today (1.5.2003) 1864 
members.  
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Refactoring also breaks the old engineering rule, which says if  it ain’t broken don’t fix it. To 
certain extent the rule holds, but we must also remember the 2nd law of  software evolution 
(Lehman 1980), which was called the law of  increasing complexity and was discussed in 
Section 2.3.1. The high complexity of  a software system might hinder the further devel-
opment of  the system. So refactoring is just a way to make sure that further development is 
possible. It is absolutely true that refactoring increases the risk of  introducing new faults to 
the system. There is a study (Graves et al. 2000) that indicates that most faults are found in 
the parts of  the system that have been most recently changed. However, faults are also 
introduced during the development of  new features. So the counterargument against the 
“if  it ain’t broken don’t fix it” rule is that “are we so afraid of  bugs that we cannot further develop the 
system?”. The motivation here is that refactoring is one of  the enablers of  the development 
of  new features, and if  the answer to the counterargument is yes, then no refactoring 
should be done. 

Fowler (Fowler 2000) also tries to convince people to refactor with the following argu-
ments: 

• Refactoring makes software easy to understand. This is certainly true, because one of  the 
goals of  refactoring is that software would be easy to understand and that source 
code would be self-documenting. Of  course, there can be cases when developers 
disagree on what kind of  code is easier to understand. However, in most cases the 
ideas about what is known as good programming style and good design should be 
uniform. 

• Refactoring helps you find bugs. This can be accepted by common sense if  we agree that 
refactoring also increases the understandability. However, empirical evidence to the 
argument would be nice.  

• Refactoring helps you program faster. This argument is partly supported by the laws of  
software evolution according to which the increasing complexity of  software sys-
tem can hinder the software development. 

• Refactoring improves the design of  software. This argument goes hand in hand with the 
Fowler’s first argument, because in software good design is almost always easy to 
understand.  

Rather than justify the importance of  refactoring with just reasoning and arguments that 
lack empirical data, we can take a look at some cases from the industry. A book called 
Microsoft Secrets (Cusumano & Selby 1995) divulges that Microsoft also does source code 
refactoring under the name “20 % Tax for Rewriting Code”. This means that projects reserve 
20% of  their development effort on reworking the weak parts of  the product. This time is 
often spent right after the product release before new development on the product is 
started. Netscape’s current browser client is developed in the open source project Mozilla, 
which also does code cleanup (Eich 2002). They target their code clean up to the beta 
phase as a follow-up to alpha, which includes the more risky development. A case study on 
Lucent (Mancl 2001) tells us how they used refactoring in what was a more traditional re-
engineering project. In this case, after doing reverse engineering phase, they redesigned the 
system with design patterns and then used small refactorings to get the system’s code to 
match the new design. 
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4.4.3 Measuring Refactoring Need  
This section has discussed refactoring, which is one of  the techniques to keep software 
maintainable. However, refactoring itself  will not bring the full benefits, if  we do not 
understand when refactoring needs to be applied. To make it easier for a software devel-
oper to decide whether certain software needs refactoring or not, Fowler & Beck (Fowler & 
Beck 2000) give a list of  bad code smells. Fowler & Beck’s idea was that bad code smells 
are a more concrete indication for the refactoring need than some vague idea of  program-
ming aesthetics. Fowler & Beck also acclaim that no set of  precise metrics can be given to 
identify the need of  refactoring. Therefore, bad code smells are kind of  a compromise 
between the vague programming aesthetics and precise source code metrics. With bad code 
smells the reader must bear in mind that some smells represent the opposite ends of  the 
same attribute. For example, the size of  a class could be a single attribute, and in one end 
of  the attribute the existing smell is called Large Class and in the other it is referred to as 
Lazy Class. In addition, for each bad code smell Fowler (Fowler 2000) introduces a set of  
refactorings (move methods, inline temp, etc) with step wise instructions on how each smell can 
be removed. Therefore, the reader should realize that the refactoring concept also includes 
detailed instructions on how to actually improve the source code. The purpose of  this 
section is to introduce those 22 bad code smells, which are listed below: 

• Long Method is a method that is too long, so it is difficult to understand, change, 
or extend. Fowler and Beck (Fowler & Beck 2000) strongly believe in short meth-
ods. 

• Large Class means that a class is trying to do too much. These classes have too 
many instance variables or methods. 

• Primitive Obsession smell represents a case where primitives are used instead of  
small classes. For example, to represent money, programmers use primitives rather 
than creating a separate class that could encapsulate the necessary functionality like 
currency conversion. 

• Long Parameter List is a parameter list that is too long and thus difficult to un-
derstand. 

• Data Clumps smell means that software has data items that often appear together. 
Removing one of  the group’s data items means that the those items that are left 
make no sense, e.g., integers specifying RGB colors. 

• Switch Statements smell has a slightly misleading name, since a switch operator 
does not necessarily imply a smell. The smell means a case where type codes or 
runtime class type detection are used instead of  polymorphism. Also type codes 
passed on methods are an instance of  this smell. 

• Temporary Field smell means that class has a variable which is only used in some 
situations. 

• Refused Bequest smell means that a child class does not fully support all the 
methods or data it inherits. A bad case of  this smell exists when the class is refusing 
to implement an interface. 
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• Alternative Classes with Different Interfaces smell means a case where a class 
can operate with two alternative classes, but the interface to these alternative classes 
is different. For example, a class can operate with a ball or a rectangle class, and if  it 
operates with the ball, it calls the method of  the ball class playBall() and with the 
rectangle it calls playRectangle(). 

• Parallel Inheritance Hierarchies smell means a situation, where two parallel class 
hierarchies exist and both of  these hierarchies must be extended. 

• Lazy Class is a class that is not doing enough and should therefore be removed. 

• Data Class is a class that contains data, but hardly any logic for it. This is bad since 
classes should contain both data and logic. 

• Duplicate code. According to Fowler and Beck (Fowler & Beck 2000), redundant 
code is the worst smell. We should remove duplicate code whenever we see it, be-
cause it means we have to do everything more than once. 

• Speculative Generality smell is a case, where unnecessary code has been created 
in anticipating the future changes of  the software. Predicting the future can be dif-
ficult and often this just adds unneeded complexity to the software. 

• Message Chains smell means a case, where a class asks an object from another 
object, which then asks another and so on. The problem here is that the first class 
will be coupled to the whole class structure. To reduce this coupling, a middle man 
can be used. 

• Middle Man smell means that a class is delegating most of  its tasks to subsequent 
classes. Although this is a common pattern in oo programming, it can hinder the 
program, if  there is too much delegation. The problem here is that every time you 
need to create new methods or to modify the old ones, you also have to add or 
modify the delegating method.  

• Feature Envy smell means that a method is more interested in other class(es) than 
the one where it is currently located. This method is in the wrong place since it is 
more tightly coupled to the other class than to the one where it is currently located. 

• Inappropriate Intimacy means a smell where two classes are too tightly coupled 
with each other. As Fowler and Beck (Fowler & Beck 2000) put it, classes spend too 
much time delving in each other’s private parts. 

• Divergent Change smell means that one class needs to be continuously changed 
for different reasons, e.g., we have to modify the same class whenever we change a 
database, or add a new calculation formula. 

• Shotgun Surgery smell is the opposite to the Divergent Change. It means that for 
every small change we must modify a bunch of  classes, e.g., whenever we change a 
database we must change several classes. 

• Incomplete Library Class smell means that the software in question is utilizing 
library that is not complete. This means that developers have to extend the func-
tionality of  the library.  
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• Comments are not necessarily a bad smell, but they can be misused to compensate 
poorly structured code. 

Here we saw the bad code smells that tell the programmer when refactoring is needed. 
These bad code smells can be considered a measure of  software maintainability, because 
removing them will make the software more maintainable.  

4.4.4 Critique on Bad Code Smells 
In the previous section, the bad code smells by Fowler and Beck (Fowler & Beck 2000) 
were introduced. In this section, I will show some problems related to the bad code smells. 
Further in this work I will then offer my own contribution to these problems. 

In my opinion, the first problem comes from the way the bad code smells are presented in 
Fowler & Beck’s work. The smells are presented as a single flat list, which makes it quite 
difficult to get an overview of  them, because the number of  the smells is so high. For 
human mind it is quite difficult to remember 22 separate smells. The number of  the smells 
and the way they are presented also hinders the ability to understand the smells themselves 
and the relationships between them. To summarize this, when presenting a concept as 
complex and varying as bad code smells, a single flat list with 22 entries should not be used, 
but instead a more hierarchical view should be provided. 

My second critique is directed at the comment where Fowler & Beck say that In our 
experience no set of  metrics rivals informed human intuition. Here the authors wish to say that 
human judgment should always be the ultimate authority when assessing whether the smell 
spotted in the source code needs to be refactored out or not. I have two points I would like 
to make on this issue. First of  all, that comment does not make automatic smell measure-
ment obsolete. Automatic measurement can actually help a human to make a more 
informed and better decision on the smells and the possible need for refactoring. My 
second point on this issue is that relying strictly on human intuition might also be danger-
ous, because different people can have different opinions on when a smell needs refactor-
ing. For instance, one developer can prefer really tiny methods, while the other developer 
might think that method should have at least 100 lines of  code. 

The problem with the bad code smells is that they lack empirical academic research. This 
final critique against the smells is the one that actually motivates my research. Currently the 
bad smells are just concepts created by famous (and most likely talented) individuals of  
software engineering community, but nobody has tried to actually test and investigate the 
smells more thoroughly. 

4.5 Summary 
In this chapter, various ways of  preserving the maintainability of  software have been 
presented. I also introduced cases from industry where the lack of  software maintainability 
led to a disaster. These cases points out the importance of  maintainable software. Refactor-
ing was introduced as one of  the ways of  keeping the software maintainable. With 
refactoring we saw the concept of  bad code smells that tell the software developer when to 
refactor. These bad code smells can be considered as one measure of  software maintain-
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ability. In this chapter I also presented my critique against the bad code smells. Based on 
this critique I will study the bad code smells in more detail later on in this work.  
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5 Bad Code Smells – Taxonomy & Measures 

5.1 Introduction 
In the previous chapter, the bad code smells by Fowler and Beck (Fowler & Beck 2000) 
were introduced. In this chapter, I will study those bad code smells in more detail by 
providing a taxonomy for the smells and looking at the possible ways of  automatically 
measuring the bad code smells. Taxonomy makes the smells more understandable, since 
currently they have been introduced only in a single flat list. Measuring the smells with 
tools is important, because it enhances their usability as a measure of  maintainability. Smell 
measurement is also needed later in this work, where I compare the perceived smell 
evaluations from software developers with the smell metrics from the actual source code. 
Section 5.2 provides the smell taxonomy and Section 5.3 tries to find applicable measures 
for each smell.  

5.2 Smell Taxonomy 

5.2.1 Introduction 
The motivation for creating this taxonomy lies in the critique that I presented against the 
bad code smells in Section 4.4.4. There I stated that the flat list of  22 bad smells makes the 
smells difficult to understand, fails to recognize the relationship between the smells, and 
does not take in to account the larger context for each smell. To address these problems I 
have created a taxonomy for the smells. The taxonomy in this section is created based on 
some of  the common concepts that the smells inside one group share.  

5.2.2 The Bloaters 
The smells in the Bloaters category are as follows: Long Method, Large Class, Primitive 
Obsession, Long Parameter List, and Data Clumps. According to the smell descriptions from 
previous chapter, the entire group of  Bloater smells represents something that has grown 
so large that it cannot be effectively handled. For instance, in general it is more difficult to 
understand or modify a single long method than several smaller methods. The same kind 
of  argument holds also for Long Parameter List and Large class. 

I argue that the smell Primitive Obsession is in the right place here, even though it does not 
represent a bloat. Primitive Obsession is more of  a symptom which causes bloats, because 
if  you do not create small classes for phone numbers and so on, you have to add the 
functionality to some other class and this increases the class and method size in the 
software. Therefore Primitive Obsession smell increases the number of  Bloaters. 

For Data Clumps I could also argue that it should be in the Object-Orientation Abusers, 
because in theory a class should be created from each Data Clump. However, I have 
decided to keep it in this category for two reasons. First of  all, this smell should have a 
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close connection with the Long Parameter List smell based on Fowler and Beck (Fowler & 
Beck 2000) and on my own experience. The second reason is that it might not make sense 
to create a class for very small Data Clumps, since this will lead to a Lazy Class smell. 
Therefore, I believe that in order for the Data Clumps smell to be a real problem, it needs 
to be of  a considerable size. For these reasons I have included it in the Bloaters category. 

There might be a common pattern in how these smells are created. In my previous work, I 
have seen a method that was 437 NLOC long and had cyclomatic complexity of  137. I do 
not think that any programmer would think ahead or design such a method to the pro-
gram. Rather, I believe that bloater smells are born in small steps. A programmer continu-
ously makes small changes or additions to the code, and then one day a bloater smell can 
be spotted, e.g., continuous increase in class or method functionality or addition of  new 
data attributes.  

5.2.3 The Object-Orientation Abusers 
The smells in the Object-Orientation Abuser category are: Switch Statements, Temporary Field, 
Refused Bequest, Alternative Classes with Different Interfaces, Parallel Inheritance Hierarchies. The 
common denominator for the smells in the Object-Orientation Abuser category is that 
they represent cases where the solution does not fully exploit the possibilities of  object-
oriented design.  

For example, a Switch Statement might be considered acceptable or even good design in 
procedural programming, but is something that should be avoided in object-oriented 
programming. The situation where switch statements or type codes are needed should be 
handled by creating subclasses. Parallel Inheritance Hierarchies and Refused Bequest smells 
lack proper inheritance design, which is one of  the key elements in object-oriented 
programming. The Alternative Classes with Different Interfaces smell lacks a common 
interface for closely related classes, so it can also be considered a certain type of  inheri-
tance misuse. The Temporary Field smell means a case where variable is in the class scope, 
when it should be in method scope. This violates the information hiding principle.  

According to Fowler and Beck (Fowler & Beck 2000) the Parallel Inheritance Hierarchies 
smell is just a special case of  shotgun surgery. Still I feel it is closer to the Object-
Orientation abusers category than the Change Preventers, because it clearly is a misuse of  
object-orientation. 

5.2.4 The Change Preventers 
The smells in the Change Preventers category are: Divergent Change and Shotgun Surgery. The 
common theme with the Change Preventer smells is that they prevent or hinder the 
changing or further developing of  the software. So if  the software has these smells, it has 
to be refactored to make it more modifiable. All bad smells make software less modifiable, 
but these smells violate the rule suggested by Fowler and Beck (Fowler & Beck 2000), 
which says that classes and possible changes should have a one-to-one relationship. For 
example, changes to the database only affect one class, while changes to calculation 
formulas only affect the other class. The Divergent Change smell means that we have a 
single class that is modified in many different types of  changes. With the Shotgun Surgery 
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smell the situation is the opposite, we need to modify many classes when making a single 
change to a system.   

5.2.5 The Dispensables 
The smells in the Dispensables category are Lazy class, Data class, Duplicate Code, Speculative 
Generality. The common thing for the Dispensable smells is that they all represent some-
thing unnecessary that should be removed from the source code. This group contains 
actually two types of  smells, but since they violate the same principle, we will look at them 
together. Fowler and Beck (Fowler & Beck 2000) say that each class requires effort to 
maintain and understand, and if  a class is not doing enough it needs to be removed or its 
responsibility needs to be increased. This is the case with Lazy class and Data class smells. 
Fowler & Beck also point out that code which is not used or which is redundant needs to 
be removed. This is the case with Duplicate Code and Speculative Generality smells.   

Fowler and Beck (Fowler & Beck 2000) did not present a smell for dead code, which is 
quite surprising, since to my experience it is quite common. With Dead Code I mean code 
that has been used in the past, but is not currently used. Dead Code hinders the code 
comprehension and makes the structure less obvious. In my opinion, Dead Code should be 
included in this category.    

5.2.6 The Encapsulators 
The smells in the Encapsulators category are Message Chains and Middle Man. This category 
has only two smells, and they both deal with data communication mechanism or encapsula-
tion. The smells in this category are somewhat opposite, meaning that decreasing one smell 
will cause the other to increase.  

Data hiding or encapsulation is one of  the key principles of  object-oriented programming. 
If  class A needs data from another object called B, but class A does not have a reference to 
B, A needs to ask the data it needs from a third object called C. This is called encapsulation, 
since class A does not have any knowledge of  the existence of  B, but A can still get data it 
needs from B through C. This is the basic principle that has been traditionally used to 
separate objects/classes from each other. According to Fowler and Beck (Fowler & Beck 
2000), if  class C is just doing the kind of  delegation work described the example, it suffers 
from the Middle Man smell. This means that the class is doing too much simple delegation 
and does not contain real logic. In our example case above, the fix would be to remove C 
and make a direct connection from A to B.  

Message Chains is a smell where class A needs data from class D. To achieve this data, class 
A needs to ask object C from object B (A and B have a direct reference). When class A gets 
object C it then asks C to get object D. When A finally has D it asks it for the data it needs. 
The problem with this smell is that A becomes coupled to class B, C, and D. One way to 
solve this problem is to make B and/or C a Middle Man class. 

Removing the Message Chains smell does not always cause the Middle Man smell and vice 
versa, since the best solution is often to restructure the class hierarchy by moving methods 
or adding subclasses. However, I think that these two smells belong together, because they 
both deal with the way objects, data, or operation are accessed. Naturally, one could argue 
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that the Message Chains smell belongs to the Couplers group and that the Middle Man 
smell belongs to the Object-Orientation users, but I personally believe that in order to get a 
better understanding of  these smells they should be introduced together.  

5.2.7 The Couplers 
The smells in the Couplers category are: Feature Envy and Inappropriate Intimacy. This group 
has two coupling-related metrics. The Feature Envy smell means a case where one method 
is too interested in other classes, and the Inappropriate Intimacy smell means that two 
classes are coupled tightly to each other. Both of  these smells represent high coupling, 
which is against the object-oriented design principles that emphasize minimal coupling 
between objects. Coupling was discussed also earlier in Section 3.2.2, where object-oriented 
metrics were discussed. Of  course here I could make an argument that these smells should 
belong to the Object-Orientation abusers group, but since they both focus strictly on 
coupling, I think it makes the smell taxonomy more understandable if  they are introduced 
in their own group.  

5.2.8 Others  
This class contains the two remaining smells that do not fit into any of  the categories 
above: Incomplete Library Class, Comments. These smells have nothing in common, 
expect that they cannot be included into any of  the previously introduced categories.   

5.2.9 Conclusions 
This section introduced a taxonomy for bad code smells. The purpose of  this taxonomy is 
to prevent the problems arising from the flat list of  22 bad code smells. I feel that this 
taxonomy makes the smells more understandable, recognizes the relationships between 
smells and puts each smell into a larger context. This taxonomy is only initial, so it probably 
has weaknesses and needs to be improved in the future. Nevertheless, I think that this 
taxonomy fixes many problems with the current presentations of  bad code smells, which 
were discussed in Section 4.4.4.  

 

5.3 Measuring The Bad Code Smells 

5.3.1 Introduction  
As stated earlier in Section 4.4.4, measuring bad code smells automatically could help 
people in making decisions on refactoring. I also need measures for bad code smells later in 
my work where I try to compare the developers’ perceived smell evaluations and the 
measures gathered from the actual source code. This section consists of  two parts. First I 
will introduce the most significant prior work on measuring bad code smells and then I will 
try to come up with measures for each bad code smell.   
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5.3.2 Prior Work 
There has been quite a lot prior research on combining refactoring and source code 
measurement. However, the approaches have been somewhat different compared to the 
one I will use later in this section. This section tries to summarize the prior work that is 
closest to my work.  

Balazinska et al. (Balazinska et al. 2000) have worked on detecting clones in OO systems to 
support refactoring. The target of  this work has therefore been the Duplicate Code smell. 
Maruyama and Shima (Maruyama & Shima 1999) report on a tool that uses historical data 
to identify the spots where programmers have changed the software. They also acclaim that 
their tool then creates template and hook methods that separate the invariant dependence 
and the variant dependence. Demeyer, Ducasse and Nierstrasz (Demeyer, Ducasse, & 
Nierstrasz 2000) used a set of  OO-metrics to detect refactorings from software version 
history. They focused on finding two types of  refactorings, first a case where either a 
subclass or superclass is created or merged, and a second case where a method is moved to 
other class or split into several methods of  the same class. So they focused on detecting the 
changes either in the class hierarchy or in the method place and form. Simon, Steinbruck-
ner and Lewerentz (Simon, Steinbruckner, & Lewerentz 2001) used a visualization tool to 
detect and/or assist a developer to find smells leading to four different refactorings. The 
refactorings, whose smells they searched were move method, move field, extract class, and inline 
class. Kataoka (Kataoka et al. 2001) also worked on a tool for finding suitable spots for 
refactorings (remove parameter, eliminate useless return value, separate query from modifier, encapsulate 
downcast, and replace temp with query). Kataoka also used a developer to verify the usefulness 
of  the tool’s findings. Kataoka (Kataoka et al. 2002) focused on quantitative evaluation of  
refactoring effects. In this work, the target was to measure the differences in three method 
coupling metrics before and after refactoring and then compare it to the developer’s 
opinion on those refactorings. The refactorings that were studied here were the ones that 
reduce method coupling (Extract Method, Extract Class, Move Method). 

5.3.3 Smell Measurement 
As we saw in the previous section, most of  the prior work on smell measurement has 
focused on finding places, where some of  the refactorings from Fowler (Fowler 2000) 
could be applied. None of  the above studies has used the smells presented by Fowler and 
Beck (Fowler & Beck 2000) as a basis. One of  the reasons that the original smells presented 
by Fowler and Beck (Fowler & Beck 2000) have not been studied could be that most of  
them are quite vague. Fowler & Beck also point out that human intuition is the key for 
finding the smells. Thus, the bad code smells have not really been studied or measured. 

First plan to smell measurement comes from the claim that there is no opposition to 
human judgment, when it comes to finding smells. This can be studied quite painlessly with 
a survey, where several developers share their opinion on a particular piece of  code on each 
smell. Another option is to choose metrics that reflect the particular smell. In the past, 
some maintenance studies have compared the measured maintainability and the developers’ 
perceived opinions on maintainability. I will use this approach later in Chapter 6. 

In this section, I will relate the bad code smells against source code measures introduced in 
Section 3.2. The bad code smells and the related measures will be compared. I have also 
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tried to come up with a number that indicates the measurability of  each smell. This is 
subjectively evaluated on a scale of  0 to 5. M=0 means that the author believes that 
measuring is impossible, or that it yields to results which are mostly false. M=5 means that 
the author believes that measuring the smell is easy and will almost always bring correct 
results. I will also try to find the best possible measures for each smell. The criterion for 
selecting metrics for each smell is the expert evaluation performed by the author of  this 
work, based on his understanding on the bad code smells.  Since I do not have complete 
knowledge of  all the possible source code metrics, I will not cite the original authors of  
each measure. This is because I have used some combined metrics, but it is very likely that 
someone has already invented these metrics earlier. This way I will not discriminate based 
on my limited knowledge on different source code measures. Most measures that I propose 
for smells are the ones previously introduced, or a modification or extension of  them. I 
also propose quite a few polynomial measures that take into account several metrics. 
However, I cannot say anything about the weight of  the polynomials in the scope of  this 
work. 

Long Method. Measuring long methods should be quite easy. However, relying on too 
simple a size measure such as Lines of Code (NLOC) will definitely bring a wrong result, 
because e.g., initiation methods can often be quite long. There is no sense in refactoring 
long initiation methods, because they often do not have any cyclomatic complexity and 
therefore they are very easy to understand and modify. Cyclomatic complexity and 
Halstead measures, which measure the number of operators and operands, can provide 
necessary information on method complexity. Therefore I conclude that measuring this 
smell is quite easy, and this results in a measurability value of 5. In my opinion, the best 
metric for this smell is a polynomial metric that combines NLOC, Cyclomatic Complexity, 
and Halstead metrics. 

Long Parameter List. Measuring this smell is very easy. It can be done simply by counting 
the number of  parameters of  each method. Measuring the type of  parameters (primitives, 
classes) with this smell can additionally help the refactoring process, since redundant 
primitive lists might make good candidates for new classes. Thus, measurability of  this 
smell is also 5. 
Large Class. Many measures for measuring class size have been introduced in the past. 
Traditional way of  measuring class size has been to measure the number of  attributes and 
methods. I personally feel that the best measure of  class size is class cohesion. Class 
cohesion metrics such as Lack of  Cohesion Methods can sometimes be difficult to 
calculate. In such cases, the number of  methods and attributes should be used as a measure 
of  class size. Simple size measures such as (NLOC) can tell the size of the class, but they 
offer no help on whether the class is doing too much or not. Measurability of the Large 
Class smell is 4. This is because GUI classes and other special cases can make the definition 
of Large Class more elusive. 

Feature Envy. Measuring this smell can be done by measuring the strength of  couplings 
that a method has to methods or data of  foreign classes. Measuring this smell should be 
quite easy with proper tools. There are no other measures for detecting this smell. Since I 
do not have experience in this type of  measurement, I conclude that the measurability of  
this smell is only 4 instead of  5.  
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Inappropriate Intimacy.  This smell needs to be measured by measuring the strength of  
coupling between two classes. This smell is particularly bad if  classes are accessing each 
other’s fields. Measuring the strength of  coupling should lead to quite good results, thus 
the measurability of  this smell is 4. 

Duplicate Code. Measuring duplicate code is easy. It can be done by measuring the 
percentage of  duplicate code lines in the system. The problem with measuring this smell is 
that the best tools for this kind of  work need compiler type of  functionality and are thus 
quite expensive. Nevertheless, with proper tools measuring should be quite applicable, and 
thus the measurability is 4.  

Data Class smell can be measured by comparing the number of  fields in a class with the 
cyclomatic complexity of  the class. I believe that this proposed measure should work quite 
well, since Data Classes typically contain many fields compared to their complexity. 
Although I have not ever heard of  combining these two metrics, I evaluate that the 
measurability of  this smell is 4. 

Lazy Class. This smell should be quite easy to measure by looking at the number of  fields 
and methods in a class in conjunction with cyclomatic complexity. Even the simple NLOC 
metric for a class might also bring good results. Even though many good measures are 
available, I believe that there might be some false positives with this smell. The measurabil-
ity of  this smell is therefore 4.    

Message chains. There are two possible ways of  detecting this smell. One way is to 
measure the number of  separate class couplings that a method has. With the Feature Envy 
smell I propose measuring the strength of  coupling that a method has to other classes. If  a 
method has couplings to several classes, we can suspect a message chain. However, since 
the detection of  this smell relies somewhat on speculation, I estimate that the measurability 
of  this smell is only 3. 

Switch Statements. Using the length (NLOC/Cyclomatic Complexity) of  conditional 
statements to detect the smell might not work, since the intention of  the switch statement 
is the key for finding this smell. For this smell to exist, there need to be type-codes that are 
detected using switch statements. A special case for this smell could be a situation where 
runtime type detection is utilized instead of  type-codes. Since both measures (long 
conditional statements and runtime type detection) can only provide hints that this smell 
may exist, I conclude that the measurability of  this smell is 3.    

Speculative generality & Dead Code. I previously concluded that Dead Code should be 
considered a bad code smell, although it is not included in the original list. These two 
smells have exactly the same measures, because in my opinion the Speculative Generality 
smell is a special case of  Dead Code. There are two ways of  measuring these smells. If  
measurements show that the number of  references to a method or a class is zero, we can 
suspect this smell. With static tools it is not possible to detect dynamic class loading, and 
thus static detection might lead to wrong results. Dynamic detection, which shows the parts 
of  software that have been executed, can also help in detecting this smell. Dynamic 
detection also has its own problems, because it is possible (or in most cases very likely) that 
not all the code is executed during the test. However, such code fragments could be error-
reporting routines that are executed in cases of  rare errors and cannot therefore be 
removed. I believe that by combining static detection with dynamic detection this smell can 
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be effectively measured. Since combining the two types of  measurements is quite tricky, the 
measurability of  this smell is only 3.  

Temporary Field. This smell can be measured by counting the different methods that 
access each field and by comparing that number to the total number of  methods in the 
class. I believe that such a measure will bring quite good results. However, I believe that 
there can be some false positive detections of  the smell. Therefore the measurability is only 
3.    

Middle Man smell can be suspected, if  a class has many methods that are coupled to 
exactly one class and the methods also have a low cyclomatic complexity. Such measures 
for a method can indicate that the method is only doing simple delegation, which means 
that it has a Middle Man smell. There can be several other explanations why a method is 
coupled to exactly one class and has a low cyclomatic complexity. Based on that, I believe 
that the measurability of  this smell is only 2. 

Comments. Measuring the number of comment lines could be pointless since comments 
are not always used in a bad way. However, if there are many comments in the middle of 
the method, we can suspect the abuse of comments. Still, measuring this is very speculative 
and could be in fact useless, and therefore the measurability is 1.  

Data Clumps.  Detecting the repeating groups of primitives that belong to the same group 
and have the same intention is nearly impossible. The best way to find this smell is to look 
at the spots where the Long Parameter List smell appears. This is because Data Clumps 
often form Long Parameter Lists, when they are passed as parameters. However, since I 
cannot offer any direct measures for this smell, I must conclude that the measurability of 
this smell is 0. 

In addition to the smells already presented above, I must admit that I have no suggestions 
for measuring the following smells, and thus they all have measurability of  0: Alternative 
Classes with Different Interfaces, Refused Bequest, Incomplete Library Class, 
Primitive Obsession, Parallel Inheritance Hierarchies, Divergent Change, Shotgun 
Surgery.  

5.3.4 Conclusions 
The measurability of  the code smells was discussed in this section. First I looked at the 
most significant prior research and found out that nobody has studied the measuring of  the 
bad code smells introduced by Fowler and Beck (Fowler & Beck 2000). After that I tried to 
propose the best measures for each smell based on my knowledge and understanding of  
source code measures and the bad code smells. This work was important for two reasons. 
First, measuring bad code smells can help the developers when they decide whether to 
refactor a certain part of  the software. Second, I need to measure the bad code smells from 
source code automatically in order to compare them with the developers’ perceived smell 
evaluations.   

Based on the smell measurement study I conducted, I can conclude that there is a great 
fluctuation on how measurable the different smells are. On one hand, there are eight smells 
where measuring should be very beneficial (measurability 4 or above). On the other hand, 
there are also eight smells that cannot be measured at all. I can also say that a little over 
half  of  the smells could be effectively measured. This is based on the conclusion that 13 
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out of  23 code smells (smells defined by Fowler & Beck plus the Dead Code smell) have 
measurability of  three or above. 

Finally, I must admit that the measures proposed for each smell and the smell’s measurabil-
ity should be considered initial, since they are based on the literature and no empirical study 
was made in order to verify the measures for each bad code smell.  

5.4 Summary 
This chapter has shown my contribution to bad code smells. I have provided a taxonomy 
of  7 categories for the bad code smells, and I believe that this taxonomy makes the smells 
more understandable, recognizes the relationships between smells, and puts each smell into 
a larger context. This taxonomy is based on some of  the concepts that the smells in the 
same category share. This is an improvement, because the original presentation of  the bad 
code smells only consisted of  a single flat list that caused problems when trying to 
understand smells and failed to describe their relationships to each other. These problems 
were discussed in Section 4.4.4. I also proposed and discussed possible measures based on 
my knowledge of  bad code smells and source code metrics. Finding source code metrics 
for bad code smells is imperative, because metrics can help the developers decide, when 
refactoring is needed. Later in this thesis I also need to measure bad code smells from 
source code and compare them to developers’ perceived smell evaluations. From the smell 
measurement study we learned that little over half  of  the smells can be effectively meas-
ured and that the measurability of  smells fluctuates considerably. The weakness of  the 
results is that they are based only on literature study and therefore they lack empirical 
validation.  
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6 Smell Survey 

This chapter describes the smell survey conducted in the case company BeachPark. In 
Section 6.1 I will introduce the survey and some basic results from it. In Section 6.2 I will 
look at the correlations between smell evaluations. Section 6.3 will show how the back-
ground variables affected the developers’ smell evaluations. In 6.4 I will use the data from 
the smell survey and try to evaluate its reliability. Section 6.5 compares the smell evalua-
tions and the source code metrics, and thus provides more information on the reliability of  
smell evaluations. 

6.1 Introduction 

6.1.1 Introduction of  the Case Company: BeachPark 
The survey was conducted with the case company called BeachPark. BeachPark is a small 
Finnish software product development company. At the time of  the survey, the company 
employed about 20 software developers. The company had developed two software 
products in the last 4-5 years and during that time some parts of  the products had become 
quite complex. The products that the company develops are not domain-specific, which 
means that organizations and people from different domains can use them. The develop-
ment language used in the company is Delphi, which is an object extension of  PASCAL 
programming language. The software modules and their sizes are displayed in Table 1. The 
module sizes marked with an asterisk are estimates made by the case company employees. 
However, when measuring the actual size of  the modules, I noticed that the estimates 
tended to be a bit too high. This means that estimated sizes should be dealt with caution.  
The core modules of  the product start with Gamma and Delta. The other modules are 
shared between two products. 

Table 1 The modules and their size in the case company 

Module name Size in LOC
Gamma-C 47058 
Gamma-P 28589 
Gamma-S 16868 
Delta-C 55342 
Delta-P - 
Delta-S 54780 
Epsilon-P 80000* 
Zeta-C 30000* 
Zeta-S 20000* 
Kappa-S 20000* 
Omega-X - 
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6.1.2 Introduction to the Survey 
In this section I will explain the setting of  the survey more thoroughly. The survey was a 
web-based survey consisting of  two parts. In the first part, each respondent first provided 
their background information, including age, location (organization had software develop-
ers at two locations), role (developer or a lead developer), education, work experience in the 
company, and overall software development work experience. After that the respondents 
selected the software modules they had primarily worked with. This information was used 
in the second part of  the survey. In the second part of  the survey, the respondents were 
asked about the code smells in the modules they had selected in the first part. The code 
smells were described with a definition and an example which had a combined length of  no 
more than 35 words. Evaluation of  each smell was asked for each module. The scale was 
from 1 to 7, where 1 meant that the current smell did not exist in the module at all and 7 
meant that there was a lot of  the current smell present in the module. The respondents 
could also select “I don’t know” or “I don’t understand the smell explanation”. The “I 
don’t know” option was checked by default to prevent wrong smell evaluations from 
getting into the data. The respondents also estimated how well they knew each module they 
had selected.  That scale was also from 1 to 7 where 1 meant “I know the module very 
poorly” and 7 meant “I know the module very well”. The survey questions can be found in 
Appendix A. 

In the survey the sample consisted of  12 developers. The total number of  people in the 
population consisted of  18 software developers working in the case company. The 
response rate was pretty good with two-thirds of  the possible respondents answering the 
survey. The sampling technique was opportunistic, i.e., whoever answered the survey 
became a part of  the sample. The sampling technique certainly was not optimal, and in 
further studies it should be improved.  

One problem was that the survey was a so-called “cold turkey” survey. After conducting 
the survey I learned that the proper way to conduct a survey is to talk with the respondent 
in order to make sure he/she understands the questions correctly and is actually able to 
answer the question. However, such “cold turkey” surveys are commonly used in many 
different settings, and therefore it cannot be stated that the survey was completely worth-
less, but the results should be studied with caution. 

Since the survey in this study was “a cold turkey survey“, I cannot tell whether the 
developers answered the question based on their recollection of  the smells, or whether they 
actually looked at the source code. However, as people generally are lazy, it is likely that 
most of  the developers answered the survey based on their recollection.  

I received a total of  37 module smell evaluations from the sample 12 developers. Thus, the 
average number of  modules covered was little over 3, but the actual number varied from 2 
to 6. 

Before continuing any further, I suggest looking at Table 2 to understand the terms used in 
this study 
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Table 2 Terms used in the study 

Term Explanation 
Smell evaluation Evaluation of  one smell in one module from one evaluator 

(=developer). 
Smell mean for a 
module 

This is a number received by calculating the mean from a 
particular smell based on the smell evaluations of a single module 
 

Smell mean for a 
developer 

This is a number received by calculating the mean from a 
particular smell based on the smell evaluations of a single 
developer 

Combined smell mean 
for a module 

This is a number received by calculating the mean of all smell 
evaluations of a single module 

Combined smell mean 
for a developer 

This is a number that is received by calculating the mean of all 
smell evaluations of a single module 

  

6.1.3 Introduction to Results 
Table 3 shows the work experience and age of  the sample population. The respondents 
were quite well educated, since all were studying at least for a bachelor’s degree and most 
of  the respondents were studying for a master’s degree. One third of  the respondents had 
already finished their studies. There were four lead developers and eight regular developers.  
The division by location was a bit unbalanced, as only three answers came from one 
location while the other had nine. The effects of  the role and work experience are 
discussed in more detail in Sections 6.3.1 and 6.3.3. 

Table 3 Demographic data about the respondents. All numbers are in years 

Information Mean Std. Dev Median Low-High 
Age 28,67 5,280 26,5 23 - 40 
Work experience at the case 
company 

3,42 1,903 2,79 1,42 - 7,00 

Overall programming work 
experience 

4,74 2,514 3,46 2,50 - 10,00 

 

To understand the value of  the results, we must study how the respondents understood the 
different smells. In some cases, the respondents selected the “I don’t know” option for all 
modules with a particular smell, and in other cases they selected it for just one module. 
This could indicate that if  all modules were checked with “I don’t know” option the 
developer had not paid attention to the smell in question. Explaining why “I don’t know” 
was chosen for a single module only is more difficult. The “I don’t understand” option was 
chosen only once by one developer. 

Table 4 shows data for the smells that were most frequently left without evaluation, i.e., the 
smells that had the “I don’t know” or “I don’t understand” option selected more than four 
times (out of  37). The fact that Alternative Classes with Different Interfaces and Refused 
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Bequest smells are in the table is not very surprising, since recalling such structures can be 
difficult. The explanation why the Data Clumps smell is the number one smell that could 
not be understood or found, is most likely the inadequately formulated question in the 
survey (see Appendix A). In my opinion, the Data Clumps smell should be quite easy to 
understand.  

Table 4 The data for smells that were not evaluated 

Smell Name Total number of responses with 
 Don’t understand Don’t know 
Data Clumps 3 10 
Alternative Classes with Different 
Interfaces 

0 7 

Refused Bequest 0 6 
 
Table 5 displays the answer percentage for all smells. In this case, the answer percentage 
means the number of  responses (ranging from 1 to 7) to a smell. For most smells the 
answer percentage is close or above 90%, and hence I believe that most of  the smells were 
understood, which increases the reliability of  the results. However, this data does not give 
any indication of  how correctly the smells were understood. 

Table 5 Answer percentage for the smells 

Smell Name Percentage
Long Parameter List, Duplicate code 100,0 
Long Method, Large Class, Message Chains, Middle Man, Lazy Class, 
Primitive Obsession, Temporary Field, Shotgun Surgery 

97,3 

Dead Code, Speculative Generality, Feature Envy, Switch Statements  94,6 
Comments, Incomplete Library Class 91,9 
Parallel Inheritance Hierarchies, Divergent Change, Data Class, Inappropri-
ate Intimacy 

89,2 

Refused Bequest 83,8 
Alternative Classes with Different Interfaces 81,1 
Data Clumps 64,3 
 

6.1.4 Investigation on the Worst Smells in Different Modules 
Table 6 shows the combined smell means for modules. In the table we can see that the two 
modules with most respondents (Gamma-P & Gamma-C) also have the highest combined 
smell mean. The differences in the combined smell means are quite small, and F-test from 
ANOVA also shows that differences between groups are not significant with a p-value of  
0,097.  
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Table 6 Combined smell means for modules 

Module name n Combined smell mean 
Gamma-P  6 3,51 
Gamma-C  5 3,49 
Omega-X 1 3,45 
Delta-S  4 3,23 
Delta-P  4 3,23 
Delta-C  3 3,04 
Epsilon-P  3 2,96 
Kappa-S  3 2,93 
Zeta-S  4 2,76 
Zeta-C  3 2,69 
Gamma-S  1 1,60 

 

In this survey, the worst smells seem to be Long Method, Large Class, Duplicate Code, 
Inappropriate Intimacy, Message Chains, and Primitive Obsession. All smell means can be 
seen in Appendix B.  

In Appendix D we can see how much of  each smell exists in different modules. The three 
worst smells per module are also displayed in Table 7. From the table we can see that 
different modules actually contain different types of  smells. Based on the combined smell 
mean, the worst modules (Gamma-P and Gamma-C) both seem to contain a lot of  bloater 
type smells. The Gamma-P and Gamma-C have the highest smell means with Long 
Method and Large Class smells. The Gamma-P module also has the highest smell means in 
Long Parameter List and Data Clumps smells. The Delta-S module contains different 
smells and it has a lot of  Inappropriate Intimacy and Shotgun Surgery smells, which 
indicate improper class architecture. The Delta-S also has a lot Switch Statements smell, 
which indicates the usage of  type codes instead of  inheritance. The Delta-C seems to 
contain the most Duplicate Code smell when compared to other modules. The Zeta-C, 
which has quite a low combined smell mean in Table 6, contains the most Divergent 
Change smell, which is difficult to explain. The Kappa-S contains the most Dead Code, 
Middle Man, and Speculative Generality smells. Discussion with the case company also 
revealed that this module was built to handle a lot more features than is currently needed. 
This explains nicely the high values on Dead Code and Speculative Generality smells. The 
Epsilon-P module has by far the highest mean on the Incomplete Library Class smell, 
which indicates that the Epsilon-P has suffered from buggy or incomplete library classes.  
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Table 7 Three worst smells per modules 

Module 
Name 

Smell Worst Smells 

  1st 2nd 3rd 
Name Long Method Large Class Message Chains Gamma-P 
Mean 5,17 5,17 4,83 
Name Long Method Large Class Message Chains Gamma-C 
Mean 6,00 5,20 4,80 
Name Inappropriate 

Intimacy 
Switch Statements  
 

Shotgun Surgery  
 

Delta-S 

Mean 4,75 4,67 4,50 
Name Duplicate Code Long Method Temp Field Delta-C 
Mean 4,67 4,67 4,00 
Name Divergent Change Inappropriate 

Intimacy  
Duplicate Code  Zeta-C 

Mean 5,00 4,00 3,67 
Name Message Chains Dead Code  Speculative 

Generality 
Kappa-S 

Mean 4,67 4,33 4,33 
Name Incomplete library 

Class 
Message Chains Speculative 

Generality 
Epsilon-P 

Mean 5,33 4,00 3,67 
 

I also used ANOVA to analyze how significant the differences in smell means between 
groups (modules) were. The smells with significant differences between modules according 
to F-test from ANOVA are displayed in Table 8. The smells in Table 8 are the smells that 
made the best distinction between modules. Based on this I can also speculate that those 
are the archetype smells that find the biggest difference between modules and that other 
smells are not so significant because they cannot give information on the differences 
between modules. However, because of  the small amount of  data, I will not make strong 
conclusions based on these results. 

Table 8 The ANOVA test results between modules 

Smell Name p-value

Large Class 0,001**

Long Method 0,004**

Incomplete Library Class 0,011* 

Comments 0,027* 

Speculative Generality 0,038* 
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In this section, we have seen that the differences in the combined smell means are quite 
small and that this difference is not significant. On the other hand, the differences in the 
worst smells per module are quite large. We also saw how some smells were more signifi-
cant than others in finding the differences between modules. This indicates that some 
smells could be more useful than others in measuring the different aspects of  software’s 
maintainability. 

6.2 Investigating Smell-to-Smell Correlation 
It seems natural that some smells correlate with each other, while others have a negative 
correlation. By this I mean that it would seem natural that if  one class has a method that 
suffers from the Long Method smell, the same class would suffer from Large Class smell. 
The idea of  negative correlations comes from the conclusion that if  the class size is one 
attribute, then at one end of  this attribute the class suffers from the Large Class smell, and 
at the other end from the Lazy Class smell. 

The correlations, or actually the correlation coefficients, tell how strong the relationship 
between two variables is, e.g., if  variable A and variable B have a strong correlation, then 
low value on A will mean that there is a great chance that the value of  B will also be low. 
Correlations are measured on a scale of  –1 to 1. Zero indicates no correlation, and one 
indicates complete correlation. The sign of  the correlation indicates whether the increase in 
one variable will lead to increase or decrease in the other variable. To find out the correla-
tions I used Spearman’s Rho, which is applicable here, because the data was measured on 
Likert scale. Spearman’s Rho does not correlate the variables based on their absolute value, 
instead it looks at the rank of  the variable against other variables. This makes it applicable 
with the Likert scale used in the survey.  

In this study, the only significant negative correlations were found with the Primitive 
Obsession smell, and this is most likely due to the fact that the smell was measured on a 
reversed scale. I present the most significant correlations in Figure 5, and the whole list of  
correlations can be found in Appendix C.  In Section 5.2 I introduced the smell taxonomy 
that should help understand the smells and put them into a larger context. I have applied 
this taxonomy to the smell correlations as well.  

In Figure 5 we can see that the strongest correlation is between the Long Method and 
Large Class smells. This is probably the most anticipated correlation. The Large Class smell 
also correlates with the Message Chain smell. The explanation to this could be that large 
classes need data from many different sources, because they are involved in many opera-
tions. The Message Chain smell also correlates with its opposite smell, Middle Man. This 
could be caused by the fact that both smells indicate encapsulation or lack of  it between 
objects and can therefore be easily confused. This could also be caused by the way the 
questions were constructed. If  we look at the questions in Appendix A, we can see that the 
question related to the Message Chain smell is actually formulated in a way that is actually 
closer to the Middle Man smell. So this can be interpreted as an error in the formulation of  
the questions.  
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Long Method

Large Class

Primitive Obsession

Long Parameter List

Switch statements

Temporary Field

Refused Bequest

Divergent Change Shotgun Surgery

Parallel inheritance hierarchies

Lazy Class

Data Class

Message Chains

Middle Man

Feature Envy

Inappropriate Intimacy
Incomplete Library Class

Comments

0,751

0,586

0,593

0,583

0,672 0,715

0,626

0,645

0,690

0,664

Bloaters Couplers

OO Abusers Change Preventers

Encapsulators

0,613

0,594

0,578

0,596

-0,736

0,612

Dispensables

Others

 
Figure 5 Spearman’s Rho Correlation cofficient above 0,575 between smells. All correla-
tions are significant with the p-value of  0,01 or greater 

The Large Class smell also has a correlation with the Feature Envy smell, which means that 
a method is highly coupled to other objects. This indicates that large classes also create 
problems with high coupling. The Feature Envy smell is also correlated with another 
coupling-related smell, Inappropriate Intimacy, which is what I expected. It seems that the 
Inappropriate Intimacy hooks the Change Preventer smells together, since it has a strong 
correlation with both of  them. Change Preventers are also correlated, but the correlation is 
not as strong as the correlation between them and the Inappropriate Intimacy smell. These 
correlations are not surprising, since it seems reasonable to think that while we have high 
coupling and large classes it becomes difficult to have one-to-one relationships between 
common changes and classes like Fowler and Beck (Fowler & Beck 2000) suggest. 

Parallel class hierarchies also seem to cause the Refused Bequest smell, where a child class 
refuses to properly implement all inherited methods. When a class refuses to implement 
inherited behavior, we can think that this will cause the need for various type checks, which 
is represented by the Switch Statements smell. The Parallel Inheritance Hierarchies smell 
also seems to connect the Dispensables to the Object-orientation Abusers with the Lazy 
Class smell. It is easy to understand how duplicated class hierarchies can cause the 
Dispensable classes to appear. The correlation between the Temp-field smell and the 
Switch Statement smell is more difficult to grasp. I cannot offer an explanation to the 
strong correlation between the Refused Bequest smell and the Primitive Obsession smell, 
either.  
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No support to the claims of  Fowler and Beck (Fowler & Beck 2000) regarding the 
correlation of  the Large Classes and Duplicate Code smell was found. However, we must 
bear in mind that the Duplicate Code smell is difficult to spot. The Duplicate Code smell 
also had low deviations, meaning that developers felt it was distributed quite evenly across 
different modules. 

In Figure 5 we can identify two more distinct groups. One group is formed around the 
Couplers and the Large Class smell. The other group seems to be formed around the 
Object-orientation Abusers. One could assume that large classes and inability to minimize 
coupling could cause the first group.  The second group seems to focus on poor inheri-
tance usage and dispensable classes. This indicates that understanding of  when and how to 
use inheritance and objects, and remembering the two basic principles of  minimizing 
coupling and maximizing cohesion (Stevens, Myers, & Constantine 1974)  helps preventing 
smells. 

Comparing the taxonomy from Section 5.2 and the correlations shows that Figure 5 has 8 
correlations within groups and also 8 correlations between groups. To appreciate this 
information we must see, what the number of possible correlations within a group is and 
compare it to the number of possible correlations between groups. The total number of 
possible correlation lines comes from the following formula. 

( )
2

1* −nn    

In this case n gets a value of 23, and thus the total number of correlations is 253.  The 
maximum number of correlations within all groups comes from adding together the 
number of each individual group’s within-group correlations, and this results in 34 ((The 
Bloaters n=5) 10, + (The Object-Orientation Abusers n=5) 10+ (The Disbensables n=5) 
10+ (The Change Preventers n=2) 2+(The Couplers n=2) 2+(The Encapsulators n=2) 2+ 
(Others n=2) 2). The total number of between-group correlations is the number of all 
correlations minus the number of within-group correlations, and this results in 219 (253-
34). 

Based on the calculations presented above, I can conclude that the correlations add 
support to my theoretical taxonomy. This is because the strongest correlations, shown in 
Figure 5, represent 23,53% (8/34) of the total amount of within-group correlations. The 
amount of between-group correlations among the strongest correlations is only 0,04% 
(8/219). Therefore, my theoretical taxonomy is supported by the data from smell correla-
tions, since a relatively larger number of within-group correlations are strong compared to 
between-group correlations. This means that the smell taxonomy can provide help for 
using the smells, since the groups from the taxonomy can be used instead of all smells.         

6.3 Background Variable Analysis 
This section will try to analyze the gathered background information with the developers’ 
opinions of  the smells. I will not analyze the effect of  age, because analyzing variables like 
race, sex or age is hardly reasonable in this kind of  study. Studying the location of  
developers is also left out, because there was a great difference in the modules developed at 
different sites. Therefore, it is likely that the differences between module quality would 
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pollute the results of  analyzing the smell evaluations from different sites. I also decided that 
the education will not be studied either, since the developer’s role in the company and the 
knowledge of  the module are likely to be much more informative.  

6.3.1 The Effect of  Role 
In this section, I will try to analyze how the role affects developers’ opinions, i.e., if  there is 
a difference between developers and lead developers. In this study the company had two 
roles for software developers, lead developer and developer.  

The developers had an average combined smell mean of  3,21, while lead developers had 
3,03. This does not reveal the whole truth, since different people answered to different 
modules. Unfortunately, we only have two modules where there are answers from more 
than two developers and lead developers.  Thus, we can only compare these two modules. 
The data presented in Table 9 indicates that lead developers actually evaluate the smells 
higher when comparing the same module. However, because for the module Gamma-P the 
significance of  t-test is only 0,169 and for the Gamma-C it is 0,394, it cannot be concluded 
that there would be a difference in the smell evaluations of  developers and lead developers. 

Table 9 Role-based smell combined mean in two software modules 

Role Combined smell mean in modules 
 Gamma-P Gamma-C 
Developers 3,15 3,30 
Lead Developers 3,87 3,78 

 

Table 10 shows the differences in smell means between developers and lead developers. A 
positive difference means that developers evaluate that smell higher, while negative 
difference is in the smells that lead developers evaluate higher. From the table we can see 
that lead developers evaluate some smells much higher than developers, while developers 
evaluate other smells higher. The regular developers seem to think that there is more 
duplication and unused (dead) code and temporary fields than lead developers. On the 
other hand, lead developers seem to think that there are more structural problems, such as 
parallel inheritance hierarchies and shotgun surgery. The numbers of  respondents related 
to the data in Table 10 are displayed in Table 11. 

Table 10 also shows the p-values for the t-tests. This reinforces the assumption that high 
evaluation on the Parallel Inheritance Hierarchies smell is more likely to come from lead 
developers. Shotgun Surgery’s p-value is relatively low from all modules, but if  we look at 
the numbers from the Gamma-P and Gamma-C modules, we can see that it appears to be 
significant after all. From the smells that regular developers see more only the Duplicate 
Code is significant in all modules, but not in the Gamma-P and Gamma-C. However, the 
other two smells (Dead Code, Temp Field) that regular developers have evaluated more are 
not significant 
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Table 10 Greatest smell mean differences (developers minus lead developers)  

Smell Difference in smell means in modules t-test results
 All Modules Gamma-P Gamma-C 
 Diff. p-value Diff. p-value Diff. p-value 
Duplicate Code 0,82 0,031* 0,67 0,579 1,00 0,495 
Dead Code 0,85 0,056 1,00 0,535 1,50 0,148 
Temp Field 0,83 0,058 0,33 0,686 0,83 0,473 
Parallel Inheritance Hierarchies -0,78 0,007** -2,00 0,013* -2,17 0,032* 
Shotgun Surgery -0,54 0,139 -2,00 0,013* -1,67 0,032* 

 

Table 11 Number of  answers based on the role in different modules 

Role All Modules Gamma-P Gamma-C 
Answers Developers 20 3 3 
Answers Lead Developers 17 3 2 

 

This data indicates that lead developers are more likely to see more smells related to 
structural issues. Because the smells reported by regular developers are not significant, we 
cannot say anything about them. However, based only on the mean differences, we can 
assume that developers seem to see more issues on the code level. This would match the 
assumption that developers see more issues on the code level. Lead developers, on the 
other hand, look at the system from a higher level and focus on structures. 

6.3.2 The Effect of  Knowledge 
This section examines the effect of  knowledge of  the particular module on the smell 
evaluations given for that module. The knowledge variable related to the software modules 
in question was measured from each respondent. The scale was from 1 to 7, where 1 
indicated the lowest amount of  knowledge and 7 the highest. To make this variable more 
analyzable I formed two groups, one with a knowledge value between 3 and 5 (low 
knowledge) and the other with knowledge values 6 and 7 (high knowledge). There were no 
answers where the developer’s knowledge of  a module was under 3. 

The average combined smell mean in the low knowledge group was 3,08 and 3,16 in the 
high knowledge group. There were only two modules with more than 2 developers from 
each knowledge group. Unfortunately, the modules were the ones already studied in the 
previous section, and there was only one developer and lead developer, who got into 
separate groups. Thus, the results would resemble very closely the data displayed in Table 
10. 

The smells that have significant differences between in the two knowledge groups are 
displayed in Table 12. I have included smells with p-value higher than 0,15 and mean 
differences greater than 0,5. The reason for including insignificant p-values is to show 
which other smells are close to being significant. All mean differences in Table 12 are 
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negative, which means that the higher smell values are coming from the high knowledge 
group.  

Table 12 The smell mean difference (low minus high knowledge group) and p-values for 
the t-test between two knowledge groups 

Smell name Mean difference p-value 
Inappropriate Intimacy -0,89 0,095 
Lazy Class -1,02 0,007 
Middle Man -0,61 0,097 
Divergent Change -0,67 0,149 

  

The smells that receive higher means from the lower knowledge group are not even close 
to being significant. However, it seems that the smells that the lower knowledge group 
evaluates higher are typically simple smells, such as the Long Method. The smells that the 
high knowledge group evaluates higher seem to be more complex. The only smell that is 
significant is the Lazy Class, which is not complex itself. However, in my opinion, knowing 
the existence of  this smell requires more knowledge of  the software system. This way it 
seems natural that it is recognized more widely in the higher knowledge group.   

6.3.3 The Effect of  Work Experience 
Work experience averages within the sample were quite high as we can see in Table 3. The 
shortest work experience among the respondents was 17 months, so we can say that there 
were no “green” software developers among the respondents. All developers also had a 
minimum of  two and half  years of  overall software development work experience. So 
there were no developers straight from the school, either. Since all developers were quite 
experienced, it is not possible to compare the smell means between experienced and 
inexperienced developers. 

However, there were two developers who had been in the company for a very long time 
(nearly eight years). Both of  these developers had been in the company for the entire 
lifetime of  the current software modules. Comparing their smell means to the rest of  the 
developers provided interesting results. These two developers had evaluated smells for a 
total of  11 modules.  Therefore, their answers represent a quite wide range of  the software 
modules that were under evaluation. The most interesting results are summarized in Table 
13. It shows that the developers with the longest work history in the company generally 
thought the code was less smelly. The difference in the combined smell mean is very big 
and the p-value shows that this is also significant. It easy to understand that the most 
experienced developers can think that the code is less smelly, because it is likely that they 
have written very large portions of  it.  

The smells that had the greatest and most significant differences are listed in Table 13. The 
Large Class smell had by far the greatest difference in mean. This may indicate that the two 
developers, who possibly had developed most of  the class hierarchy, refused to see that 
their classes had grown too big and needed to be split up. 
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Table 13 The smell mean difference and p-values from t-test (two oldest developers minus 
the rest)  

Smell Mean difference p-value 
Combined smell mean 0,6103 0,011 
Large Class 1,42 0,004 
Long Parameter List 1,09 0,021 
Feature Envy 0,98 0,015 

 

6.4 Trustworthiness of  The Smell Opinions 
In the previous sections the results from the smell survey have been discussed. In this 
section I try to evaluate how reliable the results are.  

6.4.1 Investigation of  the Uniform Opinion on the Smells 
This section tries to investigate how uniform the developers’ opinions are on each smell in 
the different modules.  

Developers’ opinions on the Long Methods are displayed in Table 14. The cross tabulation 
shows us that developers’ opinions are not always uniform (modules Delta-C, Zeta-S), but 
we can also see cases where opinions are nicely matched (modules Gamma-C, Epsilon-P, 
Zeta-C).  

Table 14 The cross tabulation of  Long Method smell and modules  

Module name Number of answers on a scale of 1 to 7 
 1 2 3 4 5 6 7 
Epsilon-P  1 2     
Gamma-P    2 1 3  
Delta-S   1 2 1   
Delta-C  1    2  
Delta-P  1  1 1   
Zeta-C  2 1     
Zeta-S  1 1 1  1  
Kappa-S  1 1 1    
Gamma-C      5  

 

The opinions on the Inappropriate Intimacy smell, in Table 15, do not seem to make any 
clusters, and thus the developers’ smell evaluations on this smell are not consistent at all.  
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Table 15 The cross tabulation of  Inappropriate Intimacy smell and modules  

Module NameNumber of answers on a scale of 1 to 7 
  1 2 3 4 5 6 7 
Epsilon-P   2 1    
Gamma-P  2 1 1 1  1 
Delta-S   1  2 1  
Delta-C   1  1   
Delta-P  1  1 1   
Zeta-C    1    
Zeta-S  3   1   
Kappa-S  1 1 1    
Gamma-C  2   1 1   1 

 

To save us from studying all cross tabulations in detail, it is more interesting to concentrate 
on the standard deviations. Table 16 shows the standard deviations of  the smell means for 
the different modules8. For all smells there is a module that has very low standard devia-
tion, which means that developers’ opinions about the smell in that module are uniform. 
On the other hand, some module smell evaluations contain very high standard deviations, 
e.g., the Switch Statements smell, where the smell mean for one module has a standard 
deviation of  3,06. In this case, we cannot say anything about how much the module really 
contains this smell, because the developers’ opinions are so conflicting. Another point 
seems to be that the standard deviations do not really change, if  we remove people who 
reported their knowledge was lower than 6 

                                                 

8 I have removed the modules with just one developer as there can be no std. dev for those modules 
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Table 16 The Std. Dev. of  smell means for different modules  

Smell Name Std deviations of smell means  
 Max Min Mean  
Long Methods 2,31 0,00 1,06 
Large Class 1,53 0,00 0,89 
Long Parameter List 2,06 0,00 1,03 
Data Clumps 1,53 0,00 0,73 
Duplicate Code 1,53 0,50 1,14 
Dead Code 2,12 0,58 1,29 
Speculative Generality 1,53 0,50 0,87 
Feature Envy 1,38 0,00 0,76 
Inappropriate Intimacy 2,12 0,58 1,42 
Message Chains 1,73 0,58 1,23 
Middle Man 1,41 0,58 1,03 
Lazy Class 2,31 0,00 0,98 
Data Class 2,00 0,58 1,23 
Incomplete Library Class 2,63 0,58 1,09 
Primitive Obsession 1,64 0,58 0,98 
Switch Statement 3,06 0,00 1,72 
Temp Field 2,71 0,00 0,89 
Refused Bequest 1,53 0,58 0,75 
Alternative Classes with Different 
Interface 1,41 0,58 1,02 
Parallel Inheritance Hierarchies 1,30 0,00 0,68 
Divergent Change 1,75 0,50 1,09 
Shotgun Surgery 1,30 0,00 0,93 
Comments 1,38 0,00 0,72 

 

6.4.2 Investigating of  the Individual Developer Profiles 
In this section I will look at how each individual developer answered on each smell. If  a 
developer’s opinion on a particular smell is uniform across the different modules, this could 
indicate one of  two things. First, it could mean that the developer truly feels that the 
modules in question have the same amount of  smelliness. Second, it could mean that the 
developer really does not have enough vision, understanding, or motivation about the 
module or the smell in question to make this evaluation.  

The answers based on the Long Method, in Table 17, do not indicate that the developer 
would have more effect on the answers than the module. However, answers based on the 

Inappropriate Intimacy, in  

Table 18, give us some indication that developer’s person could give some explanation to 
the scattering of  the smell evaluations. 
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Table 17 The cross tabulation of  the Long Method smell and developers 

Developer Number of answers on a scale of 1 to 7 
  1 2 3 4 5 6 7 

1    2  1  
2     1 1  
3  2 2  1   
4    1  1  
5   2 1  1  
6  1 1 2 1 1  
7  2 1     
8    1  1  
9  1    1  
10      2  
11  2   1   
12      2  

 

Table 18 The cross tabulation of  the Inappropriate Intimacy smell and developers 

Developer Number of answers on a scale of 1 to 7 
 1 2 3 4 5 6 7 

1     3   
2   1  1   
3  1 1 1  1  
4  3      
5  2  2    
6  2 2  2   
7   1 1  1  
8   1 1    
9    1 1   
10       2 
12  2      

 

Table 19 shows the standard deviations of  smell means for different developers. Table 19 is 
very similar to Table 16, but the difference is that the smell mean standard deviations are 
from the developers, not from the modules. In Table 19, we can see that for every smell 
there is a developer who could not make a distinction between the modules he/she was 
evaluating. This is shown in the Min standard deviation column, which is zero for every 
smell. The zero standard deviation means that the developer has evaluated that all modules 
contain an equal amount of  that smell. Still we must bear mind that this could mean that 
the modules under evaluation really are similar. This means that we cannot conclude that 
the smell evaluations are wrong, when an individual developer claims that several modules 
contain an equal amount of  particular smell, if  we cannot somehow compare it to the true 
amount of  each smell.  



 Smell Survey  56 
 

 

Table 19 The Std. Dev. of  smell means for different developers 

Smell Name Std deviations of  smell means  
 Max Min Mean  
Long Methods 2,83 0,00 1,16 
Large Class 2,12 0,00 0,85 
Long Parameter List 2,83 0,00 0,68 
Data Clumps 1,15 0,00 0,40 
Duplicate Code 1,53 0,00 0,76 
Dead Code 2,12 0,00 0,95 
Speculative Generality 1,10 0,00 0,57 
Feature Envy 1,50 0,00 0,52 
Inappropriate Intimacy 1,71 0,00 0,78 
Message Chains 2,83 0,00 0,80 
Middle Man 1,50 0,00 0,61 
Lazy Class 1,73 0,00 0,51 
Data Class 1,50 0,00 0,33 
Incomplete Library Class 1,79 0,00 0,43 
Primitive Obsession 1,21 0,00 0,25 
Switch Statement 1,37 0,00 0,35 
Temp Field 1,00 0,00 0,35 
Refused Bequest 1,41 0,00 0,21 
Alternative Classes with Different 
Interface 1,41 0,00 0,52 
Parallel Inheritance Hierarchies 0,98 0,00 0,13 
Divergent Change 1,73 0,00 0,61 
Shotgun Surgery 2,12 0,00 0,73 
Comments 1,64 0,00 0,30 

6.4.3 Conclusions 
If  we compare the data from Table 16 and Table 19, we can see that module-smell means 
have generally higher standard deviation than smell-developer means. This means that if  
the smell evaluations are grouped based on modules, they are more widely distributed than 
if  they are grouped based on individual developers. This indicates that developers’ smell 
opinions on the same module are not uniform and thus not very reliable. One reason could 
be that it may not be possible to remember how much of  each smell exists in individual 
modules. It could also be that the human mind cannot accurately remember such details on 
module level. Maybe the module level is still too high to obtain uniform evaluations. There 
could be different parts in different modules that contain different amount of  smells, 
which will also cause bias. It could be that understanding the smells first and then searching 
for them could produce quite different results. 

Part of  the unexpected bias that has been discussed in this section could be due to the 
setup of  the survey. In the survey, each individual smell was evaluated against all modules 
the developer had worked with. This could cause bias on individual opinions based on the 
quality of  the other modules the developer had worked with. For example, developer A and 
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B could have worked with one common module X, but A could also have worked with 
module Y and B with module Z. So in this case developers A and B could evaluate module 
X quite differently based on the modules Y and Z.   

I compared the rankings between five developers, who had evaluated two modules, and I 
found out that a certain individual gave the highest smell evaluations in both modules and 
there was also another individual who constantly gave the lowest smell evaluations. So there 
clearly was one developer that had the most positive opinion on the modules and other that 
had the most negative opinion, which could also explain the conflicting opinions in 
different modules.     

The bias in this section also illustrates the problems with the Likert scale that was used. 
The problem is that people tend to evaluate differently on the same numeric scale. Even 
though developers’ opinions are not uniform, this does not mean that the results in this 
section would be completely worthless. We just have to remember that they might be 
biased and therefore the smell valuation on individual modules and smells might not be 
precise. However, I believe that if  we look beyond individual developer differences and 
look at the modules with several respondents, the results on smell evaluations could be 
more reliable. In the next section we will look at how some of  the smells and their 
evaluations correlate with source code metrics.   

6.5 Source Code Metrics & Smell Survey 
In this section, source code measures will be compared with smell evaluations. The 
comparison is limited to only three smells and three modules. Only few smells can be 
studied effectively, since it was not possible for me to get good metrics on other smells due 
to the fact that I do not have the source code analyzing tools to gather those metrics. The 
smells that I try to correlate with source code metrics are Large Class, Long Parameter List 
and Duplicate Code. The reason for studying only source code metrics from three modules 
is that at the time this thesis was written those were the only modules, whose source code I 
had access to. In addition, analyzing more modules and smells would have greatly extended 
the time needed to finish this thesis. Luckily, two of  those three modules were the ones 
that had most smell evaluations on the smell survey. The modules, whose source code 
measures I got are Gamma-C, Gamma-P, and Gamma-S. The sizes and approximate ages 
of  the modules are presented in Table 20. 

Table 20 Module Information 

Property Module 
 Gamma-C Gamma-P Gamma-S
NLOC 83200 28654 16787 

Age (years) 6-7 2-3 <1 
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I will now briefly introduce the tools used in getting the source code measures. A tool 
called same9 was used to measure the number of  duplicate code lines. Technically, same does 
not measure the duplicate code lines, since it only investigates whether the lines are 
identical. This means that same will not recognize all possible duplicated lines. So actually 
the number of  duplicated code lines will be higher than the one measured here. To gather 
measures for the Large Class and Long Parameter List smells I used a metric tool called 
SDMetrics10. SDMetrics calculates metrics from XMI files. XMI is standardized form of  
representing UML diagrams. To get the XMI files from Delphi source code I had to use 
two different tools, because the XMI output of  these tools was not according to the 
standard. I got the necessary metrics by using SDMetrics to calculate metrics on both of  the 
XMI output files. The tools used to generate the XMI-files were ESS-Model11 and Enterprise 
Architect12. 

6.5.1 Large Class 
The first question arising with the Large Class smell is, of  course, what is a large class. 
Fowler & Beck (Fowler & Beck 2000) say that a large class can often be spotted by looking 
at the number of  instance variables. The Large Class smell is also recognized as an anti-
pattern known as the Blob, Winnebago, and the God Class. The book that describes this 
anti-pattern in detail (Brown, Malveau, McCormick, & Mowbray 1998) refers to “AntiPat-
tern Session Notes” held by Michael Akroyd, who, according to Brown, Malveau, McCor-
mick and Malveau, said that a class with more than 60 variables and operations often 
indicates the presence of  the Blob. The number of  operations in a class is also a metric 
whose extended version Chidamber and Kemerer (Chidamber & Kemerer 1994) intro-
duced. The number of  operations measure was also used in object-oriented design quality 
assessment by Bansiya and David (Bansiya & David 2002).    

I also previously mentioned in Section 5.3.3 that class cohesion would be an optimal 
measure for the Large Class smell. However, unfortunately I do not have tools to collect 
such a measure. Therefore, I must limit the study and only measure the number of  
variables/attributes and operations/methods. The number of  variables as a Large Class 
smell measure is suggested by Fowler and Beck (Fowler & Beck 2000), and it also sounds 
more reasonable than using number of  operations. The complexity of  an operation can 
fluctuate considerably, unlike variables, which in my opinion increase the class complexity 
more constantly. Since the number operations are commonly accepted as a measure of  
class complexity I will use them as well. For me a class sounds too large, if  it has 20 or 
more variables. The only exceptions to this might be GUI classes that often have many 
instance variables. However, according to Fowler and Beck (Fowler & Beck 2000) this 
problem with GUI classes can be handled with a separate domain object.  

                                                 

9 http://sourceforge.net/projects/same 

10 http://www.sdmetrics.com/ 

11 http://www.essmodel.com/ 

12 http://www.sparxsystems.com.au/ 
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Based on the discussion above and the tools available, I have created two categories to 
measure the Large Class smell. One is based on attributes and the other is based on 
operations. With variables and operations I have three limits for a Large Class. With 
variables the limits are 10, 20, and 40 or more variables, and with operations the limits are 
30, 50, and 100 or more. Much tighter thresholds are presented by Lorenz and Kidd 
(Lorenz & Kidd 1994), who suggest a threshold of  3 for instance variables in a model class, 
and 9 for a UI class. They also suggest that a model class should not have more than 20 
operations and a UI class should have max 40 operations. 

The metrics related to the class size in different modules can be seen in Table 21. The data 
shows that the Gamma-C module clearly has the largest classes, if  we measure large classes 
by the number of  variables. When comparing the number of  large classes to the number 
of  operations, we can see that Gamma-C and Gamma-S modules have the same number 
of  large classes. Overall it looks like the Gamma-P module has the smallest number of  
large classes in both categories among these modules. The reason why the Gamma-C 
module has many classes with a big number of  variables is due to the fact that many classes 
in that module are GUI classes. As discussed earlier, we can accept slightly larger GUI 
classes than regular classes. I might be willing to accept that GUI class can be three times 
larger in terms of  variables than a model class as suggested by Lorenz and Kidd (Lorenz & 
Kidd 1994). Still we can see that the Gamma-C module has the largest classes, because 23% 
of  its classes have 40 or more variables, while in the other two modules 7,3% and 9,7% of  
classes have 10 or more variables.   

Table 21 Large Class source code measures 

Property Module 
 Gamma-C Gamma-P Gamma-S 
Number of classes 126 82 31 
Percentage of classes with 30 or more 
operations 

19,0 9,8 16,1 

Percentage of classes with 50 or more 
operations 

8,7 3,7 9,7 

Percentage of classes with 100 or 
more operations 

3,4 0,0 3,2 

Percentage of classes with 10 or more 
variables 

69,0 7,3 9,7 

Percentage of classes with 20 or more 
variables 

44,4 1,2 3,2 

Percentage of classes with 40 or more 
variables 

23,0 1,2 0,0 

 

Smell means and medians in Table 22 show that modules Gamma-C and Gamma-P have 
been evaluated to contain an equal quantity of  the Large Class smell. If  we compare this to 
the data in Table 21, we can see that the smell mean or median does not correlate with the 
measured number of  large classes. When I compared the five developers who had 
evaluated both Gamma-C and Gamma-P modules, I saw that only one developer had made 
distinctions between these modules. This developer had correctly evaluated that the 
Gamma-C module has more Large Class smell, although the difference in the Likert scale 
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(1-7) was the smallest possible. I also studied how the developer who had given the sole 
evaluation on the Gamma-S module, had evaluated the other two modules. It appeared that 
this developer had evaluated both Gamma-C and Gamma-P modules with 4 on Likert 
scale, while the Gamma-S module had received only 2. This evaluation can be correct, if  
we compare Gamma-C and Gamma-S modules, but with Gamma-P and Gamma-S this 
modules evaluation is false if  we compare it to my measures.  

Table 22 Large Class smell means and medians 

Property Module 
 Gamma-C Gamma-P Gamma-S 
Number of evaluations 5 6 1 
Mean of Large Class smell 5,20 5,17 2,00 
Std Dev.  1,095 1,169 - 
Median 5 5 2 

 

My initial expectation was that the Large Class would nicely correlate with the measures, 
because I believe that Large Classes are quite easy to spot. It was unfortunate that I did not 
have class cohesion measures available that could have been more effectively used in 
detecting large classes. However, I feel that this data shows, how developers’ evaluations on 
the Large Class smell seem to be incorrect, when compared to large class measures.  

6.5.2 Long Parameter List 
As mentioned earlier, the Long Parameter List smell means a case, where a method has too 
many parameters. Now it needs to be decided how many is actually too many. In the era of  
procedural programming, all data was generally passed as parameters. At that time the 
alternative to passing parameters was global data, which was much worse than long 
parameter lists. A widely recognized guide that was written for procedural programming 
recommends that parameters should be limited to seven (McConnell 1993). In object-
oriented programming passing everything as parameters is no longer necessary. I personally 
have received education in and worked mostly on object-oriented programming, and my 
view is that generally the maximum amount of  parameters should be three. In some 
extreme cases I could accept using as many as five parameters. So we have three opinions 
on what is a long parameter list. I shall call those opinions tolerance levels, which I will 
refer to as low, medium, and high. The maximum number of  parameters in these categories 
is 3 for low, 5 for medium, and 7 for high. 

Table 23 shows how the oldest and biggest module (Gamma-C) actually has the fewest 
long parameter lists compared to two younger modules. Gamma-P and Gamma-S modules 
have the same number of  long parameter lists in low and high tolerance groups. In the 
medium tolerance group, the Gamma-P has more than twice as many long parameter lists. 
It is quite interesting that the oldest module seems to be clearly in the best shape, if  we 
measure its internal quality by just looking at this single measure.  

When Fowler & Beck (Fowler & Beck 2000) introduced the Long Parameter List smell, 
they had made the assumption that long parameter lists are made of  primitives rather than 
objects. This source code material supports that assumption. From methods with over 3 
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parameters only 13,9% of  parameters are classes, while 86,1% are primitives. The maxi-
mum number of  primitive parameters is 16, whereas the maximum number of  class 
parameters is 3. So it seems clear that the Long Parameter List smell is made up from 
primitives.  

Table 23 Long Parameter List source code measures 

Property Module 
 Gamma-C Gamma-P Gamma-S 
Methods 2838 1077 464 
Mean number of parameters 1,85 2,05 2,04 
Percentage of Methods with 4 or more 
parameters (low tolerance) 

9,9 14,9 15,1 

Percentage of Methods with 6 or more 
parameters (medium tolerance) 

1,3 7,1 3,4 

Percentage of Methods with 8 or more 
parameters (high tolerance) 

0,1 1,2 1,1 

 

Table 24 shows the smell means and medians of  the three modules under study. If  we 
compare the two modules with more than one evaluation, we can see that developers have 
correctly evaluated that the Gamma-P has more Long Parameter List smell. We still have to 
bear in mind that the standard deviations for the smell means are quite high, so with 
different sampling the results might look different.  The difference between the Long 
Parameter smell median of  the Gamma-C and Gamma-P modules is greater than the smell 
mean values. The median values are the ones we wish to look at since the deviation is so 
large. I also studied the five developers who had evaluated both Gamma-C and modules 
and found out that only one of  them had made a difference with the Long Parameter List 
in these two modules. This developer had evaluated correctly that the Gamma-P module 
has more of  the Long Parameter Lists smell (with Likert scale numbers 5 and 3) while 
others had evaluated that this smell is equally present in both of  the modules.  

For the newest module, Gamma-S, I received only one smell mean or median. This single 
evaluation seems to be way off, if  we compare it to the metric data and to the smell means 
and medians of  the other two modules. It is even more interesting that the developer who 
had evaluated the Gamma-S module had also evaluated the Gamma-C module and given it 
a smell evaluation three for the Long Parameter List smell.  

Table 24 Long Parameter List smell means and medians 

Property Module 
 Gamma-C Gamma-P Gamma-S 
Number of evaluations 5 6 1 
Mean of Long Parameter List smell 3,40 4,00 1,00 
Std Dev.  1,140 1,265 - 
Median 3,00 4,50 1,00 

 

So in the case of  Long Parameter List smells developers correctly assumed that the 
Gamma-P module has more long parameter lists than the Gamma-C. On the other hand, 
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individual developers’ opinions were untrustworthy, since many developers were unable to 
make distinctions between two modules which according to measures contained different 
amount of  smells. In addition, the comparison with the individual developers showed that 
developers’ evaluations could simply be false.  

6.5.3 Duplicate Code 
As previously mentioned according to Fowler and Beck (Fowler & Beck 2000), the 
Duplicate Code smell “is number one in the stink parade”. Removing duplication makes 
programs easier to understand, maintain, and to develop further. When we measure the 
Duplicate Code smell, we must decide what the size of  the duplicated fragments we wish 
to identify is. It is not very wise to remove duplicated code fragments that consist of  only 
few lines of  code, since the effort spent in removing them will outweigh the benefits. I am 
not aware of  any recommendations on how many duplicate code lines are too much. The 
same tool reports on default duplicates with 10 lines of  code or more. For me this sounds 
acceptable, but given that bigger duplicates are more interesting, I also defined groups with 
15, 20, and 50 lines of  code. The line of  code in this context is again actually NLOC, 
which means that only the code lines are counted and empty lines and comment lines are 
ignored. 

Table 25 shows the percentages of  duplicate code lines measured in NLOC. In the table we 
can see that the Gamma-C module has clearly the most duplicate code. The Gamma-S has 
almost 30% of  duplicate code if  we define the duplicate code chunks to be 10 NLOC or 
more. If  we only measure larger duplicate code chunks, the duplicate code percentage of  
Gamma-S module drops very much. From the source code I found out that the Gamma-S 
has many methods that terminate in similar way, i.e., they check out of  a critical section, do 
some exception handling, and then report to the log system that the method has exited. So 
this kind of  duplication will only cause problems if  the exiting sequence has to be changed.  

Table 25 Duplicate Code source code measures 

Property Module 
 Gamma-C Gamma-P Gamma-S 
Percentage of duplicate code lines 
with 10 NLOC or more 

13,6 11,0 28,2 

Percentage of duplicate code lines 
with 15 NLOC or more 

8,8 4,3 3,5 

Percentage of duplicate code lines 
with 20 NLOC or more 

5,6 1,5 0,9 

Percentage of duplicate code lines 
with 50 NLOC or more 

1,1 0,0 0,4 

 

In Table 26 we can see that the Gamma-P module is evaluated to contain most Duplicate 
Code smell. Although the difference to the Gamma-C is not very big, we can clearly see 
that developers have mistaken, because the Gamma-C has much more duplicate code 
according to my measurement. When I looked at the five developers that had evaluated 
both Gamma-C and Gamma-P modules I saw that two developers had evaluated that the 
Gamma-P contains more duplicate code, one developer had determined that the Gamma-C 
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has more of  this smell, and two developers had decided that the modules contain the same 
amount of  Duplicate Code smell. To explain why developers felt that the Gamma-P 
contains more Duplicate Code than it actually does, I also tried to look at duplicates 
between modules. I found out that there seems to be more in-module duplication than 
inter-module duplication. By this I mean that percentages of  duplicated code lines did not 
exceed the values of  the Gamma-C, if  I measured the duplicated code line percentages 
from all the modules simultaneously.  

One reason for the differences between the smell mean and the source code measurements 
was revealed to me during the discussion with the case company. I found out that the 
Gamma-P module actually has quite a few lines, where copy-paste coding has been applied, 
but after each paste operation the code has been slightly modified. The same tool is unable 
to detect such form of  duplication. This information indicates that the smell evaluations 
are not as false as they would appear according to the measurements13.  

Again, I also studied the answers of  the respondent who had evaluated the newest 
Gamma-S and the other two modules as well. This developer had evaluated that the 
Gamma-P has more duplicate code smell than the Gamma-S, whereas in reality they have 
about same amount of  duplicate code. This result with this single developer is very similar 
as with the previously compared smells.  

Table 26 Duplicate Code smell evaluations 

Property Module 
 Gamma-C Gamma-P Gamma-S 
Number of evaluations 5 6 1 
Mean of Duplicate Code smell 3,60 4,00 1,00 
Std Dev.  1,140 1,265 - 
Median 3,00 3,50 1,00 

 

So based on this data it seems that the developers have mistaken in their evaluations, when 
it comes to duplicate code. However, the copy-paste-modify programming caused some 
bias to this result. Nevertheless, based on these results it is obvious that duplicate code 
smell could benefit very much on automatic detection.    

6.5.4 Conclusions 
In sections 6.5.1, 6.5.2, and 6.5.3 I have compared the developers’ smell evaluations and 
source code measures.  This data showed that the developers’ opinions on bad code smells 
do not seem to correlate with the used source code measures. With the Long Parameter 
List smell the developers’ smell evaluations had the best correlation with the measures, 
while in the Duplicate Code smell the developers’ evaluations did not correlate with the 
used measures at all. When I compared the evaluations of  the only developer, who had 
                                                 

13 It is a completely different story to find out whether code that has been developed with a copy-paste-
modify method is actually duplicate code, and how much modification is needed before the code can no 
longer be considered duplicate code. However, it is certain that removing completely identical code chunks is 
easier than removing code that has been slightly modified.  
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worked with the newest module (Gamma-S) and the other two modules as well, I saw how 
the developer evaluated that the newest module was considerably less affected by the bad 
smells than the other modules. The measures revealed, however, that the newest module 
did contain as much of  bad smell as the other two modules.  

When looking at the data in Table 25 and in Table 21 it is evident that Fowler & Beck’s 
claim that Duplicate Code and Large Class smells go hand in hand might actually be true. 
We can see how the Gamma-C module has the highest number of  large classes and the 
most duplication. On the other hand, the Gamma-P module has the fewest duplication and 
fewest large classes.  

The results in this section showed that developers’ opinions do not correlate well with used 
source code measures. Therefore I must say that the smell evaluations are not really 
reliable. This result is similar to the one presented in Section 6.4. This result also indicates 
that there is a need for automatic smell detection and decreases the reliability of  the smell 
evaluations.  

6.6 Summary 
This section has presented the setting and the results of  my survey on bad code smells that 
was targeted to developers of  the case company BeachPark. The survey was introduced in 
Section 6.1 and the different smells contained by different modules were also discussed. By 
studying the smell evaluation differences between modules, I found out that some smells 
have significant differences between modules while other smells have not. The smells with 
significant differences could be thought as archetype smells, as they have clearly different 
strength in different modules. In Section 6.2 the correlations between smells were intro-
duced. There we saw how my theoretical taxonomy from Section 5.2 gained more support, 
as many of  the taxonomy’s correlations within group were strong and significant. In 
Section 6.4 I studied how uniform the smell evaluations of  a single module from several 
developers were. There we saw that the smell evaluations are not very since standard 
deviations of  the smell evaluations were greater per module than they were per developer. 
In Section 6.3 I studied how the different background variables affected the smell evalua-
tions. It appeared that lead developers see more structural smells than regular developers, 
and respondents with a better knowledge of  the system tended to see more structural 
issues as well as smells that are difficult to spot. In Section 6.3 we saw how the two 
developers with most work experience from the case company saw the code considerable 
less smelly. This led us to discuss that the reason for this could be that the two developers 
have originally written the code and therefore are not willing to see as many smells as the 
rest. Finally, in Section 6.5 the smell evaluations and the results of  the source code 
measurement were compared for the particular smells. This showed us that the smells 
evaluations and the source code measures do not seem to correlate.   
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7 Discussion 

This is the final chapter of  the study. This chapter recaptures the plans and actual work 
done to answer the research questions, summarizes the answers to the research questions, 
discusses the reliability and generalizability of  findings and finally provides ideas for further 
research. 

7.1 Answering the Research Questions 
The research questions were introduced in Section 1.3. In this section, there will be a 
summary of  the answers to the research questions and the plans and actions that provided 
the results will be discussed.  

7.1.1 Answering Research Question 1 
The first research question was: How effectively can different code smells by Fowler & 
Beck be measured by tools? To answer this research question I planned to study the 
different source code metrics and the bad code smells. This action was carried out as 
planned. While answering the research question I tried to find metrics for each bad code 
smell. This research question was studied in detail and answered in section 5.3. Based on 
the results it appears that roughly speaking little more than half  of  the smells can effec-
tively be measured with tools. 

7.1.2 Answering Research Question 2 
The second research question was: How can the smells be made more understand-
able? My plan was to introduce a taxonomy for the bad code smells to make them more 
understandable. I created the taxonomy as planned. The taxonomy maps the 22 code smells 
to 7 higher-level categories in Section 5.2. I believe that this taxonomy makes the smells 
easier to understand, because it is easier to get an overview of  a taxonomy with 7 catego-
ries than of  a straight flat list of  22 code smells. To demonstrate the usability of  this 
taxonomy I also used it to group the correlating smells from the developers’ smell evalua-
tions in Section 6.2. This taxonomy matched the evaluations very well, since 23,53% of  the 
within-group correlations were strong, whereas only 0,04 percent of  the between-group 
correlations were strong.  

7.1.3 Answering Research Questions 3 and 3a 
The third research question was: Do software developers have a uniform opinion on 
the “smelliness” of  the source code? To answer this research question I planned and 
conducted a web-based survey where the developers of  the case company were asked to 
evaluate the bad code smells in the modules they had worked with. We saw in Section 6.4 
that the developers’ evaluations on the smells of  individual modules can fluctuate consid-
erably. So it seems that the personality of  an individual developer can affect the smell 
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evaluation even more than the module in question. The extension to third research 
question was: How does the developer’s experience and capability affect the smell 
evaluations? To answer this research question I used the data from the web survey. In 
Section 6.3 I studied how the experience, role, and knowledge of  the software module 
affected the smell evaluations. I think that the role and knowledge are attributes that 
correspond to the developers’ capability. Developers with higher capability tend to think 
that there are more structural and higher-level smells considering, e.g., the class hierarchy. 
We also saw how the two most experienced developers seemed to think that the code is 
much less smelly. This is probably because the two developers have written so much of  the 
code themselves and thus considered it less smelly than the other nine developers.  

7.1.4 Answering Research Questions 4 
The final research question was: Do the developers’ evaluations on different code 
smells correlate with source code metrics? To be able to answer this research question, 
I compared the smell evaluations from the web survey with measured source code metrics 
data. This action was carried out as planned, although not all source code of  the module 
was measured. All source code could not be measured, because I did not have access to it. 
Regardless of  that, I got enough source code to be able to answer the research question. 
The answer to this research question was studied in Section 6.5. As I did not have source 
code for all modules and only had measures for few smells, the answers to this research 
question are only initial. Nevertheless, based on the data I had, it seems that the developers’ 
smell evaluations do not correlate with source code metrics for the smells. One of  the 
consequences of  this result is that automatic smell detection or maintainability measure-
ment is useful for providing ideas on which parts of  software need refactoring and for 
providing information on the general code quality of  different software modules. On the 
other hand, this result could also indicate that the bad code smell based on human 
evaluations might not be very applicable after all.   

7.2 Reliability of  The Results 
In the previous section I summarized the answers to the research questions. In this section 
I will discuss the reliability of  the results. This section will go through the research 
questions and evaluate the reliability of  the answers. 

7.2.1 Research Question 1 
When looking for an answer to the first research question I tried to evaluate how different 
smells could be measured and how well they could be measured. I have good confidence in 
that the measures presented for the smells are quite valid. Nevertheless, the measurability 
of  the smells was only based on my personal intuition on what I had learned about the 
code smells and source code metrics. Because this work did not validate the measurability 
in any way, I think the presented measurability evaluation of  the smells only provides 
suggestions on how easy it would be to measure a particular smell. 
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7.2.2 Research Question 2 
The answer to the second research question provided a taxonomy for the bad code smells 
and it was applied to the smell survey correlations. I think that the taxonomy for the smells 
is useful, because it makes the smells and their relationships easier to understand. The 
taxonomy proved useful in analyzing the smell correlation relationships. The taxonomy is 
by no means complete, and it should be changed if  and when empirical work shows it 
needs adaptation. This taxonomy is to my knowledge the first bad code smell taxonomy, so 
it is merely nothing more than a starting point. The empirical validation of  the reliability of  
the taxonomy is, however, a bit questionable due to the nature of  the survey. The reliability 
of  the survey is discussed in the following section.  

7.2.3 Research Question 3 and 3a 
The third research question studied how uniform the developers’ smell evaluations were. 
The results showed that the smell evaluations were not very uniform in all cases, which was 
surprising. The basic problem with the reliability was that the survey was a so-called “cold 
turkey” survey. After conducting the survey I learned that the proper way to do a survey is 
to talk with the respondent in order to make sure he understand the questions correctly 
and is actually able to answer the questions. Because the survey in this study was a so-called 
cold turkey survey, I cannot know whether the developers answered the question based on 
their recollection of the smells or whether they actually looked at the source code. How-
ever, as people are generally lazy, it is likely that most of the developers answered the 
survey based on their recollection. 

Another point that reduces the reliability of  the results related to the third research 
question is that the software modules under evaluation were quite large. So it is possible 
that the respondents have worked with different parts of  the software module, and this 
would explain the fluctuation in the smell evaluations. I feel that understanding the smells 
was not a big factor for the respondents, because the answer percentage was quite high in 
almost all the smells. A further problem that makes this result a bit unreliable is the 
possibility that people might evaluate something differently on the Likert scale, e.g., 
because of  their background (positive versus negative orientation). This problem is actually 
more a problem of  the Likert scale itself, but nevertheless it weakens the reliability of  the 
results. 

When answering the research question 3a I studied the effect of  the background variables 
on the smell evaluations. The results in this case were more or less what was expected. 
However, I must admit that this single survey is too small a study for conclusive results. 
These results illustrate a single case, whose results can be compared with future studies. 
These results also suffer from the reliability problems of  the cold turkey survey.   

7.2.4 Research Question 4 
The last research question studied the relationship of  the smell evaluations and source code 
metrics. The results showed that the metrics did not correlate with the smell evaluations. I 
have high confidence in the source code measures used, since the smells that I tried to 
measure were the ones that I found quite measurable in Section 6.2. With each source code 
measure I used several threshold values, as there can be no single number for all contexts 
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that tells when a particular value is too high or low. Therefore I think the measurement of  
the smells is reliable. However, the issues that make the result unreliable are the problems 
with the cold turkey survey that were already discussed in Section 7.2.3. A further issue that 
makes this result a bit unreliable is the fact that developers evaluated modules that were 
quite big. Therefore I can only conclude that with this slightly unreliable survey and with 
modules of  this size, the smell evaluations do not correlate with source code metrics. 

7.3 Generalizability of  the Results 
The results from the research questions 1 and 2 should be easily generalizable, because they 
were not in any way specific to the case company. Therefore I believe that the result should 
be effective in other settings as well. The generalizability and reliability of  these results can 
be improved with empirical studies of  the issue.  

The generalization of  the results from research questions 3, 3a and 4 is more difficult. I 
believe that with similar settings, these kinds of  results could be received from other 
companies as well. However, since the results in the research questions 3, 3a, and 4 suffer 
from the reliability problems of  the cold turkey survey, it is more important to improve 
their reliability before further generalization is performed.  

7.4 Further Work 
This section lists some possible further topics for study that seem interesting based on the 
results of  this work.  

A further topic for study would be to look at how developers would evaluate the smells in 
the same piece of  code. The code sample would have to be quite small so that the 
developers could go through it in a reasonable time. With this kind of  study it would be 
possible to present more conclusive results on how uniform the developers’ smell evalua-
tions are. This kind of  study could also be combined with the automatic smell measure-
ment and this would bring more information on the relationships of  code smells and 
source code measures.   

There are also other motivating topics of  research. For example, one could study how the 
ownership affects the smell evaluations. In this study, I did not specifically ask how much 
of  the source code for each module the developer had written. So I was only able to 
speculate on this based on the data of  the developer work experience in the company. So it 
would be interesting to see how the smell evaluations would differ between the source code 
author and an outsider.  

It would also be interesting to see how some of  the development methods would affect the 
source code smelliness or maintainability, e.g., if  automatic unit testing, pair-programming, 
or code reviews affect the code quality. Personally I believe that if  a programmer must 
write a unit test for his/her code he/she will write code that is more maintainable, as it is 
likely that this kind of  code is also easier to test. Validating such assumptions seems to 
provide a promising research topic.         

As an industrial study it would be appealing to look at ways to prevent or clean up low 
quality code, e.g., do simple listings in the coffee room pointing out the duplicate code 
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segments reduce the amount of  duplicate code, or if  a more institutionalized process is 
needed. This would help the industry in choosing the right ways to make developers 
produce more maintainable code.   

All these research topics could also help improving the smell taxonomy. 

One final research topic would be to try to find the worst bad code smells or antipatterns 
by interviewing developers. This would help software engineering community to concen-
trate on the worst issues of  unmaintainable software. Maybe this type of  study could be 
extended to build polynomials, such as in Sections 3.3.3 and 3.3.4, to measure maintainabil-
ity with bad code smells. 
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Appendix A 

This appendix contains the questions used in the web survey to collect the software 
developers’ evaluations on bad code smells. Below is the part of  the module that was used 
to gather the background information. 

                                                     
  
Taustatiedot 

Ikä: 

Sijainti: 

Asema:  

Kuinka kauan olet työskennellyt ohjelmoijana BeachPark:lla (vuotta, kuukautta): 

Kuinka kauan olet kaiken kaikkiaan työskennellyt ohjelmoijana (vuotta, kuukautta): 

Koulutustausta (valitse yksi): Jatkotutkinto (esim. Lisensiaatti, Tohtori); Korkeakoulututkinto (esim. Maisteri, 
Diplomi-insinööri); Opisto / Ammattikorkeakoulututkinto (esim. Insinööri, Tradenomi); Opiskelija 
tiedekorkeakoulu (esim. Yliopisto, TKK); Opiskelija ammattikorkeakoulu; Muu, Mikä? 

Moduulit 

Seuraavassa lomakkeessa kysellään koodista löytyvistä rakenteista (koodihajuista) per moduuli. Lomake 
generoidaan valitsemiesi moduuleiden perusteella, joten vastaat kysymyksiin ainoastaan niiltä osin. 

Ole ystävällinen ja valitse listasta ne moduulit joiden kanssa olet pää-asiassa työskennellyt. Suositeltavaa on, 
että rajoitat valitsemasi moduulit 3:een. Lead developerit (ja halutessaan toki muutkin) voivat vastata 
useampaan kuin 3:een moduuliin 

The name of  the modules are withheld 

 

The second part of  the questionnaire was generated based on the names of  the selected 
software modules. The respondents answered to each of  the following questions for all the 
modules they had chosen in the previous phase. 
 
1. Kuinka hyvin arvelet tuntevasti listaamasi moduulit 

Tunnen ohjelmiston osan 
Asteikko 1-7 (1 erittäin huonosti ... 7 erittäin hyvin)   

2. Minkä verran ohjelmistojen eri osista löytyy seuraavia rakenteita? 

Ole ystävällinen ja vastaa vain sen perusteella, mitä olet itse nähnyt ja kokenut 
Asteikko 1-7 (1 ei lainkaan ... 7 paljon; EOS; En ymmärrä) 

1. Liian pitkiä funktioita 

2. Liian isoja luokkia (liikaa instanssimuuttujia tai toiminnallisuutta) 

3. Funktioita jotka ottavat liikaa parametreja 

4. Usein yhdessä esiintyviä data-alkioita (Esim. 3 int tyyppistä muuttujaa joista ei olisi mitään iloa yksinään) 

5. Duplikaatti koodia (Eli koodia, jota on esim. kehitetty copy-paste menetelmällä) 
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6. Tarpeetonta (kuollutta) koodia (Eli koodia, jota on joskus käytetty ja "säästetty" tulevaisuuden varalle)  

7. Spekuloivaa koodia (Eli koodia, jota rakennettu ottaen huomioon erillaisia skenaariota tulevaisuudessa) 

8. Funktioita jotka ovat liian kiinnostuneita toisista luokista ja niiden datasta. (Eli käyttävät esim. useita get-
metodeja) 

9. Kahden tai useamman luokan kokonaisuuksia, jotka ovat tiukasti naimisissa keskenään s.e. niiden 
erottaminen toisistaan muodostuisi vaikeaksi. 

10. Pitkiä viestiketjuja (Eli tilanteita jossa tiettyä dataa pyydetään seuraavalta oliolta, joka edelleen delegoi 
kutsua eteenpäin) 

11. Luokkia, jotka pääasiassa delegoivat kutsuja eteenpäin eivätkä juuri sisällä omaa toiminnallisuutta. 

12. Luokkia, jotka sisältävät erittäin vähän toiminnallisuutta tai dataa s.e. ne voitaisiin pienellä vaivalla poistaa. 

13. Luokkia, jotka sisältävät pääasiassa dataa eivätkä juurikaan toiminnallisuutta. 

14. Kohtia, joissa ohjelmoija on joutunut paikkamaan esim. delphin luokkakirjastossa olevia ongelmia omalla 
koodilla. 

15. Tilanteita, joissa valmiiden primitiivien asemasta käytetään pieniä luokkia. (Esim. puhelinnumerolle on 
tehty oma luokka integerin käyttämisen sijaan) 

16. Tilanteita, joissa pyritään ajon aikana selvittämään olion todellinen tyyppi. (Esim. luetaan luokan "ID" 
kentän arvo tai käytetään Delphin is operaatiota) 

17. Luokkia, jotka sisältävät temp-muuttujia. (Eli siis muuttujia joita luokka tarvitsee vain esim. tietyssä 
tilanteessa tai tilassa) 

18. Luokkia, jotka eivät tue kaikkia perimiään metodeja. (Esim. tilanne joissa voit kutsua kantaluokalta A 
saatua metodia, mutta sen suorituksen toimivuudesta/oikeellisuudesta perityssä luokassa B ei ole takeita.) 

19. Rakenteita, joissa voidaan käyttää yhtä luokkaa useammasta vaihtoehdosta, mutta vaihtoehtoisia luokkia 
käytetään eri rajapinnan läpi. (Esim. Voit piirtää ruudulle neliön tai pallon, mutta piirtääksesi neliön kutsut 
metodia draw_rectanle() ja piirtääksesi pallon kutsut metodia draw_ball()) 

20. Rinnakkaisia luokkahierarkioita. Eli tilanteita, joissa periessäsi yhden uuden luokan sinun pitää periä toinen 
rinnakkainen luokka toisesta rinnakkaisesta hierarkiasta. 

21. Yksittäisiä luokkia, jota pitää muokata useiden erilaisten muutosten yhteydessä. (Esim. Muuttaessasi sekä 
tietokannan tyyppiä, että autentikointi mekanisimia joudut muokkaamaan samaa luokka) 

22. Tilanteita, joissa useampiin luokkiin pitäisi tehdä pieniä muokkauksia yhden muutoksen yhteydessä. (Esim. 
vaihtaessasi tietokanta tyyppiä pitää muutoksia tehdä useaan luokkaan) 

23. Tilanteita, joissa joku kohta koodista on vain kommentoitu sen sijaan, että olisi ohjelmoitu se selkeämmin. 
(Esim. Kommentti: "Fix this later") 
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Appendix B 

This appendix contans all responses, smell means, medians, and standard deviations 
Smell  N Mean Median Std. Dev. Range 

Long Method 36 4,11 4 1,563 4 

Large Class 36 3,72 4 1,466 6 

Long Parameter List 37 2,95 2 1,332 5 

Data Clumps 24 3,17 3 0,963 4 

Duplicate code 37 3,62 4 1,187 5 

Dead Code 35 3,03 3 1,339 5 

Speculative Generality 35 2,89 3 1,157 4 

Feature Envy 35 3,00 3 1,085 4 

Inappropriate Intimacy 33 3,73 4 1,547 5 

Message Chain 36 4,08 4 1,422 6 

Middle Man 36 2,78 3 1,149 5 

Lazy Class 36 2,19 2 1,167 4 

Data Class 33 2,52 2 1,202 4 

Incomplete Library class 34 3,00 2,5 1,723 5 

Primitive Obsession * 36 6,03 6 1,134 4 

Switch Statements 35 3,29 3 1,827 6 

Temporary Field 36 2,56 2 1,319 6 

Refused Bequest 31 1,77 2 0,717 3 

Alternative Classes with different interfaces 30 2,33 2 1,040 4 

Parallel Inheritance Hierarchies 33 1,85 2 0,834 3 

Divergent Change 33 3,03 3 1,331 4 

Shotgun Surgery 36 3,39 3 1,103 3 

Comments 34 2,91 3 1,190 5 

* Measured on a reversed scale. The reason why the Primitive Obsession clearly has the 
highest smell mean is that it was measured on a reversed scale, i.e., the smaller the number 
was, the more smell there was. 
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Appendix C 

This table contains the correlations between the smell evaluations. I have numbered the 
cells to be able to fit the table on the page: 
Long Method = 1, Large Class = 2, Long Parameter List = 3, Data Clumps = 4, Duplicate Code = 5, Dead 
Code = 6 Speculative Generality = 7, Feature Envy = 8, Inappropriate Intimacy = 9, Message Chains = 10, 
Middle Man = 11, Lazy Class = 12, Data Class = 13, Incomplete Library Class = 14, Primitive Obsession = 
15, Switch Statement = 16, Temp Field = 17, Refused Bequest = 18, Alternative Classes with Different 
Interfaces = 19, Parallel Inheritance Hierarchies = 20, Divergent Change = 21, Shotgun Surgery = 22, 
Comments = 23 
CC means Correlation Coefficients and Sig. means 2-tailed significance.  

 
 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 

CC 1,000 0,751 0,387 0,246 0,317 -0,039 0,066 0,455 0,277 0,488 0,245 -0,119 -0,018 0,159 -0,303 0,431 0,497 0,419 0,293 0,349 0,102 0,082 0,266

Sig. . 0,000 0,020 0,247 0,060 0,822 0,710 0,007 0,125 0,003 0,155 0,496 0,919 0,378 0,077 0,011 0,002 0,021 0,123 0,051 0,579 0,639 0,135

1 

N 36 35 36 24 36 35 34 34 32 35 35 35 33 33 35 34 35 30 29 32 32 35 33

CC 0,751 1,000 0,549 0,316 0,313 -0,042 0,090 0,586 0,352 0,593 0,349 0,012 0,065 0,335 -0,271 0,441 0,240 0,285 0,274 0,323 0,365 0,219 0,493

Sig. 0,000 . 0,001 0,133 0,063 0,812 0,615 0,000 0,044 0,000 0,037 0,946 0,721 0,057 0,116 0,009 0,164 0,126 0,150 0,067 0,037 0,198 0,004

2 

N 35 36 36 24 36 34 34 35 33 36 36 36 33 33 35 34 35 30 29 33 33 36 33

CC 0,387 0,549 1,000 0,549 0,160 0,292 0,471 0,326 0,088 0,432 0,302 0,318 0,241 0,613 -0,555 0,428 0,168 0,353 0,509 0,379 0,386 0,315 0,530

Sig. 0,020 0,001 . 0,005 0,343 0,089 0,004 0,056 0,627 0,008 0,073 0,059 0,177 0,000 0,000 0,010 0,328 0,052 0,004 0,030 0,026 0,061 0,001

3 

N 36 36 37 24 37 35 35 35 33 36 36 36 33 34 36 35 36 31 30 33 33 36 34

CC 0,246 0,316 0,549 1,000 0,247 0,256 0,372 0,378 0,169 0,176 0,111 0,258 0,357 0,143 0,005 -0,153 0,124 -0,054 0,563 0,080 0,303 0,261 0,344

Sig. 0,247 0,133 0,005 . 0,245 0,239 0,088 0,069 0,465 0,410 0,606 0,224 0,086 0,524 0,982 0,475 0,562 0,823 0,012 0,723 0,182 0,217 0,117

4 

N 24 24 24 24 24 23 22 24 21 24 24 24 24 22 24 24 24 20 19 22 21 24 22

CC 0,317 0,313 0,160 0,247 1,000 0,328 -0,067 0,371 0,120 0,307 0,079 0,141 0,418 0,098 0,082 0,176 0,286 -0,062 -0,038 0,220 0,011 0,038 0,165

Sig. 0,060 0,063 0,343 0,245 . 0,054 0,701 0,028 0,505 0,068 0,647 0,412 0,016 0,581 0,633 0,313 0,091 0,740 0,841 0,218 0,950 0,827 0,353

5 

N 36 36 37 24 37 35 35 35 33 36 36 36 33 34 36 35 36 31 30 33 33 36 34

CC -0,039 -0,042 0,292 0,256 0,328 1,000 0,226 0,046 0,042 0,188 -0,009 0,245 0,157 0,302 0,005 0,031 0,146 -0,121 0,298 -0,095 0,002 0,142 0,320

Sig. 0,822 0,812 0,089 0,239 0,054 . 0,205 0,801 0,818 0,286 0,959 0,163 0,392 0,093 0,980 0,866 0,411 0,523 0,117 0,611 0,991 0,423 0,070

6 

N 35 34 35 23 35 35 33 33 32 34 34 34 32 32 34 33 34 30 29 31 32 34 33

CC 0,066 0,090 0,471 0,372 -0,067 0,226 1,000 -0,080 -0,263 0,148 0,301 0,296 0,117 0,500 -0,433 -0,025 0,137 0,184 0,459 0,018 0,032 -0,125 -0,039

Sig. 0,710 0,615 0,004 0,088 0,701 0,205 . 0,660 0,153 0,403 0,084 0,089 0,531 0,004 0,011 0,891 0,440 0,339 0,014 0,924 0,864 0,483 0,831

7 

N 34 34 35 22 35 33 35 33 31 34 34 34 31 32 34 33 34 29 28 31 31 34 32

CC 0,455 0,586 0,326 0,378 0,371 0,046 -0,080 1,000 0,583 0,481 -0,005 0,307 0,463 0,239 -0,176 0,550 0,431 0,379 0,438 0,529 0,368 0,263 0,594

Sig. 0,007 0,000 0,056 0,069 0,028 0,801 0,660 . 0,000 0,003 0,976 0,073 0,008 0,187 0,311 0,001 0,010 0,039 0,017 0,002 0,038 0,127 0,000

8 

N 34 35 35 24 35 33 33 35 32 35 35 35 32 32 35 34 35 30 29 33 32 35 33

CC 0,277 0,352 0,088 0,169 0,120 0,042 -0,263 0,583 1,000 0,351 0,311 0,364 0,398 -0,071 0,086 0,365 0,079 0,257 0,152 0,446 0,672 0,715 0,514

Sig. 0,125 0,044 0,627 0,465 0,505 0,818 0,153 0,000 . 0,045 0,078 0,037 0,029 0,709 0,641 0,043 0,667 0,187 0,448 0,014 0,000 0,000 0,003

9 

N 32 33 33 21 33 32 31 32 33 33 33 33 30 30 32 31 32 28 27 30 31 33 31

CC 0,488 0,593 0,432 0,176 0,307 0,188 0,148 0,481 0,351 1,000 0,626 0,259 0,253 0,438 -0,133 0,344 0,293 0,271 -0,130 0,406 0,075 0,283 0,489

Sig. 0,003 0,000 0,008 0,410 0,068 0,286 0,403 0,003 0,045 . 0,000 0,127 0,156 0,011 0,447 0,046 0,088 0,147 0,503 0,019 0,680 0,095 0,004

10 

N 35 36 36 24 36 34 34 35 33 36 36 36 33 33 35 34 35 30 29 33 33 36 33
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CC 0,245 0,349 0,302 0,111 0,079 -0,009 0,301 -0,005 0,311 0,626 1,000 0,384 0,334 0,341 -0,180 0,039 -0,075 0,248 -0,180 0,358 0,337 0,284 0,094

Sig. 0,155 0,037 0,073 0,606 0,647 0,959 0,084 0,976 0,078 0,000 . 0,021 0,058 0,052 0,300 0,829 0,667 0,186 0,351 0,041 0,055 0,094 0,602

11 

N 35 36 36 24 36 34 34 35 33 36 36 36 33 33 35 34 35 30 29 33 33 36 33

CC -0,119 0,012 0,318 0,258 0,141 0,245 0,296 0,307 0,364 0,259 0,384 1,000 0,578 0,369 -0,117 0,203 0,104 0,162 0,230 0,596 0,310 0,413 0,246

Sig. 0,496 0,946 0,059 0,224 0,412 0,163 0,089 0,073 0,037 0,127 0,021 . 0,000 0,035 0,502 0,249 0,554 0,392 0,229 0,000 0,079 0,012 0,167

12 

N 35 36 36 24 36 34 34 35 33 36 36 36 33 33 35 34 35 30 29 33 33 36 33

CC -0,018 0,065 0,241 0,357 0,418 0,157 0,117 0,463 0,398 0,253 0,334 0,578 1,000 -0,050 -0,236 0,041 0,024 0,200 0,264 0,534 0,250 0,329 0,031

Sig. 0,919 0,721 0,177 0,086 0,016 0,392 0,531 0,008 0,029 0,156 0,058 0,000 . 0,794 0,194 0,826 0,896 0,317 0,193 0,002 0,182 0,062 0,873

13 

N 33 33 33 24 33 32 31 32 30 33 33 33 33 30 32 31 32 27 26 30 30 33 30

CC 0,159 0,335 0,613 0,143 0,098 0,302 0,500 0,239 -0,071 0,438 0,341 0,369 -0,050 1,000 -0,447 0,285 0,135 0,228 0,282 0,347 0,253 -0,005 0,552

Sig. 0,378 0,057 0,000 0,524 0,581 0,093 0,004 0,187 0,709 0,011 0,052 0,035 0,794 . 0,009 0,107 0,453 0,242 0,145 0,060 0,177 0,979 0,001

14 

N 33 33 34 22 34 32 32 32 30 33 33 33 30 34 33 33 33 28 28 30 30 33 31

CC -0,303 -0,271 -0,555 0,005 0,082 0,005 -0,433 -0,176 0,086 -0,133 -0,180 -0,117 -0,236 -0,447 1,000 -0,461 -0,354 -0,736 -0,555 -0,491 -0,203 0,008 -0,230

Sig. 0,077 0,116 0,000 0,982 0,633 0,980 0,011 0,311 0,641 0,447 0,300 0,502 0,194 0,009 . 0,005 0,034 0,000 0,001 0,004 0,264 0,963 0,191

15 

N 35 35 36 24 36 34 34 35 32 35 35 35 32 33 36 35 36 31 30 33 32 35 34

CC 0,431 0,441 0,428 -0,153 0,176 0,031 -0,025 0,550 0,365 0,344 0,039 0,203 0,041 0,285 -0,461 1,000 0,645 0,690 0,350 0,513 0,435 0,158 0,554

Sig. 0,011 0,009 0,010 0,475 0,313 0,866 0,891 0,001 0,043 0,046 0,829 0,249 0,826 0,107 0,005 . 0,000 0,000 0,058 0,003 0,014 0,372 0,001

16 

N 34 34 35 24 35 33 33 34 31 34 34 34 31 33 35 35 35 30 30 32 31 34 33

CC 0,497 0,240 0,168 0,124 0,286 0,146 0,137 0,431 0,079 0,293 -0,075 0,104 0,024 0,135 -0,354 0,645 1,000 0,565 0,471 0,356 -0,105 -0,092 0,280

Sig. 0,002 0,164 0,328 0,562 0,091 0,411 0,440 0,010 0,667 0,088 0,667 0,554 0,896 0,453 0,034 0,000 . 0,001 0,009 0,042 0,568 0,598 0,108

17 

N 35 35 36 24 36 34 34 35 32 35 35 35 32 33 36 35 36 31 30 33 32 35 34

CC 0,419 0,285 0,353 -0,054 -0,062 -0,121 0,184 0,379 0,257 0,271 0,248 0,162 0,200 0,228 -0,736 0,690 0,565 1,000 0,513 0,664 0,448 0,281 0,180

Sig. 0,021 0,126 0,052 0,823 0,740 0,523 0,339 0,039 0,187 0,147 0,186 0,392 0,317 0,242 0,000 0,000 0,001 . 0,005 0,000 0,017 0,133 0,334

18 

N 30 30 31 20 31 30 29 30 28 30 30 30 27 28 31 30 31 31 28 28 28 30 31

CC 0,293 0,274 0,509 0,563 -0,038 0,298 0,459 0,438 0,152 -0,130 -0,180 0,230 0,264 0,282 -0,555 0,350 0,471 0,513 1,000 0,209 0,337 0,149 0,192

Sig. 0,123 0,150 0,004 0,012 0,841 0,117 0,014 0,017 0,448 0,503 0,351 0,229 0,193 0,145 0,001 0,058 0,009 0,005 . 0,276 0,074 0,440 0,309

19 

N 29 29 30 19 30 29 28 29 27 29 29 29 26 28 30 30 30 28 30 29 29 29 30

CC 0,349 0,323 0,379 0,080 0,220 -0,095 0,018 0,529 0,446 0,406 0,358 0,596 0,534 0,347 -0,491 0,513 0,356 0,664 0,209 1,000 0,361 0,420 0,316

Sig. 0,051 0,067 0,030 0,723 0,218 0,611 0,924 0,002 0,014 0,019 0,041 0,000 0,002 0,060 0,004 0,003 0,042 0,000 0,276 . 0,043 0,015 0,083

20 

N 32 33 33 22 33 31 31 33 30 33 33 33 30 30 33 32 33 28 29 33 32 33 31

CC 0,102 0,365 0,386 0,303 0,011 0,002 0,032 0,368 0,672 0,075 0,337 0,310 0,250 0,253 -0,203 0,435 -0,105 0,448 0,337 0,361 1,000 0,612 0,478

Sig. 0,579 0,037 0,026 0,182 0,950 0,991 0,864 0,038 0,000 0,680 0,055 0,079 0,182 0,177 0,264 0,014 0,568 0,017 0,074 0,043 . 0,000 0,007

21 

N 32 33 33 21 33 32 31 32 31 33 33 33 30 30 32 31 32 28 29 32 33 33 31

CC 0,082 0,219 0,315 0,261 0,038 0,142 -0,125 0,263 0,715 0,283 0,284 0,413 0,329 -0,005 0,008 0,158 -0,092 0,281 0,149 0,420 0,612 1,000 0,319

Sig. 0,639 0,198 0,061 0,217 0,827 0,423 0,483 0,127 0,000 0,095 0,094 0,012 0,062 0,979 0,963 0,372 0,598 0,133 0,440 0,015 0,000 . 0,070

22 

N 35 36 36 24 36 34 34 35 33 36 36 36 33 33 35 34 35 30 29 33 33 36 33

CC 0,266 0,493 0,530 0,344 0,165 0,320 -0,039 0,594 0,514 0,489 0,094 0,246 0,031 0,552 -0,230 0,554 0,280 0,180 0,192 0,316 0,478 0,319 1,000

Sig. 0,135 0,004 0,001 0,117 0,353 0,070 0,831 0,000 0,003 0,004 0,602 0,167 0,873 0,001 0,191 0,001 0,108 0,334 0,309 0,083 0,007 0,070 . 

23 

N 33 33 34 22 34 33 32 33 31 33 33 33 30 31 34 33 34 31 30 31 31 33 34
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Appendix D 

This table contains the smell means from different modules. I have numbered the smells to 
be able to fit the table on the page:  
Long Method = 1, Large Class = 2, Long Parameter List = 3, Data Clumps = 4, Duplicate Code = 5, Dead 
Code = 6 Speculative Generality = 7, Feature Envy = 8, Inappropriate Intimacy = 9, Message Chains = 10, 
Middle Man = 11, Lazy Class = 12, Data Class = 13, Incomplete Library Class = 14, Primitive Obsession = 
15, Switch Statement = 16, Temp Field = 17, Refused Bequest = 18, Alternative Classes with Different 
Interfaces = 19, Parallel Inheritance Hierarchies = 20, Divergent Change = 21, Shotgun Surgery = 22, 
Comments = 23 

  Omega-x Gamma-S Epsilon-P Gamma-P Delta-S Delta-C Delta-P Zeta-C Zeta-S Kappa-S Gamma-C

N 1,00 1,00 3,00 6,00 4,00 3,00 4,00 3,00 4,00 3,00 5,00

1 5,00 2,00 2,67 5,17 4,00 4,67 3,67 2,33 3,75 3,00 6,00

2 4,00 2,00 2,33 5,17 4,25 3,67 3,00 2,00 3,25 2,33 5,20

3 3,00 1,00 2,33 4,00 2,50 2,00 3,25 1,67 3,75 2,67 3,40

4 - 1,00 3,00 4,00 2,67 3,33 3,50 3,00 3,33 2,50 3,33

5 4,00 1,00 3,33 4,00 3,75 4,67 3,75 3,67 3,50 2,67 3,60

6 3,00 1,00 2,33 2,83 2,50 2,67 4,00 3,50 2,75 4,33 3,40

7 2,00 2,00 3,67 3,20 2,25 2,67 3,25 1,33 2,25 4,33 3,50

8 4,00 1,00 2,50 3,50 3,50 3,33 3,25 3,00 2,25 1,67 3,40

9 6,00 2,00 3,33 3,83 4,75 4,00 3,67 4,00 2,75 3,00 4,00

10 5,00 1,00 4,00 4,83 4,25 3,00 4,00 2,50 3,75 4,67 4,80

11 2,00 1,00 3,00 3,50 2,50 2,00 2,25 2,00 2,75 4,33 2,80

12 2,00 1,00 3,33 1,83 1,75 2,00 2,75 1,50 1,75 3,67 2,00

13 2,00 1,00 2,33 2,40 2,25 3,00 3,00 3,00 3,00 3,00 1,75

14 2,00 1,00 5,33 3,83 1,67 1,33 3,75 1,50 1,67 2,67 4,00

15 7,00 7,00 6,00 5,33 6,50 6,67 6,25 6,67 5,75 6,33 5,20

16 4,00 3,00 2,00 3,67 4,67 3,67 3,25 2,67 2,50 1,67 4,20

17 3,00 1,00 2,00 2,50 3,00 4,00 2,50 2,00 2,00 2,00 3,00

18 1,00 1,00 2,00 2,00 2,33 1,67 1,50 1,50 1,67 1,50 2,00

19 2,00 1,00 2,00 2,50 2,00 2,50 3,00 1,50 1,67 1,67 2,60

20 2,00 1,00 2,00 2,33 1,67 1,50 1,50 1,50 1,75 1,67 2,20

21 2,00 2,00 2,67 3,67 4,00 2,50 3,00 5,00 2,25 2,33 3,20

22 5,00 2,00 3,33 3,33 4,50 2,67 3,25 3,00 3,50 3,33 3,20

23 6,00 1,00 2,50 3,50 3,00 2,33 3,00 3,00 2,00 2,00 3,60
 


